Towards Efficient DAE Solvers for the

Solution of Dynamic Simulation Problems

A. J. Preston, M. Berzins, P. M. Dew, L. E. Scales
Unwversity of Leeds, Shell Research Lid., Thornton Research Centre

1 Introduction

Dynamic simulation problems in the chemical engineering industry of-
ten involve computing the solution to large sparse systems of index two
differential-algebraic equations (DAEs) with frequent discontinuities in the
solution. This paper reports on work to improve the efficiency and robust-
ness of SPRINT [1] for this class of problems. These improvements consist
of an extension of SPRINT [1] to handle index two DAEs, a study of mech-
anisms for coping with discontinuities, and an initial investigation into the
potential benefits and feasibility of porting SPRINT [1] to a highly parallel
processor array machine, such as the Meiko Computing Surface.

The chemical and production processes employed in the petroleum and
chemical industries involve increasingly specialised machinery and com-
plex control systems. The efficient and robust control of such processes
requires the accurate prediction of the dynamic response to changing op-
eration conditions. The mathematical modelling of these systems requires
the solution of a large set of sparse, stiff differential algebraic equations rep-
resenting gas compositions, temperatures, pressures, flow rates and control
parameters. Commercially available simulation software employs explicit
time integration methods, needing very many time steps, and solves the
algebraic equations by ad-hoc iterative techniques based on engineering in-
sight into the connectivity of the system and the direction of information
flows. SPRINT [1] is a general purpose software package for the numer-
ical solution of time-dependent differential equations. The kernel of the
software is a d.a.e integrator package based on backward differentiation
formulas (BDFs). Although SPRINT [1] is widely used by mathemati-
cal modellers within Shell Research, it was not designed to cope with the
particular difficulties arising from dynamic simulation problems. The aim
of this paper is to describe the modifications needed to SPRINT [1] to
accommodate this class of problems. To gain a better understanding of
the problems encountered, the following case study has been investigated:

299

300 Towards Efficient DAE Solvers

Pl controtler Anli-surge
valve

1Pl controller

i B R

Compressor 4

- e = = o

Suction
throttle
valve

inlet mass
flow adder

- it - o - = -

Stream ck Outlet mass
divider aive ftow

Figure 1. A dynamic simulation case study

The solid lines with arrows indicate the direction of physical output flow
from each of the components (e.g. dry drum, compressor, etc.), and the
dotted lines represent information flow that controls the position of the
anti-surge and suction-throttle valves. The case study essentially models
the behaviour of the components in the network as the inlet or outlet mass
flow changes. There are a number of points that can be made about this
case study. The first concerns the check valve after the stream division
process, which is a device that is either fully open or fully closed. The
inclusion of this device results in a system of DAEs that exhibit index two
behaviour (see Section 2). The second point concerns the operation of the
anti-surge and suction-throttle valves which can introduce discontinuities
in the derivative of the variables that model the position of these valves
(see Section 3). Finally, the number of variables in these simulations can
be large, and it is of interest to consider how the solution could be obtained
on a processor array (see Section 4).

2 A Robust Integrator for Dynamic Simulation Prob-
lems

The dynamic simulation problems result in a system of equations that
belongs to the general class of DAEs given by

A Y)30 = 86, y(0).iven Y(0), $0) snd gt T =B
where A is a square matrix that can be singular. Gear and Petzold (4]
have shown that DAEs can be classified according to the index of the sys-
tem of equations. Broadly speaking, a system of equations has index two
when at most two differentiations of each equation in the system are suf-
ficient to formulate a first-order system of ordinary differential equations
(ODEs), while one differentiation is not sufficient to do so. The case study

A. J. I'TESLON €L Gt.

C P! controller

out
r———%-—==|_=====777% A
! !
suction | Dry drum I
throttle /-k\ Compressor, ‘P
|

valve

Y

Figure 2. A model dynamic simulation problem

outlined above was found to exhibit index two behaviour, and this can
be proven with considerable algebraic manipulation. To understand these
problems in greater depth, it has been useful to consider a simplified form
of the case study, as shown in the model above. This model consists of
a compressor with a suction-throttle valve to control discharge pressure.
A simplified mathematical model of this system is given by the following
non-dimensional equations. Note that ys does not appear to the left of any
of the equations.

