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1. Introduction.

The recent interest in the development of general purpose codes for time-dependent partial differen-
tial equations has been documented by Machura and Sweet [15], Ortega and Voigt [17] and Hindmarsh
[11]). One of the factors influencing the performance of these codes is the choice of a suitable spatial
discretisation method which enable the computed solution 10 model accurately the exact solution to the
p.d.e. The advantage of using high-order spectral spatial discretisation methods is that high accuracy can
be achieved using a small number of spatial mesh points, see [3] , [4] and the recent monograph by Canuto
et al [6]). Once the spatial discretisation method has been chosen, it is desirable to integrate the o.d.e. sys-
tem in time with just sufficient accuracy so that the temporal error does not significantly corrupt the spatial
accuracy. However, in most existing software based on the method of lines, the standard procedure is to
control the local time error per slep with respect 1o a supplied accuracy tolerance which is, in general,

independent of the spatial discretisation error and also of the global time error in the computed solution.

An alternative approach is the new time error control of Lawson, Berzins and Dew [13] which has
successfully been used in conjunclion with low-order finite difference spatial discretisation methods to con-
trol the temporal error so that it is dominated by the spatial error. This approach controls the local time
error in such a way that it is a fraction of the change in the spatial error over each time step. In this way the
error tolerance used in the lime integration is varied according to the size of the spatial discretisation error.
The purpose of this paper is to see if this new error control strategy can be used with high-order spectral
spatial discretisation methods as a means of approximately balancing the contributions of the spatial and

temporal errors to the overall error in the computed solution

Such a strategy is required all the more in the case of high-order spectral methods as the high spatial
accuracy achieved makes it difficult to select beforehand a local error time integration tolerance which is
fine enough 1o allow the accuracy of i spatial discretisation o be observed yet coarse enough 10 allow the
time integration (o be efficient. The paper will show that the new strategy controls the error in the required
way so that the spatial error dominates and also that realistic estimates of the pointwise globlal error may
be obtained providing that a good estimate of the spatial truncation error is available. The paper super-
ceedes earlier work of Berzins and Dew [3] in two important ways. The first way is that rather lhan solely

estimating the combined space and time error for a given time integration tolerance the time tolerance is



chosen automatically so that the space error dominates. The second important difference is that the spatial
truncation error is now estimated in a much simpler way than before by making use of the rate of decrease
of the polynomial coefficients as the degree of the polynomial increases. The previous approach, [3],

employed an iterative scheme to estimate the space truncation error.

An outline of the contents of the paper is as follows. Sections 2 and 3 outline the problem class to be
considered and the discretisation method to be employed. Section 4 describes the general time integration
procedure employed while in Section § the new error balancing algorithm and its implementation for high-
order spectral methods is described . The key details of the estimation of the space trunction error and of
the revised time integrator are also supplied in Section 5. The numerical experiments in Section 6 show the
effectiveness of the new strategy in estimating and balancing the error on a simple model problem. Finally
Section 7 contains a summary of the paper and highlights the areas in which further work needs to be
done. It is shown that the error control strategy appears to offer an effective method of balancing the spa-
tial and temporal errors in the method of lines but that further work is' requircd to obtain a completely reli-

able and robust estimate of the spatial truncation error.

2. Problem Class and Spatial Discretisation Method .

The problem class considered here is sufficiently general to illustrate the algorithm for error estima-
tion. The algorithm extends naturally to systems of p.d.e.s providing that the same method of lines

approach is employed.

The formulas were derived by Berzins and Dew {3] using an improved form of the generalized Che-
byshev method of Berzins and Dew [2]. A recent theoretical analysis of the method for steady state prob-
lems is due to Funaro [9). Berzins and Dew [4] describe software that implements the discretisation

method with a well-known time integrator.

The discretisation method is similar to the C® collocation methods of Diaz [8] and Leyk (12] . In all
these methods the approximate solution is continuous at a set of spatial breakpoints and satisfies the dif-
ferential equation at a number of collocation points between each pair of breakpoints; Diaz uses
ransformed Gauss or Jacobi points, while Leyk uses the zcros of a Legendre polynomial. The finite ele-

ment approach of these authors is to fix the degree of the approximating polynomial and to increase the




number of spatial elements 1o obtain the required accuracy.

In contrast the mcthod of Berzins and Dew is a global element method in the sense that the number
of elements is nommally fixed by physical constraints and it is the degree of the polynomial that can be
adjusted 1o obtain the required accuracy. The method uses the transformed Chebyshev collocation points
between each pair of breakpoints so that the method exploits the well - known approximation properties of
global Chebyshev polynomial collocation methods , see Canuto et al {6); thus combining the advantages of
global approximation methods with the flexibility of the C? collocation approach in handling material inter-

faces and boundary conditions.

In this paper we shall make use of the discretisation method as applied 1o the time dependent system

of NPDE partial differential equations

Qulx . t, B, U, W)= x™ -éa;(x“k,‘(x hod, U))

(x0)e Q = [a,b]x(0,4,) , a<b , k=1,... NPDE. Q.0
The vector u(x 1) is defined by

uCx 1) =[x, ... unppg(x0IT (22)
the vectors u,(x ,¢) and u,(x , 1) are similarly defined . The non-negative integer m denotes the space

geometry type, when m is greater than zero, a must be greater than or equal Lo zero,

The function R in equation (2.1) may be thought of as a flux, e.g. R = Ku, , and il is convenient 10

use this flux in the definition of the boundary conditions . Thus the boundary conditions are defined by

BerDR(x 8, 1, )= Yalx .t 1., )
where &k=1,... NPDE and x=a or x =b. 2.3)
and the initial conditions are assumed to have the form
4x.0) = kx) , x & [a,b] . 24
In the case when the integer m in equation (2.1) is greater than zero we have 1o make special provi-

sion for the polar form of the differential operator by using the technique of Berzins and Dew [2] .



