
Applied Numerical Mathematics 9 (1992) l-19
North-Holland

M. Berzins

School of Computer Studies, The University, Leeds LS2 9JT, UK

R.M. Furzeland
Shell Internationale Petroleum Mij B. K, P.0. Box 162, 2501 AN l%e Hague, Netherlands

Abstract

Berzins, M. and R.M. Furzeland, An adaptive theta method for the solution of stiff and nonstiff differential
equations, Applied Numerical Mathematics 9 (1992) 1-19.

This paper describes a new adaptive method that has been developed to give improved efficiency for solving
differential equations where the degree of stiffness varies during the course df the integration or is not known
beforehand. The method is a modification of the theta method, in which the new adaptive strategy is to
automatically select the value of theta and to switch between functional iteration and Newton iteration for the
solution of the nonlinear equations arising at each integration step. The criteria for selecting theta and for
switching are established by optimising the permissible step size.

The performance of the adaptive methods is demonstrated on a range of test problems including one arising
from the method of lines solution of a convectixr-dominated partial differential equation. In some cases the new
approach halves the amount of computational work.

1. Introduction

The theta method is widely used to solve initial value problems for ordinary differential
equations. Examples of applications include the method of lines treatment of partial differential
equations (Hopkins [‘7], Berzins, Dew and Furzeland [I]) simulation of electric power systems
(Johnson et al. [8]) and the modelling of gas transmission networks (Chua and Dew [A]). The
theta method can be applied to both nonstiff and stiff ordinary differential equations (ODES)
depending on the value of theta chosen. The method is an implicit olre for all nonzero values of
theta, which requires that a system of nonlinear equations be solved at each time step. In order to
take reasonably sized steps when solving a stiff problem the convergence criterion requires that a
Newton-type iteration be used. The Jacobian evaluations required for the Newton iteration are
expensive and often unnecessary for the solution of nonstiff problems where the step size
restrictions are less severe and a much cheaper iteration method such as functional iter;tionr can
be used instead. An obvious requirement is a single algorithm that can handEe both stiff and
nonstiff problems by automatically selecting the best value of theta and the most efficient

2 M. Berzrns, R. M. Furzeland / An adaptive theta method for DE’s

iteration method with respect to step size and cost per step. The theory behind a theta method
algorithm which changes iteration methods is discussed by Shampine [15,16] and has also been
used by Norsett and Thomsen ill] and by Berzins and Furzcland [2]. There have been a number
of attempts, many associated with the problems arising from the electric power industry, to find
the best value of theta so that the integration is as accurate and efficient as possible (see Iohnson
et al. [g]). Many of these attempts attempt to optimally fit theta to a linearisation of the ordinary
differential equations being solved. In this paper we shall derive a fully adaptive theta method
integrator by directly choosing theta so as to try to minimise the number of time steps, without
linearising the system of ordinary differential equations and combine this with the algorithm for
switching between iteration methods.

The main aims of the paper are to provide a description of the theta method which is
sufficient to allow a software implementation. This description will indicate how theta can be
chosen and how the iteration method can be changed adaptively by using the (unpublishe
algorithm of Berzins and Furzeland [2]. In Section 2 we describe the numerical methods used a:< a
basis for the new method and in Section 3 we put forward a basic strategy for an adaptive
method. In Section 4 we present the new integration method based on the automatic selection of
theta and on the switching from Newton to functional iteration, or vice versa. We give criteria
for deciding when to change the value of theta and to switch the iteration method according to
the error estimates, step sizes and cost per step that the different methods would use. Section 5
deals with the implementation details of the rrew method. Numerical results are presented in
Swtion 6 and these results illustrate the efficiency of the strategy both on standard test problems
and on problems arising from the method of lines treatment of partial differential equations.

2. Numerical methods

This paper is concerned with numerical methods for the solution of solving the system of
ordinary differential equations (ODES):

P=.f(x, y), a<-=& y(a) given. () 1

For the rest of this paper we shall not explicitly use vector notation but will consider the scalar
fo-m of equation (1).

2. I. The theta method

The theta method is defined as follows. Suppose we have the approximation ~7~ to y(x,), and
the approximation y,’ to y’(x,), then the numerical solution at x,,+ i, where x,, 1 = x, -t h and h
is the step size, is denoted by y,,+ 1 and is defined by

Yr7+i =_y; -I- (1 - 0)hy; + Ohf(x,+l, Y,+~). (2)
The theta rnethdd is §-stable (Prothero and Robinson [13]) for values of 8 > 0.5 but for values

of 0 6 0.5 the theta method is only conditionally stable. This formula is implicit in yn + r. In
order to calculate y, + , it is necessary to choose values for h and 0, to select an iteration method
and to have a predictor for the iteration method. The choice of iteration method will be discussed
first.

M. Bcrzins, R M. Fmeland / An adaptiue theta method for DE’s

2.2. Fufictional iteration and newton iteration

A simple way to solve the implicit equation (2) is to generate an initial predictor Y,‘?, (the
precise form of this will be discussed below) and t5 generate successive correctors from the
functional iteration formula

Yjrtt,‘l) = yn + (1 - o)/iy; + h@+,+l, y,‘:‘,‘). () 3

In order to determine whether or not functional iteration converges we expand the function f
using Taylor’s series tc get:

f(x, u) -f(x, v) = (u-v)*J,

where J is the Jacobia:? inatrix (af,/a yi) evaluated at .X and an unknown point y between u
and u, then

L = SUP Ml

is a suitable Lipschitz constant for some matrix norm.
On subtracting (3) from (2) and usiny the Lipschitz condition, we get:

This says that if hL@ < Y then functional iteration converges with a rate of convergence r where
r mustbe 4.