min{(y2 — %1)/20,0} if y1 =1

I y, = valve position(k). y1 = max{(y2 —y1)/20,0} if y1 <0
| (y2 — y1)/20 if 0 <y <1
(2.2)
y1(0) = 025 (2.3)
y2 = controller output signal(Cout)-
i = —(s+ (s — 99.10)/5)/15
e (0) = 0.25 (2.4)
ys = compressor output pressure(Pout)-
i ya/ya = 3.35—0.075ys+ 0.001y3
‘ ys(0) = 99.1 (2.5)
ys = compressor inlet pressure(Pp).
vi o= 49.58% — (yr/(1.2y1))°
! ys(0) = 36.7 (2.6)
ys = outlet mass flow(mout)-
ye = 20ya
ys(0) = 10 (2.7)
Ys = massin drum(Mp).

s e S

302 Towards Efficient DAE Solvers

Y6 = Yr—UYs

ys(0) = 734 ‘ (2.8)
yr = inlet mass flow(m,y,).
yz = 1545 tanh(t — 10), t € [0, 100],

yz(0) = 10 (2.9)

Table 1. Comparison of the number of steps taken for the Index Two
Model Problem

TOL SPRINT [1] New Module

0.1D-1 27" 56
0.1D-2 179* 88
0.1D-3 1000t 133

* Integration failure after about 10 seconds and
! Maximum number of steps taken to reach 9.19 seconds.

It is easy to see from this example how index one and two problems arise.
When the inlet mass flow is explicitly stated, the dynamic simulation prob-
lem gives rise to an index two problem. On the other hand, when the out-
let mass flow is explicitly stated, this results in an index one problem. A
number of experiments have been carried out with index two DAEs, and
improvements have been made to (i) the method of solution of the non-
linear equations, (ii) how the local error should be estimated, and (iii) the
step-size and order selection strategy. For full details the reader is referred
to [2]. This has resulted in an experimental SPRINT [1] module to han-
dle index two problems. It uses an algorithm based on DASSL [9] with
a modified stepsize and order mechanism. The local error estimate used
1s the reliable ‘filtered’ estimate proposed by Petzold [8], and used in the
SPRINT software [1]. Results showing the number of steps taken by the
unaltered SPRINT module, and the new module for the model problem
are shown in Table 1.

These results are encouraging. More importantly, a similar improve-
ment to the performance of the integrator was observed for the case study
[2]. However, there still remain other unresolved issues beyond the scope
of this paper, such as the best way of calculating accurate and consistent
initial conditions [7].

A. J. Preston et al. 303
3 Discontinuity Handling

To highlight the main features of the discontinuity problem, consider the
Case Study. The position of the anti-surge and suction throttle valves will
be either open (y; = 1) or closed (y1 = 0), or else somewhere in between
the two (0 < 11 < 1), and discontinuities will be formed in y; when the
valve changes its state.

The valve model (2.2) allows values of y; outside the interval [0, 1]. This
is because the valve position is fixed (by setting g = 0) when the valve
opens at (or ‘beyond’) fully open (i.e. y1 >0 and y; = 1+ ¢ fore > 0), or
when the valve closes at (or ‘beyond’) fully closed (i.e. g1 <0 and y; = —¢
for ¢ > 0). Petzold (8] explains that, even if the solution components are ex-
act before the discontinuity, then a code based on BDF may well fail on the
step after the discontinuity if the change in the derivative is large enough
for the error test never to be satisfied. Even if the code steps away from the
discontinuity, then it may generate unphysical (and possibly catastrophic)
values for some of the component variables. It is therefore necessary to
locate the discontinuity accurately and efficiently and then restart the 1n-
tegration from that point. Essentially there are two types of discontinuity
to consider, which are referred to here as ezplicit and implicit respectively.
In the explicit case, once a valve changes its state to fully open (or fully
closed respectively), the discontinuity is located efficiently by performing
a linear interpolation backwards on the valve position (using the predicted
value after the discontinuity, corrected value before the discontinuity, and
known state of the valve after the discontinuity). It is possible to include
regular checks for this kind of discontinuity through the use of a switching
function which changes sign when the valve opens or closes. Once a sign
change occurs, there is a discontinuity and it is necessary to interpolate
backwards to find the value of ¢ at which the discontinuity occurred. This
is principally the same approach as that used by Smith [11] and others.

The implicit case appears when a valve changes its state from fully open
(or equivalently from fully closed). Suppose that an implicit discontinuity
in §; is expected to occur at some time tp, bounded between integration
times ¢ and tx41. In the locality of the discontinuity, the valve position
is constant prior to t = tp (y1 = 1 for t < tp), and linear immediately
after ¢t = tp. In this case the valve is fully open prior to the discontinuity,
so attempting to estimate its position using linear interpolation gives the
estimate of tp as 1.