3. Outline of Chebyshev C° Collocation Method.
In this section a brief description of the key features of the numerical method is given . Define the
spatial mesh of break points by

. a=Xo<X|<---<XNEL=b. (3.1)
where the X;; are the breakpoints. This mesh partitions the interval [a , b] into NEL elements ,

II = [Xi—l ’ X,] 5 oflenglh ,l’ = X, b x,'_l » j = 1,2,. .. .NEL . (3-2)
The breakpoints are chosen by the user to suit his application . However if the function Q in equation (2.1)
has a discontinuity with respect 1o the spatial variable x at some point in the interval [a , b] then this point

must be one of the breakpoints.

The k th component of the solution to equations (2.1) , (2.2) and (2.3) i; approximated by a continu-
ous piecewise polynomial approximation Uy(x , {) using a polynomial of degree N in each element. We
shall consider the case N>2 as this makes it possible to describe the method of Berzins and Dew [3] in a
very straightforward manner . The degree , N , of the polynomial is chosen by the user. The approximate
solution has the form

N
U,_,-(x 0= z aj.,-(l) T,(W,(I . =x Elj k=1,...,NPDE. 3.3
i=0
where Uy ;(x , ) is the restriction of Uy(. , 1) to the element /; , T;(.) is the Chebyshev polynomial of the

first kind of degree i and W; is defined as the linear map of the interval [X;_, , X;] onto [-1,1].

For the sake of clarity we shall consider the case of one p.d.e. and drop the subscript k used in Sec-
tion 2 and equation (3.3). On substituting the approximate solution (3.3) for the exact solution in equations
(2.1) (2.2) and (2.3) we can use interpolation to define the piecewise polynomial approximations Q(x,f)

and R (x , 1). These two polynomials are of degrec N in each interval and are defined by

Qxji .0 = Q.1 UL U, U
R(Xj_,'.l) = R(xl-_,- b g ’ gx)

j=12,...,NEL ;i=012,...,N , (34
where the vectors U, U, and U, are of length one as there is only one p.d.e. and the transformed Che-

¢ In the case when N = 1 Berzins and Dew [3] showed that the method is a lumped Galerkin finitc clement method with lincar
basis functions or a second - order finite difference method.




byshev points {x;;} are defined by

Wi(x;;) =cos(%) j=12,...,NEL ,i=0,1,... N 3.5
where W;(x) is the linear map defined in equation (3.3). Although the exact p.d.e. flux function R(x,r) is
assumed to be continuous at the breakpoints , the function Q(x,!) is allowed 10 be discontinuous at these
points, (In fact the numerical approximation 1o the p.d.e. flux may also happen to be discontinuous at the

breakpoints, see equation (3.13) below.)

3.1. Collocation Equations.

The transformed Chebyshev points (excluding the breakpoints) are the collocation points used by
Berzins and Dew [3]. In other words the compuled solution and ils space and tlime derivaltives are calcu-

lated so as to salisfy the collocation-like equations:

dR
Q(x;; 1) - _aT(Xj_" Ay =0

j=1.2,...,NEL ;i=12,... ,N-1 , 3.6
where the points x;; are defined by equation (3.5).

In the case of just one pd.e. and if

du ou
o(..)= Y - tu, ax) (CN)]
equation (3.6) dcfines —%L‘I— explicitly at the collocation point x;;
au;; oR m du;;
—_— = (. —R(x;;, i LU z
&t o Kiirt) * % (i t)_ + [ 0Uji . = 5)

where U,'_,' = U(Xi.,',l) Jj=12,...,NEL ;i=12,...,N-1.

3.2. Boundary and Breakpoint Conditions.

The polynomial U (x,¢) is continuous at each breakpoint and is required 10 satisfy the finite-element

type orthogonality condition:

b
feoe-)-EE¢Fm & = 0 38)

where p;(x) is the linear basis (hat) functions defincd by



pi(X)=1 ,i=j .
Pi(X;)=0 otherwise and j=0,1, -~ , NEL.
Equation (3.8) is integrated by parts to get

b

_ dp; _
IQ("')Pj(X)dX +R("')—d'xidx =[R("')Pj12- 39
where the term on the right side of the equality may be seen-to be zero from equation (3.9) unless j = 0 or
j = NEL in which case the boundary conditions (2.3) are used 1o substitute for the values of the flux

R(- - -) at the boundaries. At the left-hand boundary

X
dpo . aU
B(a.1) j R—> +QPodx = - Y@ .LU.35) (3.10)
and at the right-hand boundary
[ ]
dp _

Bow) | R O pm ds = Y. LU D). @.11)

XNEL -1 ox

Berzins and Dew [3] showed that the integrals in equation (3.9) can be approximated by the N+1
point Clenshaw-Curtis quadrature rule with weights denoted by {A; }¥ 5 to derive the equations at the boun-
daries. In the case when N>1 these equations can be further simplified by using the collocation equations

(3.6) to get collocation-like equations at the boundaries.