For the solution of stiff problems, we are, on efficiency grounds, forced to use step size h with
hL@ z+ 1. It is therefore necessary to use a different iteration. The standard one is the simplified
Newton iteration, which uses an approximate Jacobian matrix J and an iteration matrix Wn
defined by

af J=ay ((0)
%l+l, Yn+l ’) w;,+(I-h$3J) (5)

in solving a linear system of equations given by

for the correction (u!,“+t ‘) -- y,‘:;) at each iteration. In comparison with functional iteration, this
is computationally expensive since the matrix J must be formed, usually by costly and perhaps
inaccurate numerical differencing, and the iteration matrix yI must be decomposed into
triangular factors and a backsubstitution performed on each iteration. However, in comparison
with functional iteration, the Newton method may allow larger step sizes h to be used Zor stiff
problems.

2.3. Prediction of iteration values

The accurate prediction of the initial values for the Newton or functional iteration plays an
important role in the algorithmic efficiency of the method. The simplest predictor is based on the
explicit formula

Yt% = A, + hv,” m

4 M. Berzins, R.M. Furzeland / An adaptive theta methcdfor DE’s

where from (2) the derivative yi is estimated for n > 1 by

yn - yn__l - (1 - @)hy,‘_l
y,; = - Oh

. (8)

This prediwi has an error of h; yi’ and although it provides acceptable values it is possible to
compute a predicted value closer to that of the theta method by using

h2
(9)

the two rightmost terms of which form an approximation to the second derivative of the solution.
The accuracy of this predictor can be found by noting that the values on the previous step satisfy

yn-yt-l = (1 - Q)h,_,y;+, + 8h,l_,y,;.

Using this equation to substitute for y, - y,_ 1 in the right-hand side of the predictor equation
and collecting terms together enables equation (9) to be rewritten as

(y;"!,=yn+hny;+(1-8)h; “h-“‘I) .
n -1

Assuming that (yi - y,:_ I J/h, _ 1 is an O(h, _ 1) approximation to yi’ and that

the error, v,“+i - yn+i, in the predictor defined by equation (9) can then be seen to have a form

G - 0) hi y,” that is close in magnitude to the local error of the theta method, see equation (17)
below. Alternatively, multiplying the two rightmost terms in equation (9) by O/(1 - 0) would
give a predictor with exactly that property, within O(hz).

In the case when a Newton iteration is used, Prothero and Robinson derived a still better
predictor which is used in their code (see Hopkins [7]) and in the codes of Chua and Dew [4] and
Berzins and Furzeland [2]. The following derivation shows that the predictor is closely related to
the underlying method. Suppose that the value to be predicted is to satisfy the theta method,

Ytr+ 1 =Y~I + t1 - @JhnYt: + @hnf(xn+17 Y,qt-)*
, \
W!

By using the Jacobian matrix J to linearise the function f() this equation can be approximated

bY

wn(Yf+l -Yn) z hny,’ + hz@f 9 (11)
where J; has been used to substitute for .f(.u,, yn). Suppose that the previous step was taken
with a step size of hn_ 1 then a similar approximation gives

where f, and J are both evaluated at (x,, y,). Addition and subtraction of terms gives

wn(Yn-Yn-l)=hn-lYl-l + @thn-l -hn)J~Yn-Yn-lJ +hZ-*@fx* \
(1%

M. Berzins, R.M. Furzeland / An adaptive theta method for DE’s 5

Divide (IQ by h, and divide (13) by h,_, and subtract the second equation from the first to get

w

n

i

YlY+l -Yn _ “,“-1

hn n 1 I

z (_Yi -v,‘-1) - @ l - ;- [J(Yn -Yn-1) + hn-lL] l (I n-l

The right-hand terms involving J and fX can be rewritten in terms of f(x,, y,‘) and f(x,__ r, yi.__ 1),

and hence in terms of y,’ and J;._~ to get

w
n

i

Y,O+l -Yn _ YnyYn-1

hn n-l I

-(Y.‘-Y,‘,)-6(1-~)(Y:-Y:,). (14)

Multiplying by h, and inverting the matrix Wn gives the predictor used in the codes following the
Prothero and Robinson approach and in the new adaptive code discussed here:

Yf+l =Yn + ‘n (yn~~-1)+hn[l-6(1-+-)]~-1~Y;-Y,f-l)~ (15)

where the quantity Wn?(y,’ - y,‘_ 1) is also used in local error estimation and so is stored by the
code [7].

2.4, Choice of theta and the step size h

The aim of most integrators for stiff ODES is to control the local error per step so that it is less
than a user-supplied tolerance. The smaller the erroAT * the larger the time step that can be taken.
The aim of the adaptive method is thus to choose h and 0 so as to optimise the time step. The
local solution of the differential equation U(X), about the point X, is defined to be the solution
of the following equation:

ut = f(x, u), u(xn) =Yn?

and the local error 7 incurred on the step to x,, 1 is defined by

It may be shown that the local error satisfies the equation

[I-0hJ]7=h2(0- $$x,,) + ;h3(O- +)!$(x,, + O(h’).,

(16)

(17)

‘This error estimate leads one to thiglk that the value 01 = 4 would result in the most accurate

theta formula. Such analysis based on just the leading term is, however, incorrect. For the simple
test problem

y’ = &Y,

6 M. Berzins, R.M. Furzeland / An adaptive theta method for DE’s

Prothero and Robinson [13] showed that, by expanding the error in terms of p = Ah, the relative
error R(p, 01, which is defined as 7Jt4(xn+ i), can be written as

R(p,O)= -l+emP
I+ (1. - 0)p

I-op - (1%

and from this they deduced that when A is less than 0 the value 0 = 0.55 is a good compromise
between a small relative error and a large value of p and hence a large step size relative to the
value of A.

