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PDECHEB is a FORTRAN 77 software package that semidiscretizes a wide range of time-

dependent partial differential equations in one space variable. The software implements a family

of spatial discretization formulas, based on plecewise Chebyshev polynomial expansions with Co

continuity. The package has been designed to be used m conjunction with a general integrator

for initial value problems to provide a powerful software tool for the solution of parabolic-elliptic

PDEs with coupled differential algebraic equations. Examples are provided to illustrate the use

of the package with the DASSL d. a.e, integrator of Petzold [18].
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1. INTRODUCTION

In recent years there has been considerable interest in the development of
general-purpose codes for time-dependent partial differential equations (see
the surveys by Machura and Sweet [15], Ortega and Voigt [24], and Hind-
marsh [25]). These codes are generally based on the method of lines using the
backward differentiation method for the temporal integration. The Cl collo-
cation code PDECOL, written by Madsen and Sincovec [16], is the first widely
available general-purpose code to provide the user with the option of select-
ing the order of the approximation to be used in spatial discretization.

In this paper we describe the PDECHEB software package, which uses a
family of spatial discretization formulas that are based upon Co continuous
piecewise polynomials and apply to a wide range of parabolic/elliptic systems
of PDEs with coupled differential-algebraic equations. The advantage of
using Co continuity, compared with Cl continuity used by PDECOL, is its
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much wider applicability (e. g., problems with material interfaces and with
discontinuous initial and boundary conditions) coupled with the fact that it is
possible to derive a complete class of formulas including first and second
order. The formulas were derived by Berzins and Dew [3] using an improved
form of the generalized Chebyshev method of Berzins and Dew [2]. A recent
theoretical analysis of the method for steady state problems is due to
Funaro [26].

The discretization method is similar to the Co collocation methods dis-
cussed by Diaz [9], by Carey et al. [8], and by Leyk [14]. In all these methods
the approximate solution is continuous at a set of spatial breakpoints and
satisfies the differential equation at a number of collocation points between
each pair of breakpoints; Diaz uses transformed Gauss or Jacobi points while
Leyk uses the zeros of a Legendre polynomial. Dunn and Wheeler [7] discuss
the effect of using different choices of collocation points and show that the
method converges for any distinct set of collocation points. The finite element
approach of these authors is to fix the degree of the approximating polyno-
mial and to increase the number of spatial elements to obtain the required
accuracy.

In contrast the method implemented in PDECHEB, is a global element
method, in the sense that the number of elements is normally fixed by
physical constraints, and it is the degree of the polynomial that can be
adjusted to obtain the required accuracy. PDECHEB uses the transformed
Chebyshev collocation points between each pair of breakpoints so that
the method exploits the well-known approximation properties of global

Chebyshev polynomial collocation methods; see Canuto and Quateroni [6].
Thus, PDECHEB combines the advantages of global approximation methods
with the flexibility of the Co collocation approach in handling material
interfaces and boundary conditions. The software described here provides a
powerful variable order (in space) discretization method that is applicable to
a broad class of time-dependent PDEs in one space dimension.

The paper is organized as follows. Section 2 defines the class of coupled
ODE/PDE problems that PDECHEB can be used to solve. Sections 3 and 4
provide an outline of the spatial discretization method used in the software.
The PDECHEB software has been designed to spatially discretize the coupled
PDE/ODE problem into a system of time-dependent ODES; Section 5 de-
scribes how the software can be used in conjunction with the DASSL integra-
tor for differential-algebraic initial value problems to compute the numerical
solution. The precise form of the user interface to the software package is
described in Section 6, with reference to a number of numerical examples,
which are also used to illustrate the performance of the software.

2. DEFINITION OF THE PROBLEM CLASS

The PDECHEB package has been designed to provide software to solve a
wide range of physically realistic PDE problems. The problem class of
coupled systems of PDE and ODE is based on that of Schryer [201 who
illustrates its usefulness [211 by showing that it encompasses multiphase
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PDE problems and PDE problems with coupled moving boundaries or inte-
gro-differential equations. The main difficulty in attempting to spatially
discretize a broad class of problems is that many unsuitable or even ill-posed
problems are included. The PDECHEB package is not intended to be used for
hyperbolic and diffusion-convection equations which require discretization
methods that take specific properties of the solution into account, such as
traveling waves.

The PDECHEB package can be used to spatially discretize the time-depen-
dent system of NPDE partial differential equations

(X, t)dl = [a, b] x (O, te),

a< b,k= 1,. ... NPDE. (2.1)

The vector u and its time derivative O are assumed to be the solution of a
coupled ODE initial value problem, see Eq. (2.2) below. The vector U( x, t) is
defined by

T
U(x, t) = [ul(x, t), . . ..uNpDE(x. t)] ,

the vectors u x( x, t), u ~(x, t) and u ~~(x, t) are similarly defined. The nonnega-
tive integer m denotes the space geometry type when m is greater than zero,
a must be greater than or equal to zero.

The solution of the coupled ODE system v is assumed to be defined by the
system of equations

F(u, u, f,u*, u:, R*, u~, u:t) = () (2.2)

where vector F, the ODE variables V(t) and their time derivatives u are
vectors with NV components. The ODE may be coupled to the PDE at a
vector of space points .$ of length ng, where

~,e[a, b], i=l,..., ni.

The vector u* is composed of

U*= [u’qg,, t), uT(&, t),.. +iT(&,t)]T

and the other vectors u:, R*, u:, U* are similarly defined. This approach
follows the original method of Schrye; [20], rather than his later method [21]
in which the PDE solution in the coupled ODE (Eq. (2.2)) is expressed not in
terms of its values at the spatial coupling points, but only in terms of its
B-spline coefficients. Schryer [211 points out that the two methods are
equivalent.

2.1. Boundary Conditions and Initial Conditions

The function R in Eq. (2.1) may be thought of as a flux, e.g., R = KuX; it is

convenient to use this flux in the definition of the boundary conditions. Thus
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the boundary conditions are defined by

~k(~,~)~(~, ~,~>u.,~,,u.,,u,u)
——7k(~>~>u>ux,ut,~zt,~,u)

where k= l,..., NPDEandx=aorx=b (2.3)

and the initial conditions are assumed to have the form

u(x, O)=k(x), xe[a, b], (2.4)

U=ku. (2.5)

2.2. Polar Coordinates

In the case when the integer m in Eq. (2.1) is greater than zero, we have to
make special provision for the polar form of the differential operator by using
the technique of Berzins and Dew [2]. Equation (2.1) is rewritten as

Qk(~)~,u,~x>u,>ux,>v>~ ) = :(~k(x,t>u,u.,ut>uxt,v,u)))
k=l,. ... NPDE (2.7)

where the function Qh( .0. ) is defined by

~k(x, ~,””” )= Qk(x, t,””” )-; Rk(x, t,”oo) (2.8)

unless a = O when the limit value of (2.1) as x tends to O is used, i.e.,

Qk(a, t,...)= &Q~(a,t, o..). (2.9)

The form of the PDE that we consider in describing the software is that
given by Eq. (2.7).

3. OUTLINE OF CHEBYSHEV Co COLLOCATION METHOD

In this section we provide a description of the key features of the numerical
method used by the PDECHEB software. In order to use PDECHEB, the user
selects a number (at least two) of breakpoints to define the spatial mesh

a=Xo<Xl<”””<X~~~ =b, (3.1)

where the X~ are the breakpoints. This mesh partitions the interval [a, b]
into NEL elements,

IJ = [XJ-I, XJ ] of length hj =Xj - XJ_l, j= 1,2,..., AJI3L. (3.2)

The breakpoints are chosen by the user to suit the application. However, if
the function Q in Eq. (2.1) has a discontinuity with respect to the spatial
variable x at some point in the interval [a, b], then this point must be one of
the breakpoints.