- R
B(avl) Q(a ’ l) - B(av‘) ax (av‘)

au 2
+ [B(art)R(a-‘) - Y(a ’ 'vU ’ a_)] lN h|

N oR
B(b.1) Qb . 1) = P(b,1) E ®.0

au 2
+ [- ﬂ(b")R(bvl) + Y(b ’ ‘.U . x )] xN hNEL (3.12)
In the case when Q (...) has the form given by equation (3.7) it is can be seen that equations (3.12) define

the time derivatives at the boundaries, providing that the functions B(a,t) and B(b,) are non-zero.

In a similar way Berzins and Dew [3] showed that quadrature rules and the collocation equations

(3.6) can be used to rewrite the interior breakpoint condition (3.9) as’

* Although the p.d.c. flux is assumed to be continuous the simplification in Berzins and Dew (3] incorrectly assumed that the
numerical flux R ( x ,t) was also continuous at the breakpoints and so neglected the bracketted term [ ... ] in equation (3.13). As their
code did not implement the simptification this did not cffect their numerical results.



hi Q(xjn  0) + hjsy Q (Xjpg. 1) =

R
h; %“(X,'_N )+ by g_f(x,'n.o )+ RO 00 -Rxn 1)) :-N 3.13)

Although the transformed Chebyshev points Xy and x;,, 0 are both equal 1o the breakpoint X; for
J=12,... ,NEL-1 we denote by Q(x;, , t) the value of Q evaluated at X; using the polynomial in J; and
by Q(x;+1,0 , 1) the value of Q evaluaied at X; using the polynomial in 1j,) . This takes into account possi-
ble discontinuities in the functions Q( - - - ) at the breakpoints {X ;) by using the values of Q(x , 1) as x tends
w the breakpoint from above and below. In praciice it is straightforward 10 specify any such discontinui-

ties , see [4] .

4. Integration Using the Method of Lines .

The success of the method of lines in solving coupled systems of ordinary and panial differential
equations lics in combining efficient and general spatial discretisation methods with sophisticated o.d.e. ini-
ual value problem integrators being used 1o perform the time integration . The essence of the method is 1o
spatially discrelise a system of NPDE time - dependent partial differential equations with a spatial mesh of
NPTS points into a system of NPTS*NPDE coupled ordinary differential equations of the form of .

FT.U.0)=0,UO@=k, @D

Each solution component of these equations defines one component of the p.d.e. solulion at a single mesh

point.
4.1. Ordering of the O.D.E. Solution Vector.

The following convention may be used in ordering the o.d.e. solution vector ¥ (1) of equation (4.1) .
We assume that the system of NPDE p.d.e.s is discretised using /BK spatial breakpoints , a polynomial
degree of NPOLY. ( In the description that follows NPOLY rather than N will be used to denote the polyno-
mial degree as this has a less ambiguous meaning . ) The p.d.e. solution components are stored in the
NPDEXNPTS components of the vector U (1) and NPTS will be defined below. The value of NPTS is
(IBK-1)*(NPOLY) + 1 where NPOLY is the degree of the approximating polynomial used between each

pair of spatial mesh points and where IBK is the number of breakpoints .

Using the above ordering the sysiem of ordinary differential equations in time defined by the Che-

byshev C° collocation method (c.g. equations (3.6), (3.12) and (3.13) ) can equivalently be wrilten as



equation (4.1) where the vector U (1) is defined by

Uy Ujo Uner,0
- Ux Ui Ungr,
g(f)= . , gJ= . .j=].2....,NEL—I,.g~‘.1=
Ha; Uy Unee,
4.2)
N =NPOLY, and U;; = U(x;;,t) where
N-i

x5 = i1 + X + (i + Xj)eos(— ‘) @3)

and the vector U(x , 1) is defined as in equation (2.1). The total number of ordinary differential/algebraic
equations for a system of NPDE p.des , IBK breakpoints and using a piccewise polynomial of degree

NPOLY is given by NEQ where

NEQ = NPDE * (IBK-1) * (NPOLY) + NPDE 4.4)
The initial condition for U (¢) is found by evaluating the function k (x) at the transformed Chebyshev
points in cach element . The value of U(0) is thus defined by substituting

Ui = k(x;)j=1, - NEL,i=0,.. N @.5)
into equations (4.2) .

4.2. Error Control for Stff O.D.Es.

In most of the codes available for solving time dependent o.d.e.s, the routines attempt to control the
local time integration error in the computed solution with regards (o an accuracy tolerance supplied by the
user, TOL. The i.v.p. to be solved is given by equalion (4.1) with the true solution {U(t,)}%-0 approxi-
mated by {‘_’(t,.)}’,:.o at a set of discrete times 0 = fo<t;< - - <f, =1, by a time integration method with
requested absolute local error accuracy, TOL. Using interpolation a continuous piecewise differentiable
approximate solution can be constructed so that

z(t, TOL) = 2,y (, TOL) , (€[l tan] . B = 0,---.p-1,
which fits through the sequence of points {(V(1,) , ,)}5-. The following definitions can now be made.
The global error in the o.d.e. solution at time f, and for a tolerance TOL, is given by

geani(TOL) = Ultas) - Vltasr). 4.6)
The global error associated with the continuous solution _z_(l.TOL) is



ge(t, TOL) = U(t) - 21, TOL) , t€(0.¢.]. @.7
The local solution on [£, , ly41], Y41t . TOL), is the solution of the i.v.p.