In the case of X with positive real part
it can be shown that

-R(pv 0)
R(-pJ--@)= l+R(p,@j

We are typically interested in 1 R(p, 0) 1

the relative error is again defined by equation (19) and

. (20)

< 1(y3 and from the Prothero and Robinson approach
it follows that for X with positive real part a suitable value of 0 is 0.45.

It is possible to choose an optimal value of 0, say @,r,1, that makes the method have no
relative error and hence be exact for the scalar equation (18). Setting R(p, 0) to zero in
equation (19) and solving for theta gives

(21)

which makes the method exact for the scalar equation (18). This is the basis of the approach
adopted by Johnson et al. [8]. In their method values of A must be found so that the linear
equation (18) is a good approximation to the nonlinear equation (1) being solved. In general this
means that X must be estimated numerically. The approach used by Johnson et al. [8] is to
approximate X by A* where

A* = Y; - Yi- 1 I
h,Y,, * (22)

Using the exact values of the derivatives of the solution to the scalar equation (18) then gives

1 - ehh
A”= h . (23)

II

The actual value of @ used by a code is then given by

@,=&- 1

e hx* _ 1 n (24)

The alternative is to choose 0 to minimise the local error as defined by equation (17) or its
numerical estimate. The Prothero and Robinson type codes (see Section 4.1 below) and the
adaptive code described here when a Newton iteration is being used, all use the same local error
estimate. This local error estimate is defined, in the case of evenly spaced time steps, by

~e,,(o)=(3-:)A,+(@-@2-~)(A,-A,_,), (25)
where

4 -7 h tliv,- ’ (y; - yt;__ 1)

M. Benins, R. M. Fwzeland / An adaptioe &eta merhod for GE’s 7

and A,,_1 is similarly defined and both vectors are stored by the code and also used in the
predictor defined by equation (15). In the case when functional iteration Cd being used with a
constant step size the err02 estimate has the similar form

7~,,(0)-(0-9)h,iy~-y,‘_,) + (@-o’-$jh,(y,“-2y;_, +y,;_2;. (26) I

The time step chosen by the integrator is taken so as to try and ensure that

where TOL is a user-supplied tolerance. The approach taken here is to select @ to try and
minimise the local error hence allowing a larger time step to be taken. For example, in the case of
one equation, choosing @ so that 7esl, as defined by equation (25), is zero defines a quadratic
equation in 0 given by

where a - - (A,, - A,_#A,,. Of the two roots only one provides values of @ in the required range
for accuracy and stability

e2=; l+$ (- gTjq, (27)

where a = (A, - A,_ #A,. From this equation it can be calculated that for all finite values of
a, 0, is approximately bounded above by 0.7887 and below by 0.2113. Thus the form of error
indicator limits the range of values of 0 that need be considered. The advantage of this
approach is that it is linked directly to the error estimation and step size selection of the
integrator and does not rely on the scalar equation (18) being a good model for equation (1).

This new approach can be compared with that of Johnson et al. [8] on the scalar equation (18).
On substituting the exact values of the time derivatives into equation (25) (or (26)) and choosing
0 so that 7est is zero the value for 0 is given by equation (27 with the value of a given by
a = (1 - e-“‘). The constant a is thus bounded below by - 09 and above by 1 for all real values
of hX. Thus from equation (27) the values of O2 for the model problem are further constrained
to lie between approximately 0.4226 and Q.7887. The two approximate values of @ defined by
equations (24) and (27) are compared against Coopt in Fig. 1. The accuracy of the two methods
can be compared by evaluating R(p, 0,) and R(p, &) for a range of p values. Figure 2
provides such a comparison of the errors that arise when 0, and O2 are used with negative real
values of hX. The figure shows that O2 gives a smaller error than Or for values of p > - 8.84.
Thus for a range of values for which the exponential needs to be approximated with accuracy,
i.e., 1 p 1 < 10 (so that the numerical solutions decays by a factor of less than e*’ over one step)
the approach we have adopted is more accurate. For positive values of hX there is remarkably
little difference between the errors that arise from using Or and @,, especially for large positive
hh. The limit for 0, as hii becomes large and positive being 0.418 wh ‘k the corresponding vaIue
for 8, is 0.4226.