PDECHEB approximates the kth component of the solution to Eq. (2.1),
(2.2), and (2.3) by a continuous piecewise polynomial approximation U~( x, t)
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using a polynomial of degree N in each element. We consider the case N > 2;
as this makes it possible to describe the method of Berzins and Dew [31 in a
very straightforward manner. 1 The degree of N of the polynomial is chosen
by the user. The approximate solution has the form

Uk,, (x, t) = ; aJ,L(t)TL(wJ(x)), X=1, 1?= 1,. ... NPDE . (3.3)
Z=()

where Uk, J(x, t) k the reStriCtkHI Of ~k(”, t) tO the element i_J, !/’,(”) k the
Chebyshev polynomial of the first kind of degree z and WI is defined as the
linear map of the interval [X, _ ~, X,] onto [– 1,11.

For the sake of clarity, we consider the case of one PDE and drop the
subscript k used in Section 2 and Eq. (3.3). On substituting the approximate
solution (3. 3) for the exact solution in Eqs. (2.1), (2.2), and (2.3), we can use
interpolation to define the piecewise polynomial approximations @(x, t) and
R( x, t). These two polynomials are of degree N in each interval and are
defined by

Q(~J,L>~) = o(~,,z>~> U,ux, u,, uxt, v,v)

R(x,,,, t) = R(x,, t,t, u,ux, ut, u.,, v,v)

j=l,2, ..., NEL; i=0,1,2, . . ..N. (3.4)

where the vectors U, UX, UX., and Ut are of length one, as there is only one
PDE, and the transformed Chebyshev points { XJ,,} are defined by

WJ(XJ, L) = Cos((Nii)n)j=17277NEL7i=0177N’35)
where Wj( x) is the linear map defined in Eq. (3.3). The vectors V and V are
approximations to u and u produced by the numerical methods described
below. Although the exact PDE flux function R( x, t) is assumed to be
continuous at the breakpoints, the function Q( x, t) is allowed to be discontin-
uous at these points. (In fact the numerical approximation to the PDE flux
may also happen to be discontinuous at the breakpoints; see Eq. (3. 13)
below.)

3.1. COLLOCATION EQUATIONS

The transformed Chebyshev points (excluding the breakpoints) are the collo-
cation points used by Berzins and Dew [3]. In other words, the computed
solution and its space and time derivatives are calculated to satisfy the
collocation-like equations:

qx,,,>~)– :(%,>t)=o
(3.6)

j=l,2, ..., NEL; i=l,2, . . ..1. l,

where the points x~,, are defined by Eq. (3.5).

lIn the case when N = 1, Berzms and Dew [3] showed that the method is a lumped Galerkm

finite element method with linear basis functions or a second-order fimte difference method,
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In the case of just one PDE, and if

Q(... )=f(m:),), (3.7)

Eq. (3.6) defines a U/at explicitly at the collocation point x~,,,

d~, ,

(
— = g(x,,,, t) + :R(x,,,, t) +f .,,,, t,q,,, ~

dt x J, L )

where U],, = U(xJ,,, t)j=l,2, . . .. NEL. i=l,2, . . .. N–l.

3.2. Boundary and Breakpoint Conditions

The polynomial U( x, t) is continuous at each breakpoint and is required to
satisfy the finite-element type orthogonality condition:

~’(~(””-)-~(..”))PJ(x)dx=O
a

(3.8)

where ZJ( x) is the linear basis (hat) functions defined by

j5J(xL)= 1, i = J.,

~J(x,) = o otherwise and j = 0,1,. “ “, NEL.

Equation (3.8) is integrated by parts to get

f’~(--+J(x)dx+R( --)~dx=[R)d:-)d: (39)
a

where the term on the right side of the equality may be seen to be zero from
Eq. (3.9) unless j = O or j = NEL, in which case the boundary conditions
(2.3) are used to substitute for the values of the flux R( . “ “ ) at the bound-
aries. At the left-hand boundary,

XI d~o

(

au au a2u
D(a, t)l Rz +@odx= -~ a,t, U, —,—,

)
—,V, V (3.10)

a
ax at axat

and at the right-hand boundary,

p(z),t)/b R%
(

au au azu
+@NELdX=y b,t, U, —,—,

)
—,V, V .

x~~~_~ ax at axat

(3.11)

Berzins and Dew [31 showed that the integrals in Eq. (3.9) can be approxi-
mated by the N + 1 point Clenshaw–Curtis quadrature rule with weights
denoted by { h,}~o, to derive the equations at the boundaries. In the case
when N > 1 these equations can be further simplified by using the
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collocation equations (3.6) to get collocation-like equations at the boundaries.

[
D(cz, t) Q(a, t) = /3(cz,t)~(a, t)+ /3(a, t) R(a, t)

( au au a2u

)1

2
–~ a,t, U, —,—, —,V, V —

ax at axat ANhl

[
p(b, t)qb,t) = 13(b,t)g(b, t)+ -d(/), t)R(b, t)

( au au a2u

)]

2
+T b,t, U, —,—, —,V, V

ax at axat ~~h~~~
(3.12]

In the case when Q( . ..) has the form given by Eq. (3.7), it can be seen that
Eqs. (3.12) define the time derivatives at the boundaries, providing that the
functions 8( a, t) and P( b, t) are nonzero.

In a similar way, Berzins and Dew [3] showed that quadrature rules and
the collocation equations (3. 6) can be used to rewrite the interior breakpoint
condition (3.9) as2

aR aR
hJ~(~J,~,t) + hJ+l~(xJ+l,o, ‘) = ‘j~(xJ, ld) + ‘J+l~(xJ+l,07 t)

+[@j+l,o J ) - @J,@)];. (3.13)
N

Although the transformed Chebyshev points x~,~ and XJ+~,o are both equal
to the breakpoint Xl for j = 1,2, . . . . NEL – 1, we denote by O( x~,~, t)the
value of ~ evaluated at X~ using the polynomial in IJ and by Q( Xj + ~,o, t)the
value of ~ evaluated at XJ using the polynomial in IJ + ~. This takes into
account possible discontinuities in the functions Q( ..0 ) at the breakpoints
{ XJ} by using the values of Q( x, t)as x tends to the breakpoint from above
and below. In practice, it is straightforward for the user of the software to
specify any such discontinuities, as is shown in Section 6.3.

4. EXTENSION TO COUPLED ODE EQUATIONS

In order to compute a numerical solution to the coupled ODE system (2.2) we
need to be able to approximate the vectors in this equation. Equation (3.3)
defines a natural interpolant based on U( x, t) for the vector U*. This
interpolant can be differentiated to generate U;. As a U/ i?t is also a continu-

ous piecewise polynomial of degree N, we can define a similar interpolant to
form U: and U~t. In this way we can generate approximate solution and
derivative values for any coupling points in the interval [a, b], except the
interior breakpoints at which the derivatives d U/ a x and d2 U/a xtl t in

2Although the PDE flux is assumed to be continuous the simplification in Berzins and Dew [3]

incorrectly assumed that the numerical flux R( x, t) was also continuous at the breakpoints and

so neglected the bracketed term [ ] in Eq. (3 13)
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general will be discontinuous. For this reason the software will warn against
the use of breakpoints as coupling points and will supply the weighted
average of the left and right derivative values as the derivative value at the
breakpoint. For example, in the case of a U/ax:

:(x,+l, t)=~+lh
J J+l

[

au
‘J~(xJ,N>t) + ‘J+l>~(xJ+l, O~ 1t) ,

j=l, ....l–l. (4.1)

The approach used to define the residual of the coupled ODE equations (2.2)
is thus to interpolate the approximate PDE solution U( ~, t) and its deriva-
tives to obtain approximate values at the coupling points ~ and to substitute
these values with the approximations to V and ~ in Eq. (2.2).