Interpolation on two values beyond the discontinuity would involve us-
ing possibly unphysical estimates of the valve position, and does not seem
to be a sensible approach. Instead, a switch function can be defined using
the C° continuous values of y;, or the piecewise constant values of y; in

304 Towards Efficient DAE Solvers

Table 2. Handling of discontinuities
CASE TOL STEP CALLS JAC ITS

A 0.1 35 2351 a1l 127
A 0.01 35 2135 46 129
A 0.001 103* - - -
B 0.1 32 2165 47 112
B 0.01 32 2042 44 119
B 0.001 52 2214 45 207

the following way for a valve closing from fully open:

f(t) = 1 if y1 = 1 (or alternatively if §; = 0)
YOIV Z 9w, 51) i < 1 (or alternatively if g < 0)

To satisfy the requirements of a switch function, g(y1, 91) should be either
monotonically decreasing from some non-positive value, or should remain
constant negative after the discontinuity. Practical work shows that the
best rate of convergence to the estimated location of the discontinuity that
can be achieved in the general implicit case amounts to taking g(y,) =
—1. This is essentially equivalent to the bisection method used by Gear and
Osterby [3] for locating the root of an implicit discontinuity in a system of
ODEs. Integration is then restarted where necessary.

An alternative approach would be to use the valve control signal as part
of the switch function. This approach, which will be the subject of our
future investigations, should provide a switch function which varies more
smoothly, and so enables the discontinuity to be located more efficiently.

Experimental results for the case study (without check valve), using
the modified SPRINT [1] module described above, are given in Table 2.
In CASE A, the positions of the valves have been set to 1 only when
they were predicted greater than 1, and to 0 when predicted to be less
than 0. We then proceeded to integrate in the normal way. In CASE B,
we have incorporated the discontinuity handling techniques as described
above. These results clearly illustrate the need for special handling of
discontinuities.

STEP = Steps taken
CALLS = Function Evaluations
JAC = LU Decompositions of Jacobian matrix

ITS = Total number of iterations

A. J. Preston et al. 305

(* SPRINT [1] was unable to calculate the initial derivatives
shortly after restarting the integration)

4 Towards a Parallel Version of SPRINT for Dynamic
Simulation Problems

The SPRINT [1] software is a modular package that was specifically de-
signed to simplify the task of including variable step integration and linear
algebra software. As a result there is choice of four integrators and three
different linear algebra routines (full, banded and sparse) within SPRINT
[1]. Another advantage of the modular structure is that it makes it easier
to port the code to parallel computers, by simply replacing the computa-
tionally intensive modules. The main components of the present software
are: (i) a STEP routine to advance the solution one timestep; (2) NL-
SLVR, a nonlinear solver called by STEP and (3) RESID to evaluate the
residual equations. The module NLSLVR, can be sub-divided further into
three routines: (1) Jacobian matrix formation; (2) LU factorization; and
(3) back-substitution.

| From our practical experience we have found that a large proportion
of the execution time in solving dynamic simulation problems (up to 80
percent) is taken up in the formation and decomposition of the Jacobian
matrix. It is for this reason, as a first step, we have considered parallel linear
algebra routines to increase the efficiency of the integration. An alternative
approach would be to use the matrix-free methods being developed by
Hindmarsh and Brown [6] and Seward [10], which involve only matrix-
vector multiplications and so can be made to work in parallel more easily
than sparse LU decomposition routines.

The experimental environment for deveioping a parallel version of
SPRINT [1] is a Meiko Computing Surface, which is based on an array
of INMOS T800 transputers. This machine belongs to a general class of
processor network machines. The programming model is a set of sequen-
tial processors with a logical, fully connected network. Communications
_l occur by commands of the type write to destination where the final desti-
{ nation of a message is specified rather than the channel through which it
) is to proceed. The new operating systems (e.g. CS-TOOLS) for the Meiko
Computing Surface support this abstraction.

The most obvious approach to parallelizing SPRINT [1] is to adopt a
master—slave model, where the master processor contains the user code, set-
up routines, time integration driver and the STEP routine. The code for
RESID, Jacobian matrix formulation, LU factorization and back-substit-
ution are replicated on the slave processors. The slave processors can either
pass back the part of a vector or its norm. The latter approach of passing
norms reduces communication cost.