The approach that we have adopted clearly can be extended to use a different value of @ for
each equation in the ODE system. This is considered by Johnson et al. [S] but rejected on the
grounds that it will not work well unless the coupling between different equations is not tkht.
Such a situation may however arise in the method df lines solution of P Es in which the solution
has markedly different characteristics in different spatial regions. In this stu

M. Berzins, R.M. Furzeland / An adaptive theta method for DE’s

-ic -6 -4

Va!ue of F

Thets 0 - “he;5 2 .,a- Theta 1 --+---

Fig. I. Comparison of theta values.

attempt to select one “optimal” value. Johnson et al. [8] suggest that it is not necessary to find
this value to great precision and that an app ifixitxaie vaiue is sufficient. The simplest way is to
approximately minimise I] 7e,J 0) I] by searching over a number of discrete values of 8. In the
case when the ODE system being solved is large in size it may be expensive to perform many
norm evaluations. These norm evaluations can be computed inexpensively when the Euclidean
norm is being used by splitting the norm calculation into constants depending on the vector parts
of equation (25) and constants depending on 63. As the vector parts need only be computed once,
evaluations of]]7(0) I] 2 are then computationally inexpensive for different values of 0.

strategies for an a

The objective is to determine the most efficient method for solving a problem. If a problem
changes character, that is, from nonstiff to stiff or vice versa, in the interval of integration, we
want to switch automatically to the most efficient iteration method and value of 0. The
difficulty is that any automatic scheme must predict the future bchaviou: of the integration of a
method which it is not currently using. The decision on which iteration method will solve a given
problem most efficiently is made by estimating and then comparing:

(a) the step size that each method could use on the next step, and
(b) the cost per step of each method.

M. Berzins, R.M. Furzeland / An adaptive thetu method for DE’s

Theta 2 -- Theta I

Value of P

. . . . e

Fig. 2. Comparison of theta errors.

In the case when a nonstiff method is used, equation (2) is solved using functional iteration.
The cost per unit step of doing this is the usual code overhead plus two or three iterations each
of which involves a function evaluation. In contrast the cost per unit step of Newton’s method is
more difficult to evaluate. The Jacobian matrix (equation (5)) is not evaluated every time step; it
is only estimated and decomposed into its IU factors when this becomes necessary, e.g. due to
convergence failures. This cost also depends on whether or not full, banded or sparse matrix
routines are used in this decomposition. Each iteration then involves one function evaluation and
one backsubstitution, with a maximum of usually three iterations per attempt with a given step
size. This range of possibilities makes it difficult to estimate beforehand how much work per step
i? involved for the Newton iteration.

There are at least two possible ways to measure the relative costs of the two iteration methods.
The first is to use the ratio of the function calls per step, averaged out over enough steps to take
the periodic Lipdating of the Jacobian into account. The second is to use the CPU time per step
as measured by ihe clock of the computer. Experimentation with these approaches reveals that
both have their disadvantages. The first approach takes no account of the time spent in IU
decomposition and backsubstitution while the second approach is hampered by the inability of
CPU clocks to accurately measure what may be very small amounts of CPU time. The first
approach does work well if the cost of a function call is expensive.

For both methods the step size must be chosen so that the formula is accurate over the next
step: that is, a norm of the local truncation error is less t an some tolerance E. The step size must

10 M. Berzins, R.M. Furzeland / An adaptive theta method for DE’s

be small enough so that the Newton or functional iteration converges rapidly. In addition, for a
nonstiff method, the step size must be small enough so that the method will be stable, although
in practice instability will be detected by the growth of the local error.

Should a problem start to become stiff there will come a point when the step size is
inefficiently small in comparison to the step that the stiff method could use, despite the
additional cost of the Newton iteration. The criteria that can be used to decide when the switch
should be made are discussed in the next section.

4. An adaptive method for stiff and nonstiff problems

4. I. Introduction

The integrator of Chua and Dew [4] solves the system of differential equations of the form of
(1) using the theta method (2) with 0 = 0.55. This integrator was developed from the Prothero
and Robinson [l3] integrator as described by Hopkins [7]. All these codes use the predictor
defined by equation (15) and the error estimator defined by equation (25).

The objective in this paper is to modify the Chua and Dew integrator so that it is adaptive
with respect to the value of theta and in the type of iteration method (functional or Newton
iteration) used to solve the nonlinear equations. The choice of method is based on criteria
established from the error estimates and the step sizes that the different values of theta and the
different iteration methods would use.

Shampine [M] has also constructed a switching code based on the theta method for equations
in normal form and allows different values of theta though he does not switch between them.
Section 2 has indicated that one choice is to use @ = 0.55 for stiff equations and 8 = 0.45 for
nonstiff equations. Following the suggestion in Section 2.4, we have experimented with using
values of 0 as low as 0.42 in our algorithm but have found that the algorithm is more efficient if
0 > 0.5. Furthermore, the largest step size that can be used with functional iteration is given by
equation (4). On substituting the values @ = 0.45 and 0 = 0.55 into equation (4) we se2 that the
step size that can be taken with 0 = 0.45 is only 0.55/0.45 or onIy 22% larger while for values of
0 closer to 0.5 the difference is even less significant. The decision to restrict 0 in this way does
seem to depend on the class of problems being solved. Johnson et al. [8] suggest that @ should be
allowed to be less than 0.5. In any case it is straightforward to extend the search for the
minimum local error to include values of 0 less than 0.5, see Sections 4.4 and 5.2 below.

4.2. Changing method type from nonstiff to stiff

In considering changing the method type from nonstiff to stiff there are two step sizes of
interest:

hiter : maxirr urn step size for functional iteration to converge;
h accy: maximum step size possible by using a Newton iteration.

We iterate to convergence with functional iteration and a step size that is chosen to ensure
rapid convergence. In this situation, the local error estimate indicates the step size that could be
taken if a Newton iteration was being used, haccy , since there is no restriction on the step size due
to stability.