F(V, V, :, U*, U;, R*, U:, U:t) = O. (4.2)

This equation may then be viewed as an implicit ODE for V and V.

4.1. Null Boundary Conditions

The broad problem class defined in Section 2 includes systems of PDE that
may ‘contain equations with only first-order derivatives (such as a continuity
equation), and hence have only one boundary condition. PDECHEB can be
applied to such problems by using the other boundary position as an extra
collocation point and by making use of the coupled ODE /PDE problem
interface. Consider the case of one PDE and suppose that there is no
boundary condition at x = b. An extra ODE variable V is then defined at the
spatial coupling point ~ = b by the algebraic equation

V= R(b, t). (4.3)

Consequently, V will be set equal to the numerically computed flux at the
boundary during the integration. A pseudo boundary condition at x = b is
then defined by

P(b, t)=l, ~(b, . ..)=V. (4.4)

On substituting these values into the second of the pair of Eqs. (3.12) and
using the definition of V provided by (4.3), we see that this equation then
reduces to the collocation equation at the point x = b. The idea can be
extended to systems of first order equations and also used for periodic in
space boundary conditions.

5. INTEGRATION USING THE METHOD OF LINES

The success of the method of lines in solving coupled systems of ordinary and
partial differential equations lies in combining efficient and general spatial
discretization methods with sophisticated ODE initial value problem integra-
tors being used to perform the time integration. The essence of the method is
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to spatially discretize a system of NPDE time-dependent partial differential
equations with a spatial mesh of NPTS points and with NV coupled ordi-
nary differential equations into a system of NPTS*NPDE + NV coupled
ordinary differential equations of the form:

F(U, U,T) = O, U(0) = k. (5.1)

Each solution component of these equations defines either one component of
the PDE solution at a single mesh point or one of the coupled ODE
components.

5.1. Ordering of the ODE Solution Vector

The following convention is used by the PDECHEB software in ordering the
ODE solution vector U(t) of Eq. (5. 1). We assume that the system of NPDE

PDE is discretized using lBK spatial breakpoints, a polynomial degree of
NPOLY and that there are NV coupled ODES. (In the description that
follows, NPOLY rather than N will be used to denote the polynomial degree,
as this has a less ambiguous meaning.) The PDE solution components are
stored in the first NPDE x NPTS components of the vector U(t), and NPTS

will be defined below. The ODE components are stored in the last NV
components of U(t), i.e.,

Ul ( t) = Vn where l= NPDEx NPTS+m, m=l,. ... NV (5.2)

and V is the solution of the coupled ODE system of dimension NV. In our
case the value of NPTS is (l13K – 1)*( NPOLY) + 1 where NPOLY is the

degree of the approximating polynomial used between each pair of spatial
mesh points and where lBK is the number of breakpoints.

Using the above ordering, the system of ordinary differential equations in
time defined by the Chebyshev Co collocation method (e.g., Eqs. (3.6), (3.12),
and (3. 13)) can equivalently be written as Eqs. (5.1) where the vector U(t) is
defined by

u(t) =

u NEL =

u,

U2

u“NEL

v
7.
uN~~, o

u NEL ,1

1u NEL, N

,UJ=

u J,o

u J, 1

u“J, N–1

H
VI
V2

v= .

v“NV

N = NPOLY, and UJ,, = U( XJ,~,t)where

,j=l,2, . . .. NE1. l,

(5.3)

( N–i
x .+x

J, L J+l

( ))

+ XJ+ (xJ+l + XJ)COSy~
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and the vector U( x, t) is defined as in Eq. (2. 1). The total number of ordinary
differential/algebraic equations for a system of NPDE PDEs, NV coupled
ODES, IBK breakpoints and using a piecewise polynomial of degree NPOLY
is given by NEQ where

NEQ = NPDE*(IEK – 1) *(NPOLY) + NPDE + NV. (5.5)

5.2. Initial Conditions

The initial condition for U(t) is found by evaluating the function k(x) at the
transformed Chebyshev points in each element and by using the initial
condition for V, see Eqs. (2.5) and (2.6). The value of U(0) is thus defined by
substituting

uj,,=~(~~,,), j= 1,0. ”, NEL, i=() ,.. .,N and

[v(o) ],= [k.],, 1= 1,. o., NV. (5.6)

into Eqs. (5.3).

5.3. Error Control in the Method of Lines

The advantage of using high-order spectral spatial discretization methods is
that high accuracy can be achieved using a small number of spatial mesh
points, see Berzins and Dew [3, 4] and the recent monograph by Boyd [6].
Once the spatial discretization method has been chosen, it is desirable to
integrate the ODE system in time with just sufficient accuracy so that the
temporal error does not significantly corrupt the spatial accuracy. However,
in most existing software based on the method of lines, the standard proce-
dure is to control the local time error per step with respect to a supplied
accuracy tolerance which is, in general, independent of the spatial discretiza -
tion error and also of the global time error in the computed solution.

One solution to this problem is adopted in the software of Schonauer [22]
and an alternative, but still experimental, approach is the time error control
of Berzins et al.; see Berzins [27] and the references therein. Both methods
have been used to control the temporal error so that it is dominated by the
spatial error. This approach is all the more important in the case of high-order
spectral methods, as the high spatial accuracy achieved makes it difficult to
select beforehand a locai error time integration tolerance that is fine enough
to allow the accuracy of the spatial discretization to be observed yet coarse
enough to allow the time integration to be efficient.

In most of the codes available for solving time dependent ODES, including
those used here, the routines attempt to control the local time integration
error in the computed solution with regards to an accuracy tolerance supplied
by the user, TOL. The i.v.p. to be solved is given by Eq. (5.1) with the true
solution { U( tn)} ~=~ approximated by { V( tn) ~=~ at a set of discrete times
O-to<tl< ““” < tp = te by a time integration method with requested abso-
lute local error accuracy, TOL. The local solution on [t., t.+ ~1,Y.+ l(t, ToL),
is the solution of the i.v.p.

F(yn+l(t>TOL)>yn+l ‘(t, TOL), t), Yn+l(tn,’I’CMJ)= V(tn). (5.7)
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The local error per step at tn + ~ is given by

~e.+l(TOL) = v(t.+~) - y.+~(t.+~,TOL) (5.8)

In general, the time global error is not even proportional to the local error
tolerance, TOL, [271. This makes it difficult to select a local error per step
tolerance that will ensure that the spatial error dominates without some
experimentation.

6. OUTLINE OF THE PDECHEB SOFTWARE

This section describes the main components of the PDECHEB software and
how they may be combined with a suitable integrator for initial value
differential algebraic equations. The three main components of the PDECHEB
software are summarized here; the complete interfaces are listed in the
accompanying algorithm of Berzins and Dew [41.

6.1. INICHB

This is the initialization routine that the user must call before starting the
time integration. This routine checks the user’s choice of NPOLY (the degree
of the approximating polynomial) and XBK(IBK) (the breakpoint array),
computes certain vectors and matrices needed by the discretization method,
and stores all the information that has to be passed to the discretization
routine, PDECHB, in the work space array WKRES(NWKRES). The INICHB
routine also generates the initial solution vector for the ODE integrator
Y(NEQ) and an array of spatial mesh points X(NPTS) at which the PDE
solution values are computed.