_F_(yllﬂ (‘o TOL) ’ yu+l’(‘- TOL) ’ ‘) v Y+l (’n ’ ml—‘) = L’(’n)- (4-8)
The local error per step (LEPS) at ¢, is given by

lea ) (TOL) = V(1441) - Yas1(tpsy . TOL). 4.9)
while the local crror per unit step (LEPUS) is given by

len +1 (TOL )

k. i 4.10)

where k, =ty - I,.

Modem stiff 0.d.e. codes such as those based on the backward differentiation formulac e.g. see Hind-
marsh [11], control the local error per step, LEPS, by varying the time siepsize and also by using formulae
of different orders. However the use of local error control makes it very difficult to establish a relationship
between the accuracy tolerance, TOL, and the o.d.c. global error, Shampine [18]. In general, the time glo-

bal error is not even proportional to the local error tolerance, TOL.

In order w0 balance the spatial and temporal errors, it is desirable that the error control strategy
should yield a solution with a time integration error that is directly proportional ( in practice less than ) the
error incurred by spatial discretisation. This is desirable because once we have chosen a spatial discretisa-
tion method with a particular degree of polynomial we do not wish to introduce a further larger error by
time integration when this is not necessary. Niether do we want 1o integrate in time with a much greater
accuracy than is required. Suppose that the error incurred by spatial discretisation is approximately equal Lo
TOL. We would then like to have a time integration procedure that satisfies tolerance proportionality, that
is, there exists a linear relationship between the time global error and the requested accuracy, TOL . An
error control strategy is said to satisfy tolerance proportionality, Stetter [19], if the numerical solution is

such that, if ge(t, TOL) is the global error at time { for an accuracy requirement TOL, then, for r > 0,

ge(t ,rTOL) =r ge(1, TOL). @.11)
The work of Stetter [19] shows that in order (o obtain tolerance proportionalily we must control the
LEPUS rather thdn the LEPS. However, for stiff i.v.p.s LEPUS control may be incfficient, Lindberg [14]

although the situation in the method of lincs is fundamentally different in that any error control strategy

10



must take account of the already present spatial error. However, il is difficult to sclect a local error per step
tolerance that will ensure that this is so, since the o.d.e. global error need not be related o the chosen accu-
" racy tolerance. In addition, the spatial accuracy may vary with time, so any fixed tolerance used in the
o.d.e. integrator is unlikély 10 be related 10 the size of the changing spatial error. Thus a local error per
unit siep control is needed which is related to the spatial discretisation error in some way and which can be

modified accordingly as the spatial error varies.

S. The Error Balancing Approach of Lawson, Berzins and Dew [13].

In order to develop an efficient integration strategy that allows the spatial error 10 dominate we shall
make use of the error balancing approach of Lawson, Berzins and Dew which in turn makes use of the glo-
bal error indicator of Berzins, [3). This approach is based on a form of LEPUS step control in which the

o.d.e. wlerance is modified as the spatial discretisation crror varies in time.
The vector of the values of the overall error at the spatial mesh points, at any time ¢, is defined by
E (¢) where

E@® = u@® - VO, G

where y_(l) is the restriction of the exact p.d.e. solution to the mesh die.
(@) )i = u(x; ) i=1,...,N.
The vector E(f) may also be written as the sum of the restriction of the p.d.e. spatial discretisation error
es (1) , as defined by
es(t) = u@) - UQ), (52)

and the o.d.e. global error ge(t,TOL)) , see equation (2.11), which represents the accumulation of the spa-
tial discretisation error at the mesh points, The equation used by Berzins, [3], for the evolution of this spa-
tial discretisation error is

Aés@) = - Jes() +TEG  u() ,40) . es©@ =0, (5.3)

where the space truncation error vector lbz(...) is defincd by

and the matrices A and J are defined by

1



ofy oF
= —=— an = =
U ou
In order to computc the term TE the exact solution 10 the p.d.e. on the mesh & at the time points , , fy4)
must be known. Since, in general, the exact solution is not known suitable estimales for the space trunca-

tion crror must be derived.
Berzins [3] suggested that in the case of the backward dificrentiation formulae cfficient global error
estimating procedure is defincd by

E(tpn) =M™ (AEQ,) + ky TE,y) + le, 1 (TOL) (5.4
where the local error cstimate is given by equation (3.4) of Berzins [3] and where

TE 1 =TE(tyyy  4(tas1) . UUni1))
and where M~ represents the solution of a system of linear equations using the LU decomposition of the
matrix M = A -k, yJ, that is slored by the o.d.e. integrator, see [3]. Although this, in general, provides
only a zero-order approximation 1o the rue overall error we have found that this gives a good cstimate of
the overall error (1], [13] , providing that the estimates of the space truncation error and the local lime error

are reliable.

5.1. A New LEPUS Control Strategy.

The error control used by Lawson, Berzins and Dew [13] controls the local error with respect 1o the
contribution of the spatial wruncation error and the existing error from previous steps (o the global error at
the end of the next time step. Theorem 2 of [13] shows that by conwolling the vecior norm of the time
local error so thal it is a fraction, €, of the vector norm of the growth in the space error over the interval
k, =1, - 1,, the temporal integration error will be dominated by the spatial discretisation error. This error
control thus translates as the time local error control sirategy given by

| llens1(TOL) | | < € | |EUqs1) - E(t,) - len s (TOL) | | (5.5)
where || || is some suilable weighted vector norm .