M. Berzins, R. M. Furzeland / AIT uduptioe theta method for DE’s .
11

The decision to switch Is based on comparing the step size needed for accuracy with that
needed for convergence. The condition for rapid convergence of functional iteration is, assuming
we have an up-to-date estimate of the Jacobian,

where the convergence rate r is taken to be (say) 0.5, 0 is one of the values mentioned in Section
5.5 below and p(J) is the spectral radius of the Jacobian matrix J. The actual rate of
convergence of functional iteration may be estimated [15] by:

II (m+2) (m+ 1)

CRATE = “‘;i,+ r;1”;,;,, II

II Y I1 + 1 y 111)I +

and using (28) with h iter replaced by h and I’ replaced by CRATE gives

(29)

(30)
This estimate for p(J) is substituted into (28) to obtain the inequality used in the code to
estimate the functional iteration step size, biter,

h *OS
hitcr d CRATE ’ (31)

where the constant 0.5 has been introduced as a safety factor.

If h ~CEY/~ iter is large, then the step size has to be restricted to makt functional iteration
converge and it may be cost-effective to switch to Newton’s iteration. Whether or not the switch
is made depends on the cost per step of the using the two iterations. Let C, be this cost for the
Newton method and Cr be the cost for functional iteration. The overall computational cost will
be reduced if

h accy ’ 12i*ercN/cf. (32)

III Section 3 we explained why it may be difficult to estimate the ratio of these costs and so we
cannot use this criterion exactly. Furthermore, if CN is large compared to Cf, i.e.. a Newton step
is expensive compared to a functional iteration step then the change-over to a Newton method
will involve a new step size haccy that is large compared to the present step size hiterm The
algorithm will thus attempt to deduce the bei‘aviour of the numerical solution on a much larger
time scale than that being used by the functional iteration method. This, in general, will make it
harder to accurately predict the error that will be incurred by using the new (much larger) step
size. For this reason it seems better to recognise early when a Newton method can be used by
restricting the increase in step SI ‘ze at the change-over in iteration methods, and to switch TV

Newton’s method if haccy >, 4hiter and if at least twelve steps have been taken since the last switch
to functional iteration. The factor 4 was determined by experimentz!iosl wi’h a number of test
problems and represents a typical value of the ratio C,/C, in (32). The code allows the user to
change this parameter if this is necessary. The switch is also made if three or more step size
reductions have been made on the current step due to convergence failures.

4.3. Changing type from stiff to nonstiff

When Newton’s method is being used, an estimate of p(J) is required to establish the step size
that can be used with functional iteration by applying the convergence condition of equation

12 M. Berzins, R. M. Furzeland / An adaptive theta method for DE’s

(28). Petzold [I21 estimates p(J) by calculating I] J I] oo directly from the Jacobian matrix. This
may overestimate the spectral radius and thus stop the code from switching to functional
iteration. As the spectral radius is expensive to calculate, the approach we have adopted is a
pragmatic one. Four function calls are used in three attempted functional iterations. This allows
two rates of convergence to be estimated as in equation (29). No switch is made unless both these
rates are less than 0.9, the second rate of convergence is less than 0.7 and the iteration has
converged according to the criteria used by the nonlinear equations solver. In the case when the
first estimated rate of convergence is > 0.9 the attempt is directly terminated.

The disadvantage of this approach is the cost of the four extra function calls required, but this
should be considered in the context of large problems where many function calls may be required
to form the Jacobian. In any case the test for switching to functional iteration is only made if the
Jacobian matrix is being reformed because the Newton step size is about to be increased. This is
an opportune time to test as it marks the point where the existing LU decomposition of the
Jacobian is no longer useful and the integrator has not run into difficulties which have required
the step size to be reduced. 0ne advantage of this approach is that it does not require the use of
matrix norms and so does not rely on the perhaps unnecessarily pessimistic estimate of the
spectral radius p(J) by using a matrix norm such as I] J]I a. An alternative approach is that of
Norsett and Thomsen [ll] who estimate the stiffness ratio using ratios of the norms of’ the vector
quantities on the left and right sides of equation (6).

once the switch has been made biter can then be estimated by

h iter =

0.5h

CRATE ’ (33)

where h is the step size being used. If hi,,r/h is large, then the code no longer needs a very small
step size for the convergence of functional iteration.

The switch back to functional iteration is attempted only under two c!rcumstanceLc*. The first is
when the Jacobian matrix is about to be reformed because the Newton step size is about to be
doubled. (The code automatically forms a new Jacobian whenever the step ji?c is either doubled
or halved in a Newton mode.) The second is when the Jacobian is being reformed because twenty
steps have been taken with the same Jacobian matrix. In both cases no switch is attempted until
at least ten steps after the last switch to a Newton method in order to allow the integration to
settle down.

4.4. Choosing a new value of 0

In order for* the procedure for selecting 8 to be reliable, a good estimate of the local error
with the proposed new value of 0 is required. It is therefore wise to leave the selection of @ until
the code has taken a number of steps with constant step size (the normal course of events) and
has in this sense settled down. It is then possible to estimate

where 0, are the possible values used to minimise the norm of the local error 7 and the vector
norm is weighted to reflect the form of local error test (absolute, relative or mixed) being used
for each component. The values of Oi use are given iii Section 5.2 below. This strategy also

prevents @ from being changed too frequently.

M. Berzins, R. M. Furzeland / An adaptive theta method for DE’s

5. Smplementation

13

The strategy of the integrator is first to predict a solution and then to try and compute the
solution at the next time level using the nonlinear equations solver which also estimates the rate
of convergence CRATE. If functional iteration is being used the step size biter is estimated as in
equation (31). In the case when the solver fails to converge we take the approach described in
Section 5.4.