6.2. PDECHB

In order to use an integrator for the solution of d.a.e. problems such as (5.1),
the user is generally required to write a simple calling program for the
integrator. The user must also specify initial values for the ODE solution
vector U and must specify a FORTRAN subroutine that defines the residual
of Eq. (5.1) when called with approximate values of U and U that are
estimated by the inte~ator. This routine is repeatedly called by the ODE
integrator which supplies an approximate solution vector U(NEQ) and its
approximate time derivative vector UDOT(NEQ). The PDECHB subroutine
computes the residual vector RES(NEQ) which is obtained by substituting
the vectors U and UDOT into the d.a.e. system being solved, i.e., for Eq. (5.1)
that results when the collocation software is used to discretize a mixed
PDE/ODE problem. This residual is defined by

RES = F(U, tJ, 7’). (6.1)

PDECHB computes this residual by using the workspace information gener-
ated by INICHB and a few simple subroutines that the user supplies to define
the PDE/ODE system being solved.

6.3. INTERC

One of the tasks that commonly needs to be performed after the ODE
integrator has returned the solution at the required time to postprocess the
results. This is necessary because only the solution values at the spatial
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mesh points are returned by the integrator. For this reason, a routine is
provided to allow the user to generate the value of the solution between these
mesh point values by interpolation. In common with PDECHB, information
about the discretization is passed to this routine by means of the workspace
initialized by INICHB.

We now describe how these components may be linked with an integrator
for the solution of ODE of the form of Eq. (5. 1).

6.4. Choice of Time Integrator

The very general class of PDE problems dismetized by the PDECHEB
software and the general systems of ODES that must be integrated makes it
necessary to use the most general-purpose integrator that is currently avail -
able. The approach that we have adopted is therefore to describe how the
software introduced above can be used with the DASSL integrator of Petzold
[18]. There are three reasons for using DASSL.

(1)

(2)

(3)

DASSL is one of the most general widely available codes for solving
ODES of the form of Eq. (!5. 1). The code is well tested and is based on the

well-known backward differentiation formulas of Gear [111.

A number of other codes exist or are being developed to solve the same
problem class, see Brenan et al. [18] Ch. 18. Examples of such codes are
the DAEINT code of Morrison [17] and the code outlined by Rheinboldt

[191. The description provided here of how to use the discretization
software with DASSL should make it relatively simple to use the soft-
ware with other integrators.

The interface to DASSL is particularly convenient for use with the
method of lines as the routine —generic name RESID —to define the
residual of Eq. (5.3) and has the simple form:

SUBROUTINE RESID (T, Y, YDOT, RES, IRES, WKRES, IWKRES)
INTEGER NEQ, IWKRES (l), IRES
DOUBLE PRECISION T, Y(l), YDOT(l), RES(l), WKRES(l)

DO 10 I = 1, NEQ
set-RES(I) to the Ith component of the residual RES,
as in Eq. (5.3)

10 CONTINUE

RETURN

END

The workspaces WKRES and IWKRES are not used by the DASSL integra-

tor, but are present solely for the use of the RESID routine. In our case the

work space WKRES contains the discretization information provided by the

initialization routine INICHB. The workspace IWKRES is not used.

6.5. An Overview of Using DASSL and PDECHEB

There are three main steps in writing a program to use PDECHEB with the
DASSL integrator. These steps are sketched out in Figure 1.

The first step consists of defining the workspaces and parameters needed
by DASSL and the collocation routines and in calling the initialization
routine INICHB. The user must define the number (IBK) and positioning of
the breakpoints (the array XBK(IBK)) and the degree of approximating
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Fig 1 An overview of using DASSL and C 0 Collocation.

polynomial (NPOLY). Given the user-defined number of PDEs (NPDE) and
the number of coupled ODES (NV), the number of ODES integrated by
DASSL (NEQ) is given by Eq. (5.6). The size of the collocation workspace
(WKRES(NWKRES)) can also be calculated. The DASSL workspaces Y,
YDOT, RWORK, and IWORK can also be declared. The call to the routine
INICHB can then be made. Precise details of the call to INICHB are provided
by Berzins and Dew [4].

The second step is the call to DASSL to integrate the PDE/ODE system
from time T to TOUT. The form of the ODE system solved by DASSL is
provided by the discretization routine PDECHB, which in turn uses the
workspace provided by the INICHB routine (WKRES(NWKRES)) and the
user supplied subroutines that define the form of the coupled ODE /PDE
system.

The final step consists of postprocessing the solution. The user may first
call the time interpolation routine of DASSL to recover the solution at the
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required time level and then call the space interpolation routine INTERC to
obtain any solution values required at points that are not at the spatial mesh
points, as supplied in the array X(NPTS).

The following skeleton program illustrates the steps outlined above for the
case of two PDEs with a coupled ODE and spatial coupling point. Eleven
equally spaced breakpoints are used with a cubic polynomial being used
(NPOLY = 3) to approximate the PDE solution between each pair of
breakpoints.

C CO COLLOCATION PARAMETERS.
PARAMETER (IBK = 11, NEL = IBK – 1, NPDE = 2, NV = 1,

1 NPOLY = 3, NPTS = NEL*NPOLY + 1, NXI = 1,
2 NEQ = NPTS*NPDE + NV,
3 NWKRES = 2*(NPOLY + l)*(NPOLY + NEL + 2)

+2+ NV+
4 NPDE*(7*(NPOLY + 1 + NXI) + 8),

C DASSL TIME INTEGRATION PARAMETERS.
5

6

1

1

10
c

1

c

20

MAXORD = 5, LRW = 40*(MAXORD + 4)*NEQ +
NEQ**2,
LIW = 20 + NEQ)

INTEGER IWORK(LIW), INFO(15), IBAND, M, ITIME, I, IDID,
IRESWK, IDEV

DOUBLE PRECISION XBK(IBK), X(NPTS), X(NPTS), Y(NEQ), ATOL,
WKRES(NWKRES), RWORK(LRW), XI(NXI), T, TOUT,
RTOL

EXTERNAL PDECHB, DGEJAC
T = O.ODO
M=O
IDEV = 6
DO 10 I = 1, IBK

XBK(IBK) = O.lDO*(I – 1)
INITIALIZE THE PDE WORKSPACE.

CALL INICHB (NEQ, NPDE, NPTS, X, Y, WKRES, NWKRES, M, T,
IBAND, ITIME, XBK, IBK, NEL, NPOLY, NV, NXI, XI,
IDEV)
SET UP DASSL PARAMETERS

D0201 =1,11
INFO(I) = O

C REMOVE COMMENT C FROM NEXT LINE FOR BANDED MATRIX
OPTION

c INFO(6) = 1
ATOL = 1.OD – 4
RTOL = 1.OD – 3

c BANDED MATRIX OPTION WHEN INFO(6) = 1
IF( INFO(6) ,EQ. l)THEN

IWORK(1) = IBAND
IWORK(2) = IBAND

END IF
TOUT = O.lDO
CALL DASSL(PDECHB, NEQ, T, Y, YDOT, TOUT, INFO, RTOL, ATOL,

1 IDID, RWORK, LRW, IWORK, LIW, WKRES, IRESWK,
DGEJAC)

c
INSERT POSTPROCESSING HERE E.G. SPACE INTERPOLATION.