In practice, the control strategy (5.5) is not applied directly since the term E(f,4) is known only
through the global crror estimator using equation (5.4). Instcad equation (5.4) is used o substitute for

E(t,41), thus giving

12




I Henss (TOLY | < € 1 IM™'(A E(t,) + kaTEqs1) - EG1
which, using the definition of the matrix M = A - k, ¥J, in equation (5.4), gives
| Hlewss (TOL) | < € | 1M~ (ky YIE () + KaTEp )i |

=kee | IM™'(YJEW) + TE )| (5.6
which shows that the strategy is of the LEPUS form. In practice (5.6) is modified to cater for a zero spatial

error or for a very large spatial error by enforcing upper and lower bounds of the form

TOL iy < | IM'(YJE(t) + TEau){ | < TOLgay
where TOL,, is a small number representing the minimum local error per unit tolerance allowed and

TOL,,,, is O(1) representing the maximum local eror per unit siep tolerance allowed.

5.2. Derivation and Estimation of P.D_E. Truncation Error.

In the estimation of the combined error due to the spatial and temporal approximations it is necessary
10 estimate the error at the individual mesh points. A simple point-wise error estimate that satisfies equa-
tion (4.6) may be derived by assuming that the eror in any interval may be approximated by a the next
term in the polynomial expansion. Suppose that the exact solution of the p.d.e. defined by equations (2.1) ,

(2.3) and (2.4) on the interval /; is given by the uniformly convergent Chebyshev series

uix 1) = % b TAW;0) . xelj. G0

and that the truncated series solution has the form given by

N
l‘;j(l: JA) = gbj,i(f) T(W(x)) . xel;. (5.8)

A standard result e.g. see Oden et al [17] is that

[ uG.0) - #C.O1SCR NP [Juli,
where || ||, is a Sobolev norm and where p = min(N-1 , r), N is the degree of polynomial and h is

the mesh spacing of the elements on which the polynomial of degree p is defined. The computed solution

has the form given by

N
Uix, 0 = ;oaj,.'(') T(W,(x)) . xel; 59
[
The spatial truncation error is estimated using by using three assumptions. The first of these is that the

polynomial coefficients , b;; converge at some power rate

13



| bj."(l) | = Bj(l) i, r>W%. (5.10)
The sccond assumption is that the spatial error is approximately equal 1o the next term in the polynomial

expansion mulliplicd by some appropriate constant. In other words that
uilx , D=Usx 1) + N?bjny @) Tya(Wi(x)) . xel; .11
The third assumption is that the error is largest at the interior points and can be neglecied at the break-
points and boundarics for the purpose of estimating the spatial truncation error.
uiX; , O=UX;,0 (5.12)
where j =0, ...,NEL.
The three above assumptions will now be used Lo devise an algorithm for estimating the truncation

error. From assumption (5.10) it follows that

1Bjn-1 | N
flinf o 1) QU | A/
'°8{ 1| } r °g{1v—1} G-13)

As the coefficients b;y_, and b;y are unknown the coefficients a;y_1 and a;y are used instead in this
equation. For the values of N of interest the value of r is given by the approximation

r = (N-1) log{'l—%%l—} (5.14)
)

Although it is to be expected that |r | may be greater than one half, in practice it is necessary to deal with
smaller values of |7 | . In this case the small value of |r | indicales that the coefficients are only decreas-
ing slowly as N increases and a;y,) may not differ greatly from a; . Similarly when the computed value
of |r| is greater than one the rate of convergence estimate may be over-optimistic and so a value of one
may be used. The algorithm used for estimating the coefficient b; y,, is then

N7? b,'.~+| = 4a;N (N+1)_q NP

assuming that p = g gives

NP bjnu = ajn N+1) (5.15)
where ¢ =0if |r)<1/2,q=1/2 if |r|>1/2and g =1 if |r| >1. This provides a quile gencral
approach for estimaling the error term in the numerical solution when calculating the truncation error. The

same algorithm is also used to estimate the truncation error in the solution time derivative polynomial.

The above algorithm must be modified however if either of the coefficients a; y or a; -y ( or the

corrcsponding cocfficicnts of the time derivalive) are zero. In the case when gy is zero the coefficient is

14



estirnated

by assuming that the true value of this coefficient in the exact solution, b; 5 , obeys the relationship

1ol - lbjnal
Ibjnal  1bju-2l
and consequently, replacing unknown coefficients with known values, that

l a}.-"‘ -1 I ~1

bj.Nﬂ = aj,N-l ]a,- N..zl (5]6)

Finally it is possible that a;y_, may also be zero in equation (5.16) in which case it is replaced by bjn_3 .
In order to estimate the space truncation error we approximate the exact solution by

viix 1) = Ujx .0 + binn®OTna(Wx)) . xelj.
and the exacl time derivative by
av;
ot
where d; n . (1) is the error coefficient for the time derivative amd estimate the truncation error by substitut-

au,
(x.,1) = T(x ) 4 Gina ) Ty (W) . xel;.

ing these polynomials in the routine used to define the residual of the o.d.e. system ie.