5.1. Error estimates

After a successful return from the nonlinear solver the weighted local error norm, ERRL, is
estimated using equation (25) if Newton iteration is being used or (26) if functional iteration is
being used. In the latter case, in addition to the weighted local error norm, another error estimate
is computed. This is the estimate of the weighted local error norm we would have, if Nt vto-l’s
method was being used. From this error estimate we know whether or not the step size or
Newton’s method need to be changed.

Then since the local error estimate is O(h2), it is expected that the weighted local error norm
for Newton’s method, ERRN, can be estimated from:

where ERRF is the estimate of the weighted norm of the local error using functional iteration.

5.2. Local error tolerance satisfied

If the weighted local error norm ERRL of the current method being used is < 1, then the
solution satisfies the local error tolerance. The strategy used is to double the step size, if the
weighted local error norm is < 0.25, and to halve the step size if it is > 1.0. The same strategy is
used to change the step size haCC,, depending on the value of ERRN.

After three successful steps with the same step size, we check to see if the step size required for
accuracy can be doubled for the next step. If the step size is less than the maximum (integrator
dependent) step size, and the weighted local error norm is < 0.25 the step size is doubled
provided that it remains less than the maximum allowed step size. The excention to this is when
@ < OSl- “almost” third-order local error. In this case 0.15 is used instead of 0.25 to prevent
the new step size being immediately rejected. In the case of functional iteration, if doubling the
step size results in a step size greater than the maximum step size, biter* then the step size is not
changed from its previous value.

In the case when the step size is about to be doubled a test is made to see if the most
appropriate value of 0 is being employed, This consists of re-estimating what the local error
would be for the values of 0 = 0.51, 0.55, 0.59, and 0.63 and choosing the value of 0 which
minimises the error. This range of values is a restriction of the possible values of @ suggested by
Sections 2.4 and 4.1, i.e., 0.50 < 8 < 0.78. Although we have experimented with using different
ranges of 0 values on a wide class of tesr oroblems, the a seems to give the most

efficient code for the range of stiff and no test problems that we use t is possible that

different test problems would have suggeste t values of 8.

5.3. Local error test jails

If the solution does not satisfy the local error tolerance, then we must reduce the step size and
possibly switch methods. From the Chua and Dew [4] strategy, if the weighted local error norm
is > 1.0, the step size is halved. If functional iteration is being used, we allow up to three such
reductions per step after which a switch to Newton’s method is made. This switch has the
advantage that the more reliable error estimate for stiff problems defined by equation (25) can be
used.

5.4. Nonlinear equation solver jails

‘When the nonlinear equation solver fails to converge, then we must also consider reducing the
step size or switching methods. The step size is reduced a maximum of three times per step (six
times on the first step). The switch from functional iteration to a Newton method is made after
three step size reductions or if h,,,. > 4h, whichever comes first where the factor 4 is the
approximation to the ratio C,/C, as in Section 4.2.

6. Numerical results

Numerical testing was conducted using three integrators. The theta method code of Chua and
Dew as implemented in thi SPRINT software of Berzins, Dew and Furz,eland [l], referred to in
the numerical testing experiments as STHETA, and the corresponding switching method, code
STHETZ, and the SPRINT backward differentiation method, SPGEAR. In Tables 1 and 2, Fun
is the total number of ODE function call evaluations including those used in numerical
differencing to form the Jacobian matrix while JAC is the number of I_U decompositions of the
Jacobian matrix. The SPRINT package is designed primarily for differential p.lgebraic equations

Table 1
Results on the van der Pol equation with E = 1000

TOL Method Steps Fun JAC CPU

IO-? STHETA 324 1318 149 0.14

STHETZ 323 1286 117 0.15

SPGEAR 348 997 136 0.14

1o-3 STHETA 724 2262 177 0.26

STHETZ 597 1848 109 0.23

SPGEAR 540 1339 158 0.21

1W4 STHETA 2149 5377 241 0.67

STHETZ 1240 3405 101 0.44

Sk’GEAR 791 1724 170 0.38

lo-’ STHETA 6176 14036 422 1.73

STHETZ 3180 7625 88 1.05

SPGEAR 1075 2035 76 0.38
--.

M. Berzins, R. M. Furzelund / An udaptive theta method for DE’s 15

Table 2
Results on the Enright et al. I35 test problem using STHETA and STHETZ

TOL

10-?

10-j

Method Steps Fun .IAC CPU

STHETA 90 347 21 0.06
STHETZ 101 279 6 0.05
SPGEAR 152 681 11 0.12

STHETA 237 738 34 0.14
STHETZ 224 583 10 0.12
SPGEAR 183 357 22 0.10

1o-4 STHETA 735 1855 51 0.42
STHETZ 531 1304 15 0.27
SPGEAR 322 544 22 0.10

lo+ STHETA 2209 5279 119 1.23
ST ,-IETZ 1367 3094 8 0.69
SPGEAR 424 682 33 0.22

and has no option to save the Jacobian matrix so the Jacobian is reformulated before each LU
decomposition. The CPU time was measured in seconds on an AMDAHL 5850.

6.1. 7’esting on two smaN test problems

The first two test problems are designed to test whether or not the code switches as expected,
rather than to show dramatic reductions in CPU time.

Problem 1 (Van der Pol’s equation). The first problem, van der Pol’s equation, [17], was chosen
because it alternates between being stiff and nonstiff several times during the interval of
integration and so provides a good test of the codes’ ability to switch between the two methods.