:
STOP
END
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6.6. Choice of Linear Algebra Routines When Solving PDE Problems

One of the limitations of using DASSL is that in the most widely available
original version of DASSL only full matrix or banded matrix routines are
available. There is, however, work in progress to develop versions of DASSL
that use sparse matrix techniques and the matrix-free GMRES iterative
solver, see Brenan et al. [18, p. 1371. In the case of a problem consisting only
of PDEs, the Jacobian matrix of the d.a. e. system (5.1) generated by
PDECHEB is block diagonal. The form of the block diagonal system and its
solution are both discussed by Keast et al, [12]. Although it would be possible
to amend DASSL to include the block-diagonal matrix routines described by
Keast et al. [12], and this would probably result in similar speed-ups to those
reported by Keast and Muir [13] with PDECOL, we have chosen not to modify
the DASSL code by including these routines. The main reason for this is that
the coupled ODE/PDE problem class that we are trying to solve may result
in a bordered block-diagonal Jacobian matrix, which may have its rightmost
NV columns full and its bottom NV rows full, where NV is the number of
coupled ODE variables. The most appropriate linear algebra routines for the
LU decomposition of such matrices are probably sparse matrix routines. The
sparsity pattern of a typical matrix is illustrated in Figure 2, which shows
the sparsity pattern of a matrix for the case when there are two PDEs, a
polynomial of degree 3 is used in each of the three elements and there are
two coupled d.a.e.s.

In order to use banded matrix routines with DASSL, it is necessary to
define the upper (MU) and lower (ML) half bandwidths of the ODE system
being integrated and to supply them as optional inputs to DASSL. The size of
these bandwidths when the Co collocation discretization is used is given by
the parameter IBAND, whose value is defined by the setup routine INICHB.
The values of this parameter is NPDE*(NPOLY + 1) – 1 when there are no
coupled ordinary differential equations present. The convention used by the
discretization routines in ordering the ODE solution vector (described in
Section 5.1) means that banded matrix routines cannot be used with coupled
ODE /PDE problems.

6.7. Analytic Jacobian Matrices and DASSL

The DASSL code has an option by which the user can supply analytic
Jacobian matrices. In the case of the system of equations (5.1), the Jacobian
matrix that must be supplied to DASSL has the form

(6.2)

In the case of PDECI%EB *he partial derivatives in Eq. (6.2) depend on the
partial derivatives of the vector functions Q( ), R( ), and F( ) defined in Eqs.
(2. 1) and (2.2) and also on the form of the spatial discretization method. In
order to supply the analytic Jacobian to DASSL it is necessary for the user to

specify explicitly the dependence of all these functions on all their arguments
except x and t. In order to do this, the user will have to supply the eight
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Consider dre case of two p.d.e.s (NPDE = 2, variables U ~(x,1) and U2(x, t) ) with three elements, two

coupled d.a.e.s (variables V, , V2 ) and a cubic polynomial (NPOLY = 3) in each element. It N aswmcd
Lhdt there are two couphng points &, and &2 one m the first and one m the durd spatad elements.

boundary
conditions

breakpoint
conditions

breakpoint
conditions

boundary
conditions

abababab ef
C d C dc dc d gh
ab a b a b ab ef
cdcdcdcd g h pde eqns
a b a b ab ab ef element 1
cdcdcdcd gh
ababababab abab Cf
C d C d C dc d C d C dcd gh

ab a b ab ab ef
cdcdcdcd g h pde eqns
a b ab a b ab ef element 2
C d C dc dc d gh
ab abab a ba b ab ab e f
C d C dc dc dc”d C d C dgh

ababababef
C dc d cd C dgh

a b a b a b a b e f pde eqns
C d C d C d C dgh elemenL 3
a b ab ab ab e f
cdcdcdcdgh

i j l-i i J lJ m n m nm nm n ~ q coupled
r sr s r s rs m n v w vw vw x y dae eqns

pdc variables dae var]ables

Thelettcrs mthedlagram are theposslblenon-zero entries ]nthe Jacoblanmatrlx which maybe character
lsedin the following way

a , b represenL the
C , d . .
e , f . .

g , h . . .
1 . J . . .
r , s . .
m , n . ,.
v , w . ,.

P , ~ . . ~~
x 3 Y . . ~~

dependence of pdc 1 on U1(X,I) and U2(x,r) respectively
. . pdc 2 . . U1(x,/) and U2(X,-[) respectively

. . . . pdel. .V1 and V2 respectively

. . . . . . pde 2 ., V, and V2 respectively .
. . . . . dae 1 . U1(X,I) and f/2(x,t) dcfrned at El

dae 2 ., U1(x,~) and U2(x,t) defined aL &l
dae 1 ., Ul(x,[) and U2(X,[) defineci at <z

. dae 2 . Ul(x,[) and U2(x,t) defined at ~z
dae 1 . b’, and V2 respectively.
dae 2 ,. V] and V2 rcspectlvcly,

IL should be noted that a ttard coupling point m the second element would have meant that the bottom

two rows of the sparsity pattern were (potentially) full.

Fig,2. Example sparsity pattern for PDECHEBJacoblan.

NPDEbyNPDE matrices:

aR aR aR aR

au’ au.’ aut’ au.,’
(6.3)
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the four NPDE by NV matrices:

aQ aQ aR aR

av’av ’av ’av ’

the five NV by NXI matrices:

aF aF aF aF aF

au”’ au;’ aR*’ au:’ aU* ‘Xt

and the two NV by NV matrices:

aF aF

au ’ ati”

For the user to supply nineteen such matrices is a complex and error-prone
task. For this reason we have not supplied the means by which an analytic
Jacobian matrix is made available to DASSL. Instead we have provided a
dummy routine, DGEJAC, that is supplied in the call to DASSL in place of
the analytic Jacobian routine.

6.8. Intermediate Output with DASSL

The normal mode of operation of DASSL is that it integrates from T to TOUT
without providing any intermediate output. In many situations it is useful to
have information at the end of every timestep. DASSL has an option to
operate in this mode. This option is activated by specifying INFO(3) = 1 prior
to the call to DASSL. After each successful step in this mode DASSL returns
with IDID = 1. The intermediate output can then be generated and the
integrator recalled. The situation is best summarized by the following frag-
ment of code taken from the example of Section 6.5.

TOUT = O.lDO
c
c SET INTERMEDIATE OUTPUT MDE
c

30 INFO(3) = 1
CALL DASSL(PDECHB, NEQ, T, Y, YDOT, TOUT, INFO, RTOL, ATOL,

1 IDID, RWORK, LRW, IWORK, LIW, WKRES, IRESWK,
DGEJAC)

c
c INSERT INTERMEDIATE MODE ( END OF EACH TIMESTEP )

c POSTPROCESSING HERE
c

IF ( IDID .EQ l)GOTO 30
c
c INSERT END OF INTERVAL ( TOUT REACHED ) POSTPROCESS.

ING HERE
c E.G. SPACE INTERPOLATION.
c

It should also be noted that most good d, a.e. integrators have this mode of
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operation available, so that in general there is no need to modify the
integrator to provide end-of-timestep output facilities.

6.9. Error Estimation and Calculation

One of the main advantages of the spatial discretization method in this paper
is that there is a wide range of methods available. This also makes it difficult
to choose the optimal degree of polynomial and the optimum set of break-
points. The general approach advocated here is that the smoother the prob-
lem solution, the higher the degree of polynomial that should be used. At the
same time it is difficult for the user to determine how accurate the numerical
method is when there is no analytic solution available. One solution to this
problem is to have some means of estimating the global error as in the
methods of Berzins [27] and Schonauer [22]. Unfortunately, in the case of
spectral method of lines, the Chebyshev polynomial estimate of Berzins [27]
is not yet proven for the very broad class of problems defined by Eqs. (2.1) to
(2.5). Although in the future an estimate of this type will be used to control
the global error, this is beyond the scope of this paper.

A widely applicable, but not particularly robust, technique for estimating
the error is C!hebyshev polynomial-based methods is suggested by Boyd [28].
The simple truncation error estimate suggested by Boyd [28] is as follows.
Consider the Chebyshev polynomial coefficients of the solution as defined by
Eq. (3.3). In the case when the coefficients aj, ,(t) behave like i-k, an
estimate of the truncation error caused by using only the first N + 1 polyno-
mial coefficients is some multiple of aj, N( t). Boyd also suggests that the rate
of decrease of the coefficient size is a reasonable measure of the degree of
polynomial to use. In other words, the coefficients of the higher degree
polynomials should be small.