TE(t, u() , u(@®) )=Fn(t,v(),v(0))

5.3. Modilying the Time Iutegration Procedure.

As most ode integrators for stiff o.d.e.s use local emor per step control it is necessary to describe how
the time integrator was modifed to inplement the error control described above. The time integration pack-
age used was the SPRINT sofiware [5] with the SPGEAR time integration module. As this code was
developed from the LSOD* family of codes due to Hindmarsh [10] similar comments apply to the
modification of those codes also. The modifications were both few in number and simple 1o implement.
The SPRINT codes were modified in only three areas ; the selection of the initial siepsize, the stepsize/

order selection strategy in the integrator and the vector norm used throughout the code.

Almost all the important decisions made by the o.d.e. integrator are based on veclor norms. In
LSODE and related codes the usual vector norm is weighted by dividing each component of the vector by
an individual error weight. In the unweighted norm used as part of the mew strategy the error weight is

always one. This veclor norm is denoted by [1.11o. The weighted vector norm used in the new LEPUS
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strategy for the timestep from ¢, to 4, is given by

[ 1x() ] lo
Dy = —————— 5.17
O = TTAE G To e
where from equation (5.6)
AE(fpa1) = € (ky (M7 (YT E(t2) + TE.1)).
and the new local error test used in the code is
HxO1 1. <1 (5.18)

In order to implement this method in the code used for the experiments il was assumed that AE does
not change by an order of magnitude from one timestep 1o the next. In other words the value of AE calcu-
lated at ¢, is used to control the error al 1,,; . In contrast a production code implementing the LEPUS error
control would calculate AE after Lhe non-linear equations have been solved for the new solution at tlime

In.1 (and prior to the local error test at the end of the step ) and use il in the time error control at £, .

In the case of the siepsize and order selection sirategy the power of the limesiep present in any error
estimate is reduced by one when the new weighted norm is used. In particular the factor F; by which the
stepsize could change if order / is used is now given by

Fi=(a l1ENIL + d)
where ¢; and d; are constants , E, is an estimate of the ervor at order / and p = 1/(J + 1) if local error per

step is used and p = 1/{ for the new LEPUS startegy.

In the case of the algorithm w estimale the initial stepsize the algorithm must be adjusted to 1ake
account of the inilial error on the first step being only order one when a first-order method is used rather

than order two as is normally the case.

6. Numerical Experiments.

The first example is a p.d.e. in spherical polar co-ordinates used by Berzins and Dew [3] and is

defined as Problem 1 in the Appendix.

‘The Chebyshev C° collocation method was applied to this problem using a single polynomial expan-
sion of degree 5 , 7, and 9 was used to represent the solution. The first table shows that o.d.e. integration

with the new stratcgy was sufficiendy accurate in cach casc 10 ensure that the spatial discretisation error
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dominated. This was done by comparing the global errors obtained with the new local error per unit step
control eps = 0.1, 0.2 and 0.3 with runs using a variety of local error tolerances, abs = 1.E-8 eic with the
standard local error per step control. Estimates of the polar - weighted L? error norm formed by using the

trapezoidal rule with 100 equally-spaced spatial mesh points are given in Table (1).

Key to Tables 1 to 4.

NEL is the number of polynomial elements used in the spatial mesh.

N is the degree of the global polynomial used to spatially discretise the p.d.e.

€ and TOL are the parameters used in the o.d.e. integration routine.

FCN is the number of ODE function calls used by the integrator.

CPU is the amount of CPU time used, measured in seconds on the IBM 3081 at RPI.

NSTEPS is the number of time steps used in the integration of the o.d.e.’s.

N TIME 0.01 0.25 0.50 0.75 1.00 NSTEPS FCN CPU
eps=03 | 8.5E-5 29E4 26E-4 22E4 1J7E4 36 213 056
S eps=02 | 8.5E-5 28E4 26E4 22E4 17E4 49 316 073
eps=0.1 87E-5 29E4 27E4 22E4 1J7E4 64 348 0381

tol=1E-8 | 8.56-5 28E4 27E4 22E4 LI7E4 185 745 1.68
tol=1E-6 | 8.5E-5 28E4 27E4 22E4 1.7E4 109 510 1.18

tol=1E-5 | 8.7E-5 3.0E4 27E4 22E4 1.7E4 78 397 093
eps=03 | 2.8E-5 26E6 20E6 20E-6 1.2E-6 74 396 1.12
7 eps=0.2 | 26E-6 2.6E6 20E6 20E-6 12E-6 83 456 1.24
eps =0.1 25E-6 26E-6 20E6 20E-6 12E-6 95 531 140
tol=1E9 | 3.7E-6 26E6 20E-6 20E-6 1.2E6 188 888  2.27
tol=1E-7 | 3.0E-6 26E6 20E6 20E6 1.2E-6 92 463 1.29
tol=1E-6 | 26E-6 26E6 20E6 20E6 1.2E6 92 429 131

eps=03 | 7.0E-8 6.2E-8 4.5E-8 34E-8 2.7E-8 102 545 1.79
9 eps=0.2 | 6.6E-8 S9E-8 44E-8 34E-8 2.7E-8 132 707 224

eps=0.1 | 6.3E-8 5.6E-8 44E-8 34E-8 27E-8 136 694 225
tol=1E9 | 6.2E-8 6.2E-8 43E-8 34E-8 2.7E-8 175 924 276
tol= LE-7 | 6.8E-8 S59E-8 4.3E-8 34E-8 2.7E-8 117 682 207
tol=1E-6 | 6.8E-8 S.GE-8 4.3E-8 34E-8 27E-8 88 522 162

Table (1) - Estimates of L2 Error Norm Using the Different Time Integrators.