Y(=Yzt y#) = 2.0,

y;=+ -Y:)Y2-Y, Y2Ku =o*

where E = 1000 and the interval of integration is (0,300O) (see Table 1).
The results show that the STHETZ code is more efficient than STHETA and for low to

medium accuracy requirements competes with the BDF code SPGEAR. The number of LU
decompositions for STHETZ also compares well with the results obtained by Norsett and
Thomsen [ll] using their approach.

Problem 2 (Enright et al.). This problem is the well-known B5 test problem from the test set of
Enright, Hull and Lindberg [5]. The problem was chosen because the Jacobian matrix of this
problem has the eigenvalues - 10 - lOOi, - 10 + lOOi, - 4, - 1, - 0.5, - 0.1 two of which are
close to the imaginary axis. (See Table 2.)

The results for Problems 1 and 2 show that ST ET2: uses noticeably less function cab and
Jacobian evaluations than TA. The decrease in the number of Jacobian evaluations is not
significant for these test pr s as the cost of computing the Jacobia e next

16 M. Berzins, R. M. Furzeland / An adaptive theta method for DES

section we shall investigate what happens when the two codes are applied to a more typical larger
test problem where Jacobian evaluations play a more important role.

6.2. A larger test problem based on convection-diffusion

The use of method of lines software for time-dependent partial differential equations in two
space dimensions involves the time integration of a large number of (between lo3 and 3G9)
ordinary differential equations. For such large systems it may not be appropriate to use direct
sparse matrix routines to solve the large system of linear equations that arise at each step of the
Newton iteration. Instead it may be more efficient to use iterative sparse matrix methods which
may perform better than traditional direct methods. Of the many iterative sparse methods
proposed there are a number of contenders for use within PDE packages, GMRES as used by
Brown and Hindmarsh [3], the IOM method as used by Moore and Flaherty [lo] and Orthomin
as used with SPRINT by Seward [19] in WATSIT, Orthomin is a preconditioned, truncated and
restarted, generalised conjugate residual method which can tackle a larger class of problems than
the conjugate gradient metho& WATSIT also requires the Jacobian matrix to be formed for use
in an incomplete LU preconditioner for the Orthomin iteration. The expense of the precondition-
ing step can be compared to the LU factorisation step of the sparse matrix routines in SPRINT.
For reasons of computational efficiency, the preconditioner is reused for several iterations of
Newton’s method. In general only one or two Orthomin iterations are needed for each Newton
iteration. There is an option to try and reduce the size of the system of equations using the
red-black ordering scheme applied to the Jacobian matrix as this sometimes leads to a
considerable saving in computational effort (see Seward [14]).

The test problem used to demonstrate the performance of the new type insensitive code IS the
following two-dimensional problem:

vr + u(x, t)vx + u(y, t)vY - l+&. -t c,.,.) = 0 (35) . .

v1 ~ti-t analytic solution, boundary and initial conditions defined by v(x, y, t) = u(x, t)u(y, t)
where u(x, t) is defined by

u(x, t)=
O.lA + 0.5B -t- C

A+B+C ’

where A = e (-0.05(x-0..5+4.95r)/v), B = e-0.25(x-0.5+0.75r)/u) and c = ,(-0.5(x-0.375)/~)_

v = 0.0001 gives a convection-dominated problem, while v = 0.004 gives a convection problem
with rather more diffusion. The problem was discretised in space on a uniform square mesh of
NPTS points on the region (x, y) E [0, l] x [0, l] by using a standard finite volume sche.me with
the van Leer harmonic mean limiter to preserve monotonicity 19. p. 1801, applied to the
convective fluxes. This scheme results in a numerical solution that is free of oscillations
regardless of the mesh spacing. The steep shock-like wave front is, however, smeared out across
two spatial cells. In Table 3 NPTS is the total nurnber of spatial mesh points and hence the total
number of ordinary differential equations. The SPRINT time integrators used were the Gear
BDF integrator SPGEAR and the STHETZ code whrch chooses whether or llot to switch
between Newton and functional iteration. In Tables 3 and 4 the Yale sparse routines and
WATSIT when used with the Gear BDF code SPGEAR are referred to as Yale and WATS. In
the case of WATSIT, the entry under JAC refers only to the number of formulations of the

M. Berzins, R. M. Furzeland / An adaptive theta method for DE’s 17

Table 3
v = 0.004 results

K-PTS

625

Method CPU

YALE 116
WATS 108
THETZ 112

Steps Fun JAC

62 I52 5
61 150 5
62 152 5

2500 YALE 836 74 183 6
WATS 737 74 183 6
THETZ 875 104 254 0

5625 YALE 2786 79 199 8
WATS 2415 81 216 9
THETZ 2134 70 219 4

l@OOO YALE 7279 79 221 9
WATS 5137 79 208 8
THETZ 7368 96 313 7

Jacobian matrix as no full ISJ decomposition is carried out. In Table 3, CPU refers to the
computer time in seconds on a SPARCl workstation. In both tables the requested local error was
10V3 and the error norm used was a maximum norm. In Table 4, CPU refers to the computer
time in seconds on a DEC 5000/200 workstation. The results show that WATSIT proves to be
superior to the sparse matrix techniques and that as the problem size gets larger, requires less
CPU time. Similar results are provided by Seward [19]. In the case when u = 0.004 the ODES are
only midly stiff so STHETZ uses the Newton iteration for most of the time and competes with
the Gear code using the sparse matrix techniques. It is clear from Table 3 that WATSJT should
be used with the switching code. Finally in the convection-dominated case (V = 0.0001) the
0DEs are not stiff and the STHETZ code is able to recognise this and to use functional instead