It is for these reasons that we have provided a means of computing the
Chebyshev polynomial coefficients of the solution.

The calculation of the polynomial coefficients of the solution is performed
by the matrix-vector multiplication described by Berzins and Dew [2] using
the matrix !2 (see Eq. A2 in their paper). This matrix is stored in the first
NPTL x NPTL elements of the array WKRES. Suppose that a system of
NPDE PDEs is being solved with NEL spatial elements and a polynomial of
degree NPOLY in each element. In this case for each PDE there are NPTL =
NPOLY + 1 polynomial coefficients per element and suppose that these
coefficients are to be stored in the array COEFF(NPDE, NEL, NPTL) with
the coefficient of Tl( x) for the Kth PDE and the Jth element stored in.
COEFF(K, J, I). The code to compute these coefficients is the following.

c
NPTL = NPOLY + 1
DO 100 I = l,NEL

c ITH ELEMENT
c IU IS THE COMPONENT OF SOLUTION VECTOR AT LHS
c OF ELEMENT I

IU = (I – l)*(NPOLY)*NPDE + 1
DO 80 IS = 1, NPTL
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DO 80 JK = l, NPDE

COEFF(JK, IS, I) = O.ODO

80 CONTINUE

DO 90 IS = 1, NPTL

DO 90 JS = 1, NPTL

DO 90 JK = 2, NPDE

COEFF(JK, IS, I) = COEFF(JK, IS, I) +

1 WKRES(IS + (JS – l)*NPTL)*Y

(IU+JS+JI -2)

90 CONTINUE

100 CONTINUE

c
The coefficient a~, N( t) for the K-th PDE is then returned in the array
element COEFF(K, J, N).

6.9.1 Optional Subroutine Error. In the case when the PDE being solved
has an analytic solution it is useful to be able to calculate the maximum
error at the mesh points and also the Chebyshev error norm. The optional
routine (ERROR) to compute the error requires that the user can write a
fixed name routine

SUBROUTINE EXACT (T, NPDE, NP, XP, US)
INTEGER NPDE, NP
DOUBLE PRECISION T, X(NP), US(NPDE, NP)

ON EXIT FROM THIS ROUTINE THE ARRAY US(NPDE, NP)
: SHOULD CONTAIN THE SOLUTION FOR THE NPDE PDES
c AT TIME T FOR THE SPATIAL MESH POINTS IN THE
c ARRAY X(NP)

RETURN
END

The routine ERROR returns an estimate of the Chebyshev norm of the error
as well as the maximum error at the grid points. The precise form of the
interface to the subroutine ERROR is given by Berzins and Dew [4].

7. EXAMPLES OF THE USE OF PDECHEB

This section illustrates some of the different types of PDEs that can be
integrated using PDECHEB and DASSL. This is achieved by describing the
problem description routines for a coupled PDE/ODE problem and a PDE
problem with a material interface and coupled ODES. In the first case, the
analytic solution is available to allow us to demonstrate the high accuracy,
rapid convergence, and efficient means of solution that can be achieved by
the Chebyshev polynomial discretization method employed by PDECHEB.
Other example problems are provided with the code of Berzins and Dew [4].

The user specifies the coupled PDE/ODE system so that it can be spatially
discretized by writing four short FORTRAN subroutines which must have
fixed names. One of the routines UVINIT defines the initial conditions, two
more SPDEFN and SBNDR define the form of the PDE and its boundary
conditions. The final routine SODEFN defines the form of the coupled ODE
system. The restriction on the names of the PDE description routines is
forced by the use of DASSL which does not have a mechanism to pass the
names of subroutines into the RESID routine.
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It should be noted that one of the parameters to each of the routines
SPDEFN. SODEFN and SBNDR is the integer IRES. This control parameter
can be reset to force the DASSL integrator to take the following action.

IRES Action Taken by Integrator Usage

–2 The integration is stopped. A last resort to stop inte~ation.
–1 Illegal solution value–the Can be used to stop the integrator

integration step is retried. generating unphysical values.

An illustration of the use of IRES for a PDE problem is provided below, in
conjunction with the moving boundary problem, to ensure that the moving
boundary position is always nonnegative. DASSL then tries to reduce the
step-size in order to avoid this condition.

7.1. Numerical Example One — A Coupled PDE / ODE System

This problem is a one-phase Stefan problem, see Furzeland [10]. It provides a
simple example of how a coupled ODE /PDE system is specified. The PDE is
defined by the Equations:

au az u
O<y<v(t), c<t<l.o

at = ayz ‘

~(0, t) = -exp(-t)

U(V(t), t) = O and :(v(t), t) = -v(t)

on the moving boundary V(t). The numerical solution is started at t = e with
the analytic solution

U(y, t) = exp(t – y) – 1, V(t) = t.

The parameter e is a small positive quantity, which is set to the accuracy
requested in the time integration. The problem is rewritten by using the
coordinate transformation, see Furzeland [101,

x(t) = y/v(t)

to fix the moving boundary at x = 1 for all t. The equations become

a2 u
Vg – VVXE – I%(O,1),

ax axz ‘

with boundary conditions

au
–V(t)exp(t) at x = O and U(l, t) = O.

ax =

In addition, the function V(t) is defined implicitly by the ODE

au
ax
— = –V(t)v(t)
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at the point x = 1, which is the point at which the ODE is coupled to the
PDE .

We now describe the forms of the subroutines the user must provide with
reference to the above example.

SBNDR. This routine defines the boundary conditions. The vectors

U, UX, Ut, UXt, and V

in Eq. (2.3) are passed across to the SBNDR routine as the FORTRAN arrays

U(NPDE), UX(NPDE), UT(NPDE), UXT(NPDE), and V(NV)

The logical variable LEFT specifies whether or not the left boundary condi-
tions should be supplied (LEFT = .TRUE.) or whether the right boundary
conditions should be supplied (LEFT = .FALSE .). The purpose of this routine
is to place the values of the functions Y( ..0 ) and B( 0.. ) in Eq. (2.3) in the
FORTRAN arrays GAMMA(NPDE) and BETA(NPDE).

It should be noted there are three boundary conditions for this problem.
Since we have two conditions involving PDE fluxes, we have chosen to
specify these as the boundary conditions for the PDE part. The reason for this
is that the fluxes will be evaluated using the weak form of the PDE, as shown
in Eq. (3. 12). The third equation U(I, t) = O is then specified as the coupled
ODE equation even though it does not involve the ODE variable V(t) (which
is present in the PDE and in the boundary conditions). This approach is one
of the many useful practical devices described by Schryer [21] in connection
with coupled PDE/ODE problems.

c
SUBROUTINE SBNDR(T, BETA, GAMMA, U, UX, UT, UTX, NPDE,
LEFT, NV,
1 V, VDOT, IRES)

C Specifies boundary conditions for Jth PDE in master Eq. (5.2) form
c
c BETA(J, T)*R(X, T U U U U Vv)=f—z_X?_T,YxT, _,_

GAMMA(J, T U U U U V V),_>_X, _T, _XT !_, _

C Ateither X= Aor X=B.

C The form of the flux function R( ) is specified in SPDEFN.