This example shows that the new time error control strategy does a good job of controlling the time
error so that the space emor dominates. The CPU times and the number of o.d.e. time sieps required allow
a comparison to be made of the two time error control methods. The results show that the LEPUS stralegy

is more or as efficient as the LEPS strategy. The choice of the parameter €, used in the control strategy is
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dictated

by the conflicting requirements of making the space error dominate the time error while taking as few time
sicps as possible. These results re-inforce those of [13) and indicate that we should set € =0.3, since this
offers a good compromise between a small number of timesteps and the space error being relatively unpol-

luted by time integration error. For this reason in the following experiments the value of € = 0.3 is used.

Summarising the results, the LEPUS strategy yields, automatically, solutions at least as accurate as
those obiained when controlling the LEPS with tolerances chosen in order that the spatial discretisation
error dominates. The user no longer has to experiment with different accuracy tolerances o find the solu-

tion for which the spatial error is dominant.

The global error estimate defined by equation (5.4) can also be compared with the true error. Tables
(2) and (3) below provide this comparison using both a Chebyshev error norm and the maximum error at

the mesh points.

N TIME 0.01 0.25 0.50 0.75 1.00

Estimate | 3.3E4 8.1E4 73E4 60E-4 4.7E4
5 Exact 71E-4 15E-3 13E-3 12E-3 94E+4
Estimate | 9.5E6 70E-6 54E-6 4.0E-6 3.1E6
7 Exact 1.0E-5 7.0E6 49E6 3.1E6 2.1E-6
Estimate 19E-7 15E-7 12E-7 9.0E8 7.0E-8
9 Exact 14E-7 83E-7 45E-7 27E8 2.1E-8

Table (2) - Estimated and True Chebyshev Error Norms for Problem 1.

N TIME 0.01 0.25 0.50 0.75 1.00

Estimate | 70E-5 15E4 13E3 LIl E-4 93E-5
5 Exact 1.7E4 37E4 73E4 28E4 4.7E4
Estimate | 1.5E-6 14E-5 1.1E-6 87E-7 6.8E-7
7 Exact 14E6 15E-5 1.1E6 78E-7 54E-7

Estimate | 4.7E-8 34E-8 26E-8 20E-8 16E8
9 Exact 32E-8 16E-8 9.7E9 70E9 S5.2E-9

Table (3) - Estimated and True Maximum Grid Errors for Problem 1.

Tables (2) and (3) show thal the error estimate is acceptably close (o the lrue error for this problem.
In order 10 compare the new method with that of Berzins and Dew [3) the performance of the global error

estimate is measured by defining the error index :-
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| | Estimated grid errors at time | |

Ew= | |1Actual grid errors at time t | |
Prob | NEL N [ TIME= 001 011 033 055 077 1.00
1 2 7 Oud 0.10 019 036 018 027 023
2 7 New 115 141 154 087 069 0.61
7 2 10 Oid 050 104. 884 320 289 148
2 10 New 235 289 287 203 166 1.5

Table (4) - Error Index Comparison with Berzins and Dew [3] .

The problem numbers in Table (4) refer to the problems in the Appendix. Problem 1 is also Problem
1 in Berzins and Dew [3] while Problem 7 is Problem 2 in the same paper. Table (4) shows that the error
estimates are an improvement over those in Berzins and Dew [3]. In order to assess the performance of the
error indicator for other test problems seven other test problems were used o illustrate the performance of
the global error indicator. These test problems used are described in the Appendix. Problems 6,7 and 8
require more than one polynomial o be used in space due to travelling wave type solutions and a malerial

interface. In these cases two polynomials were used with a breakpoint halfway across the spatial range.
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N [ Probl Prob2 Prob3 Prob4d Prob5 | N | Prob6 Prob7 Prob8
5 1.70 0.16 0.82 95 0.75 3 0.39 14 0.25
7 0.86 033 0.17 0.95 0.59 5 0.40 2.5 0.53
9 0.56 043 097 12 0.77 7 0.55 24 048
11 0.11 041 4.6 12 0.96 9 0.59 22 0.65
13 0.30 0.44 0.54 10 130 11 0.80 3.5 0.88

Table (5) - Average Error Index for Problems 1 to 8.

The error index was calculated at the end of every time siep in the integration. The average error
index is the sum of the error indices divided by their number. The results show that in the majority of cases
the error indicator docs an adequate job of estimating the global error. There are however some exceplions
1o this. These exceplions appear 10 be caused by the poor spatial truncation error estimate rather than by
the time integration method. This has been verified by using the true spatial truncation error in place of the

estimates described in Section 5.

N | Probl Prob2 Prob3 Prob4 Prob5S [ N | Prob6 Prob7 Prob8
5 1.10 * 1.10 1.7 1.30 3 1.20 14 1.20
7 1.40 . 1.20 12 130 5 1.30 1.9 1.30
9 1.70 N 1.20 18 1.30 7 1.30 21 1.30
11 1.80 * 1.40 1.8 1.50 9 1.30 25 1.40
13 1.80 N 1.40 1.6 1.40 11 1.30 1.9 1.70

Table (6) - Average Error Index for Problems 1 to 8 with Exact T.E.