Table 4
v = 0.0001 results

NPTS Method CPU Steps Fun SAC

625 YALE 309 183 1451 77

‘t%‘r$ TS 323 194 1638 88

THETZ 65 140 376 0

2500 i4LE 4053 378 2825 160
WATS 2961 379 2.785 157
THETZ 639 263 677 0

5625 YALE 15860 536 3039 172
WATS 10040 553 3293 :90

THETZ 2745 386 9016 0

a 0000 YALE 69900 695 3781 215
WATS 25210 708 3854 220

THETZ 7136 474 1229 0

18 M. Berzins, R. M. Furzeland / An adaptive theta method for DE’s

of Newton iteration. This results in large savings in computer time. The ideal combination would
thus seem to be to use WATSIT in conjunction with a type insensitive code like STHETZ. This is
n:ade possible by the modular structure of SPRINT which allows this combination without
difficulty. A similar combination of a type insensitive code and an iterative solver is already used
by Hindmarsh and Norsett 161.

7. ConclusEons

An adaptive theta method can be used to advantage for the low to medium accuracy solution
of differential equation problems where the stiffness of the system may vary widely over the
range of integration and in a way that is unknown beforehand. The adaptive method is based on
an efficient implementation of the theta method, in which the method used for nonlinear
equation solving is switched between functional and Newtcn iteration as the stiffness varies. The
choice of iteration method is based on criteria establisheo from the error estimates and step sizes
that the two different methods would use. At the same time the value of 0 used is varied to try
and make the time step as large as possible.

The adaptive method can result in improved efficiency in terms of the reduced number of
.h;cobian evaluations needed compared with a method based on a separate stiff or nonstiff
I +~thod with a fixed value of 0. This improvement is particularly noticeable for problems with
variable stitrness for example where there is an initial transient (nonstiff) period. For problems in
which low to medium accuracy is required the new method appears to compete with variable
order multistep codes on the basis of the limited experiments so far.

The authors would like to thank Justin Ware for computing the numerical results listed in
Table 3 and 4 and Alan Hindmarsh for ending their flirtaticn with typographical errors.

eferences

PI

121

131

PI

PI

E61

171

M. Berzins, P.M. Dew and R.M. Furzeland, Developing software for time-dependent problems using the method
of lines and differential algebraic integrators, Appl. Numer. Math. 5 (1989) 375-397.
M. Berzins and R.M. Furzeland, A type insensitive method for the solution of stiff and non-stiff differential
equations, Report 204, University of Leeds, School of Computer Studies (1986).
P.N. Brown and A.C. Hindmarsh, Reduced storage matrix methods in stiff ode systems, Appl. Math. Comput. 31
(1989) 40-91.
T.S. Chua and P.M. Dew, The design of a variable-step integrator for the simulation of gas transmission
networks, Internat. J. Numer. Methods Engrg. (1984) 1797-1813.
W.M. Enright, T .E. Hull and B. Lindberg, Comparing numerical methods for stiff systems of 0.D.E.s BIT 15
(1975) 10-48.
A.C. Hindmarsh and S.P. Norsett, MRYSI, An O.D.E. soi tic combining semi-implicit Runge-Kutta method and a
preconditioned Krylov method, Report UCID-21422, Lawrence Livermore National Laboratory, Livermore CA
(1988).
T.R. Hopkins, Numerical solution of quasi-linear parabolic P.D.E.s, Ph.D Thesis, Liverpool University (1976).

M. Berzins, R. M. Furzeland / An adaptive theta method for DES 19

[8] R.B.I. Johnson, B.J. Gory and M.J. Short, A tunable integration method for the simulation of power system
dynamics, IEEE/PES 88 Winter Meeting Paper 88 WM 177-8 (1988).

[9] R.J. Leveque, Numerical Methods for Conservation Laws, Lectures in Mathematics Series (Birkhauser, Base],
1990).

[101 P.K. Moore and J.E. Flaherty, Adaptive overlapping grid methods for parabolic systems in two space dimensions,
Report 90-5, Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY (1990).

[ll] S.P. Norsett and P.G. Thomsen, Switching between modified Newton and fix-point iteration for implicit o.d.e.
solvers, BIT 26 (1986) 349-348.

[12] L. Petzold, Automatic selection of methods for solving stiff and non-stiff systems of ordinarv differential
equations, SIAM J. Sci. Stat. Comput. 4 (1) (1983) 136-148.

[13] A. Prothero and A. Robinson, On the stability and accuracy of one-step methods for sdlving stiff systems of
ordinary differential equations, Math. Comp. 28 (1974) 145.

[14] W. Seward, Solving large ODE systems using a reduced system iterative matrix solver, Research Report CS-89-38,
Computer Science Department, University of Wczkrloo, Ont. (1989).

[15] L.F. Shampine, Type-insensitive O.D.E. codes based on implicit A-stable formulas, Math. Comp. 36 (1981)

499-510.
[16] L.F. Shampine, Type-insensitive O.D.E. codes based on implicit A(cr)-stable formulas, Math. Comp. 39 (1982)

109-123.
1171 J. Villadsen and M.L. Michaelson, Solution of differential equation models by polynomial approximation

(Prentice-Hall, Englewood Cliffs, NJ, 1973).