C For the moving boundary example:

c U = - V(T)*EXP(T) at X = O and U = - V(T)*V(T) at X = 1
Cx x

INTEGER NPDE, NV
DOUBLE PRECISION BETA(NPDE), GAMMA(NPDE), U(NPDE),
UX(NPDE)

UT(NPDE), UTX(NPDE), T, V(l), VDOT(l)
LOGICAL LEFT ‘
BETA(1) = 1.ODO
IF(LEFT)THEN

C known flux b.c. at X = O
GAMMA(1) = -V(l) *DEXP(T)

ELSE
C known flux b. c. at X = 1, the moving boundary condition

GAMMA(1) = -V(l) *VDOT(l)
END IF
RETURN
END
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SPDEFN. This routine supplies the values of the functions Qk( “ “ “ ) and
RJ””” ) in the PDE definition of Eq. (2. 1). The routine SPDEFN is called
once for all mesh points between a pair of consecutive breakpoints. This
means that the user must define the functions Q and R as in Eq. (2.1) for a
set of spatial mesh points contained in the FORTRAN array X(NPTL) where

XBK(I) = X(1) < X(2) < . ~. < X(NPTL) = XBK(I + 1)

where XBK(I) is the Ith breakpoint and I = O,” “ “, NEL – 1. The following
code is the required routine for the moving boundary problem.

c
SUBROUTINE SPDEFN(T, X, NPTL, NPDE, U, UX, UT, UTX, Q, R, NV,
1 V, VDOT, IRES)

C Form of the PDE for moving boundary problem as in Eq. (2.1).
C The user supplies R and Q at the array of meshpoints X(NPTL).
c
c V*V*U – V*V*X*U = U, X IN (O,1).
c T x xx
c where V is the ODE variable.

INTEGER NPDE, NPTL, NV, IRES
DOUBLE PRECISION T, X, U(NPDE, NPTL), UX(NPDE, NPTL),
UT(NPDE, NPTL)

, UTX(NPDE), Q(NPDE, NPTL), R(NPDE, NPTL), V(l),
VDOT(l)

DO 10 J = 1, NPTL
R(l, J) = UX(l, J)

10 Q(l, J) = V(1)* *2*UT(1, J) - X(J)*VDOT(l)*UX(l, J)*V(l)
RETURN
END

SODEFN. The user must supply a routine, named SODEFN, that
ates the function F( “ “ “ ) in Eq. (2.2). The arrays

U*,U2,R*,U~,U~~,V, and V

are passed across into the routine SODEFN as the FORTRAN arrays

UI, UXI, RI, UTI, UTXI, V, and VDOT

evalu -

respectively. These arrays are all of dimension (NPDE, NXI) except for V and
VDOT which are of dimension NV and hold the solution, flux, and derivative
values at the coupling point vector ~. The coupling points are held in the
FORTRAN array XI(NXI). The user must write the subroutine so that it
supplies the residual of the coupled ODE system in the array VRES(NV).

SUBROUTINE SODEFN(T, NV, V, VDOT, NPDE, NXI, XI, UI, UXI, RI,
1 UTI, UTXI, VRES, IRES)

C Definition of coupled ODE residuals in master Eq. (2.2) form,
INTEGER NPDE, NXI, NV, IRES
DOUBLE PRECISION T, XI(NXI), UI(NPDE, NXI), UXI(NPDE, NXI),
1 RI(NPDE, NXI), UTI(NPDE, NXI), UTXI(NPDE, NXI), VRES(NV),
2 V(NV), VDOT(NV)

C the residual VRES(l) from moving boundary condition U = O
C this and the fixed b.c. at X = 1 may be interchanged

VRES(l) = UI(l, 1)

C ires can be reset to cope with illegal values of m. b. position V(l).

IF(V(l) .LT. O. ODO)IRES = – 1

RETURN

END
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Table 1, Results for Model Stefan Problem

Accuracy NEQ NPOLY NEL ERROR CPU TOL

10 2 4 3.29d-3 0.369 2.Od-6

Low 8 3 2 2.39d-3 O385 2 Od-6
6 4 1 1.15d-3 0317 2.Od-6

42 2 20 1.90d-6 585 2.Od-8
Medium 22 4 5 1.00d-6 2.52 2.Od-8

8 6 1 5.00d-6 O 82 2.Od-8

66 4 16 1,50d-8 184 1.Od-9

High 32 6 5 2. 60d-9 616 1.Od-9

11 9 1 1.50d-9 1,88 1.Od-9

UVINIT’. The initial conditions for U( x, O) and V(0) are supplied by the
user in subroutine UVINIT.

SUBROUTINE UVINIT( NPDE, NPTS, X, U, NV, V)
c Routine for PDE initial values (start time is O.1) at meshpoints X(NPTS)
c and routine for initial values of auxiliary ODES (if any)

INTEGER NPDE, NPTS, NV
DOUBLE PRECISION X(NPTS), U(NPDE, NPTS), TIME, V(NV)
TIME = O.lDO
DO 10 I = 1. NPTS

10 U(I, I) = DEXP( TIME* (l.ODO – X(I))) – 1.ODO
V(1) = TIME
RETURN
END.

Note that in the case when there are no ODES coupled to the PDEs, V and
VDOT will be dummy vectors of length one. Similarly, if NXI is zero; that is,
there are no coupling points between the ODE and the PDE, then all the
arrays of length NXI in the call to SODEFN will be dummy arrays of length
one.

The analytic solution to this problem can be used to illustrate the conver-
gence properties of the higher order polynomial methods in PDECHEB. To
assess the performance of the method, we have compared the accuracy
achieved by using polynomials of different degree with the computer time
taken. A summary of the experiments is given in Table I below where we
have adjusted the degree of the polynomial and the number of equally spaced
breakpoints so that the different methods achieve approximately the same
maximum grid error (ERROR) at the end of the integration (where the error
is largest). The parameter TOL is the relative and absolute error tolerance in
the call to DASSL, NEQ is the number of ordinary differential equations
integrated in time, NPOLY is the degree of the polynomial used in the space
approximation, NEL is the number of spatial elements and CPU is the
computer time in seconds taken on the Amdahl 5850 at Leeds University.

The numerical results show clearly that the accuracy is best achieved by
using a single element and increasing the degree of the polynomial. Several
points are worth noting. The first is that the coupled ODE/PDE form of the
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above problem means that banded matrix routines cannot be used with
DASSL. As the lower polynomial degree methods need to use more spatial
elements than the high order methods to produce a solution to a given
accuracy (and hence a larger ODE system, of size NEQ equations, must be
integrated in time) the cost of forming and decomposing a Jacobian matrix
which is proportional to O(NEQ 3, is much higher than for the high order
methods that use a smaller value of AL?3Q.This penalizes the timing results
in favor of the case when only one element is used. The second point is that
we have obtained similar results on a wide variety of test problems with
smooth solutions, e.g., see 13erzins and Dew [2]. Our experience suggests that
the remarks made by Balouska et al. [1] concerning the efficiency and
accuracy of high order polynomial methods for steady-state problems also
apply to time-dependent problems.

One difficulty peculiar to solving time-dependent problems with higher
order polynomial methods is that as the degree of the polynomial is raised it
becomes increasingly difficult to get enough accuracy from the ODE integra-
tor so that the space error dominates. For this reason we feel that it is
particularly important to have an integration algorithm that balances the
space and time errors, e.g., Schonauer et al. [22], and provides an estimate of
the overall error such as that used by Berzins and Dew [3] and Schonauer
et al. [22, 23].

7.2. Numerical Example 2 — Pool Evaporation Problem

This section provides an example of a nonstandard problem that can be
solved very effectively using the PDECHEB discretization and the DASSL
integrator. The problem concerns the rate of evaporation of vapor from a pool
of liquid of length one meter. Above the pool a constant (i. e., nontime
varying) wind blows. There is a viscous sublayer above the pool of height 1
and above that is a “windy” region in which the concentration of vapor
diminishes until it is negligible at a height of about 1032. In order to apply
the method of lines to this problem, we take the spatial variable as being the
height above the pool and integrate across the length of the pool.