Table 5 shows that it is the time integration of the error which can cause the error estimates (o be
larger than the actual error. A interesting case is that of the artificially constructed Problem 2 in which the
error estimate grows 10 an index of about 10° . In this case the stepsize taken by the main integration is too
large for the error equation integration to remain stable. The precise nature of the difficulty in this case is
the large truncation error close (o the boundaries due (o the combination of non-linear source terms and
derivative boundary conditions. This large error estimate growth is avoided by the approximate indicator
because of assumption (5.12) that the error from the boundaries does not dominate the error estimate. The
provision of a reliable truncation error estimate for all types of boundary conditions and for all degrees of

polynomials remains a difficult challenge.
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7. Conclusions and Further Developments.

The aim of this work is 1o develop a fully aulomatic general purpose algorithm for the numerical
solution of parabolic equations using the method of lines and spectral methods. From our practical experi-
ence, the local error control strategy introduced in Section 5, equation (5.5), appears (o provide a promising
starting point for the development of such an algorithm. By computing the LEPUS accuracy tolerance at
each time step, not only have we enabled the error in the time integration (o vary in relation to the spatial
discretisation error, we have ensured that the method of lines is being used efficiently. This is in contrast to
standard local error control where the tolerance is supplied by the user and experimentation is needed to
balance the spatial and lemporal errors. A source of difficulty with the approach proposed here is the need
to have a robust and reliable estimate of the spatial truncation error for a wide range of problems and dif-

ferent polynomial approximations.
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Appendix.

This Appendix contains the test problems used in the second part of Section 5. The seven test prob-

lems used are:

Problem 1. The p.d.e. is the one used by Berzins and Dew [3] as defined by

(x,0) € [0,1] x (0,1]

The left hand boundary condition is the symmetry condition g—f: (0,1) =0 and the right hand Dirichlet
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.. - s o, . . - . - 2.
condition and the initial condition are consistent with the analytic solution of u(x,f) = el * !

Problem 2 This problem was used by Berzins [1] to provide an example of a problem with a non-linear

source term and with non-linear boundary conditions:

du _ Pu ,upl 3 1y 42
w - a2 @+4x)u , (x.0e[0,1]1x(0,2],
with boundary conditions

ou S R
a)‘:(0.1)- uet

and

ﬂ(1 A= -ut (2419
ox

The initial conditions are consistent with the analytic solution

1
ux ,t) = ————.
.0 2-x2+x1t*

Problem 3. This problem provides an example of a problem with a non-linear source term and a travel-

ling wave solution:
ou _ u
at ox?
with Dirichlet boundary conditions and initial conditions consistent with the analytic solution of

+ w2 (1-uw

M= e

where p = 0.5V2 .

Problem 4. This problem is the heat equation with Neumann boundary conditions:

ou ou
7 = 5;;' , (x ,l) e [0, I]X(0,0.ZS],
with the boundary conditions
du

2
—@x.)=ne *'cos(nx)

ox

atx = Oand x = 1. The initial condition is consistent with the analytic solution

u(x ,t) = sin(x) e S
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Problem S.

du Pu -
= 5 v e + e™,

ot ox?
“subject to the boundary conditions

x € (0,1)

u(0,0) + (¢t + P)%;—(O.l) log,t + P) + 10

log,(10 + ¢t + P) + 1.0

w(1,0) + A0 + ¢ + P)%z—(l,t)

The initial condition is consistent with the analytic solution of

=log(x +t + P) x>0 .

and , P = 1.0. The problem was integrated from ¢ =010 = 1.0.

Problem 6. A convection diffusion problem, known as Burgers' Equation, which is defined by

ou %u ou
% = ¢ 57 wo .0 e ©1)

where the value of € = 0.015 was used in the experiments. The solution satisfies Dirichlet boundary condi-

tions and initial conditions consistent with the analytic solution defined by

01A+05B+C
A+B+C

where A = e(—QOS(x -0.5 + 4.951)/€) B = c(—0.?.5(: - 0.5 + 0.751)/e) C=¢e (—05(x - 0.375)/¢)

ux ., =

Problem 7.
% = CL gf-‘z‘- + Cie™ + e*, x¢l-10
1 ox
g—': = CL %i—:— + Cae + e, xe (O
2
subject to the boundary conditions

w10 =1log(-Cy +t + P)

(LD + (C; + 1 + P)%%(l.l) = log(Cs + ¢ + P) + 10

The initial condition is consistent with the analytic solution of
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u(x,t) = log(Cix + t + P) x<0

= log(Cyx + 1 + P) x>0 .
and, P =1.0,C, =0.1 C, = 1.0. The problem was integrated from ¢ = 0 to { = 1.0. The Chebyshev C°

collocation method was applied with two equally spaced elements . The interior break-point was situated

at0.5.

Problem 8. The following test problem is due to Davis and Flaherty [7] .

o P
ot ox?
where f(x , ¢) is chosen do that the exact solution to the p.d.e. is the travelling wave form given by

+ fix.,0), x¢e (1]

u(x ,t) = (1 - tanh(10(x - ¢ - 0.25)))/2
The initial condition and the Dirichlet boundary conditions are chosen to be consistent with this solution.

The Chebyshev C® collocation method was applied with two equally spaced elements . The interior

break-point was situated at 0.5 .
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