—

306 Towards Efficient DAE Solvers

Figure 4. Sparsity pattern for a large dynamic simulation problem

The master-slave model requires that the linear algebra is partitioned
into blocks and ‘parcelled’ out to the slave processors. For dynamic sim-
ulation problems, it is necessary to partition the graph of the network
associated with the model. One approach that is being investigated is
a variant of Nested Dissection [5]. This can be illustrated by the above
digraph taken from a larger dynamic simulation problem: Here, the ver-
tices represent variable sets and the digraph represents the block adjacency
structure of the Jacobian matrix for a given vertex numbering. The first
level decomposition is a trisection using the small separator vertex set 1,
which results in three blocks of similar size. These can be dissected fur-
ther using the separator sets 2, 3, and 4. This nested dissection is said to
be incomplete because it has been terminated before reaching the bottom
level, and the vertex numbering shown has been completed arbitrarily. The
Jacobian matrix for the digraph has the sparsity pattern: One attraction

A. J. Preston et al. 307

of nested dissection is the regular structure that is obtained which makes
it possible to partition the problem into a number of subproblems. Solid
lines correspond to first level partitions, dotted lines exemplify the second
level. For example, ignoring pivoting, elimination under all of the diagonal
blocks, at any level, can take place in parallel. Pivoting row interchanges
must be confined to diagonal blocks if the structure required for parallelism
is not to be lost. If the separator sets are small, the vast majority of pivots
will be available. Failing this, in the d.a.e context the Jacobian can always
be made sufficiently diagonally dominant by reducing the step size.

The residual code will be distributed over all the slave processors but
each processor will only be responsible for calculating a subset of the resid-
uals as determined by the block of the Jacobian matrix it is allocated. The
Jacobian matrix is evaluated in distributed form by finite differences using
only the subset of residuals available to each processor. Experimental and
theoretical work is underway at both Leeds and Shell Research to better
understand the problems of parallelising SPRINT (1], but it is too early to
report on the results of this work.

5 Conclusions

The paper has reported on work in progress to improve the efficiency
of DAE codes for dynamic simulation problems. The modifications of
SPRINT [1] to handle index two DAEs has been successfully tested on
realistic problems and found to work satisfactorily. The results of the work
on developing techniques for handling of the discontinuities shows promise
but more work is needed to evaluate the techniques on realistic networks.
Our early studies of parallelism suggest that it is worth investigating par-
allel algorithms based on nested dissection.

Acknowledgements

We wish to thank Shell Research Limited for permission to publish this
Paper and for supporting the SERC CASE studentship for Andrew Preston.
We are also grateful for the help received from Simon Frost of Shell Research
Ltd., and Jim Griffiths at Leeds has helped with developing a parallel
version of SPRINT [1].

References

[1] Berzins M., Dew P.M.and Furzeland R.M. (1989) Developing P.D.E
Software Using the Method of Lines and Differential Algebraic Inte-
grators, Appl. Numer. Math., 5, 375-397.

[2] Berzins M., Dew P.M. and Preston A.J. (1988) Integration Algo-
rithms for the Dynamic Simulation of Production Processes, Report

308 Towards Efficient DAE Solvers

88.20, School of Computer Studies, University of Leeds. (A condensed
version of this report to appear in Proc. 3rd European Conference for
Maths in Industry, held at University of Strathclyde, August 1988,
Pub. Teubner-Reidel, Ed. McKee S., Owens D., Manley J.)

[3] Gear C.W., Osterby O. (1981) Solving Ordinary Differential Equa-
tions with Discontinuities, Report UIUCDCS-R-81-1064, Dep. Comp.
Sci., University of Illinois IL61801.

[4] Gear C.W., Petzold L.R. (1984) O.D.E Methods for the Solution of
Differential Algebraic Systems, SIAM J. Num. Anal., 21, 716-728.

[5] George A. (1973) Nested Dissection of a Regular Finite Element,
Mesh, SIAM J. Numer. Anal., 10, (2), 345-363.

[6] Hindmarsh A.C., Brown P.N. (1987) Reduced Storage Techniques
in the Numerical Method of Lines, Report UCRL96261, Lawrence
Livermore National Laboratory CA94550.

[7] Leimkuhler B.J., Petzold L.R. and Gear C.W. (1991) On the Con-
sistent Initialization of Differential Algebraic Equations, SIAM. J.
Numer. Anal., 28, 205-226.

[8] Petzold L.R. (1982) Differential Algebraic Equations are not ODEs,
SIAM J. Sci. Stat. Comp., Vol. 3, 367-384. .

[9] Petzold L.R. (1984) A Description of DASSL, Proc. of IMACS World
Congress, Montreal.

[10] Seward W.L. (August 1989) Solving Large ODE Systems Using a
Reduced System Iterative Matrix Solver, Rep. CS-89-38, Dep. Comp.
Sci., University of Waterloo, Waterloo, Ontario, Canada.

(11] Smith G.J. (1985) Dynamic Simulation of Chemical Engineering,
PhD. Thesis, University of Cambridge.

S |