The governing PDE for the vapor concentration U( x, t) in the viscous
sublayer is

( )6.81 X 103X: = : 8.65 X 10-$ , xc [0, Z) (7.1)

and in the turbulent region above the viscous sublayer,

( )(0.771710g(x) + 9.313)X = ~ 0.1297x: , xc (Z,l.0] (7.2)
at ax

and Z is a fixed internal boundary defined by Z = 5.08 x 10-4.
The initial condition is

U(x,o) =0, Xe[o,l] (7.3)
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Fig. 3, Vapor concentrations for the pool evaporation problem,

and the boundary conditions are

I!7(0, t) = 0.038475 and ~(1, t) = O. (7.4)

The interface between the viscous sublayer and the turbulent region forces
one of the meshpoints to be placed at 2. As most of the spatial variation
occurs close to this point, further breakpoints were placed at O.5 I, 1.5 E, 2 I,
112, and 121 E, thus giving seven breakpoints in all. Figure 3 shows how the
vapor concentration varies at a number of discrete times.

The problem has the following nonstandard feature. As a check on the
accuracy of the numerical solution, it is important to compare the rate of
evaporation Ql( t) at the surface of the pool with the quantity of vapor which
passes above a given point in the pool Qz(t), where Ql( t) and Qz(t) are
defined by

Ql(t) = -7.934 x IO-7 ~tg(07t) d, (7.5)
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and

Q2(~) = 9.4175 X 1o-2 /’p(x)u(x, t) dx (7.6)
Jo

where the function p(x) is defined by

p(x) = 6.81 x 103X, Xe [o, 1) (7.7)

= (o.771710g(x) + 9.313), X= (Z,l.o] . (7.8)

This comparison is most easily achieved by defining an extra coupled ODE
for the rate of evaporation

dQl

dt
— = -7.934x lo-’: (o, t). (7.9)

(An alternative approach would be to use DASSL in one-step mode and to
extract the values of i?U/ d x at the end of each time step and to use
quadrature in time to evaluate Ql( t).) Equation (7.6) is approximated by
using Clenshaw– Curtis quadrature rule in space, to get

(Q2(~) = 9.4175 x 10-2$ 2_ ~ ‘pOLy+l,pl P(x,,, )qx,,[> t)~t
.~=l ‘J+l J )

(7.10)

where NPOL Y is the degree of the polynomial used in each interval, XJ,
j= l,.. .,5 are the breakpoints, and XJ,, are the points defined by Eq. (5.4).
The coefficients h, are the Clenshaw-Curtis quadrature weights for the
interval [ – 1, 1] which may be accessed by the user from the COMMON
block:

COMMON / SCHSZ6 / CCRULE (50)

where CCRULE is a DOUBLE PRECISION array whose lth component
contains AI for 1 = 1, NPOLY + 1. The accuracy of the numerical solution
can then be monitored continuously by defining a new variable Q3( t)(which
corresponds to the vapor discrepancy) by

Q3(~) = Q2(~) - Ql(t). (7.11)

Equations (7.9), (7. 10), and (7.11) are then integrated with the PDE as a
mixed PDE /ODE system. The initial conditions for the new variables are
Q,(O) = O for i = 1,2,3. The values of the discrepancy Q3(t) were tabulated
at the same time levels as those used by Berzins et al. [5] with the SPRINT
finite difference code SPDIFF and the results compared in Table II. Also
shown in Table II are the results obtained by changing the degree of the
polynomial to 12 to provide a high accuracy solution for comparison. In the
table below CPU is the CPU time on the Amdahl 5850 and TOL is the local
error tolerance (both relative and absolute).

The results with the SPDIFF code were obtained by using a different
integrator based on the backward differentiation formula and by using sparse
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Table II. Vapor Discrepancy for Pool Problem

Code NPOLY Mesh points Max I Q3 I Q,(l) CPU TOL

SPDIFF 01 81 2.615d-7 4.26d-4 28.86 1 Od-5
PDECHEB 03 22 1.704d-7 4.58d-4
SPDIFF

2.59 l,Od-5
01 201 6.255d-8 4,26d-4 259.0 l,Od-9

PDECHEB 12 85 l,297d-11 4.60d-4 100.0 1 Od-9

matrix software to form and decompose the Jacobian matrix, rather than the
full matrix techniques employed with DASSL. The results in Table II illus-
trate the power and computational efficiency of the high order polynomial
formulas in PDECHEB when solving problems with smooth solutions. Al-
though the computational cost of using PDECHEB is potentially high be-
cause full matrix routines must be used, compared to the reduced cost of
using sparse matrix routines when SPDIFF is used, the accuracy of the
discretization methods in PDECHEB compensates for this by allowing a
small number of equations to be integrated in time. The discrepancies
between the values of Ql(l) may be attributed to the different quadrature
rules used to approximate (7.6) and the different space derivative approxima-
tions in (7.9).

The convention used by the discretization routines in ordering the ODE
solution vector is that the coupled ODE components are stored after the PDE
components. Consequently, the penultimate ODE in time, Eq. (7.9), depends
on the first NPOLY + 1 ODE variables (the concentrations in the first
interval which are used to form d U/a x(O, t)). In the case of Eq. (7.10), the
variable Q2( t) depends on all the PDE solution values at the mesh points.
The result of this coupling is to destroy the banded structure of the ODES
associated with the original PDE problem.

This example problem also illustrates how easily discontinuities in the
function Q( . . . ) at the breakpoints are dealt with by testing X(1) and
X(NPTL) to determine in which element the functions Q( . . . ) and R( . . . )
must be evaluated. The following pseudocode shows how the SPDEFN rou-
tine for the above problem may be written. As the user-supplied routine
SPDEFN is called element by element, it follows that

(1)

(2)

if X(1) < ?2and X(NPTL) s Z, then Eq. (7.1) should be used in the above
problem definition as both the left and right edges of the element lie to
the left of 1.

If, however, X(1) z 2 and X(NPTL) > Y, then Eq. (7.2) used in the above
problem definition as both the left and right edges of the element lie to
the right of i.

SUBROUTINE SPDEFN(T, X, NPTL, NPDE, U, UX, UT, UTX, Q, R, NV,
1 V, VDOT, IRES)

C Form of the PDE for material interface problem as in Eq. (2. 1).
C The user supplies R and Q at the array of meshpoints X(NPTL).

INTEGER NPDE, NPTL, NV, IRES
DOUBLE PRECISION T, X, U(NPDE, NPTL), UX(NPDE, NPTL),
UT(NPDE, NPTL)
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1 XBAR, UTX(NPDE, NPTL), Q(NPDE, NPTL), R(NPDE, NPTL), V(l),
VDOT(l), C

XBAR = 5.08D – 3
IF(X(l) .LT. XBAR .AND. X(NPTL) .LE. XBAR) THEN

c element to the left of the interface use Eq. 7.1
c to define the functions Q and R.

ELSE
c element to the right of the interface use Eq. 7.2
c to define the functions Q and R.

ENDIF
RETURN
END.

The same approach can also be used with multiple material interfaces.

8. SUMMARY

The PDECHEB software based on the Chebyshev Co Collocation Method of
Berzins and Dew [31 allows a wide range of Chebyshev polynomial approxi-
mations to be applied to many PDE problems in one space dimension. We
have shown how the software can be used with an ODE integrator DASSL to
solve different types of PDE problems. The numerical results have shown the
highly accurate and efficient solutions that can be obtained by using this
discretization method and the method of lines to solve PDE problems with
smooth solutions. The PDECHEB code can be used to discretize PDEs for
which the Cl continuity of PDECOL is unsuitable.
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