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1. INTRODUCTION.

The area of fluid mechanics has long been recognised as one for the application of au-
tomated analysis capabilities. The advent of reliable and robust mesh generators [1], physical-
ly realistic spatial discretization methods [8], sophisticated time integration software [2], and
error balancing techniques for time-dependent p.d.e. problems [9] has made it possible to
write reliable adaptive finite element programs for time-dependent fluid flow calculations.
The programs are intended to be reliable in that they make use of spatial and temporal error
estimates to meet automatically the users accuracy requirements. One example of such a pro-
gram for p.d.e.s in one space variable is that of Lawson and Berzins [10] which is based on
the adaptive mesh method of Bieterman and Babuska [S]. This paper describes the basic
components of a prototype automated solver for the solution of the time-dependent compres-
sible Navier Stokes equations in two space variables.

One key part of the solver is the spatial mesh generator. This needs to be able to cope
with complicated geometries and to be able to locally refine and coarsen the spatial mesh as
part of a procedure to control the spatial discretization error. Such a mesh generator is the
Finite Quadtree mesh generator developed by Bachmann et al. [1],[2],[3].

The spatial discretization procedure used on the mesh should provide numerical solu-
tions that are free of spurious oscillations. Such discretizations are considered by many au-
thors e.g. by Ludwig et al.[11] for the Euler equations and by Koren [8] for the steady
Navier-Stokes equations using quadrilateral meshes. The general approach of Koren is ex-
tended by considering the time-dependent case and by making use of unstructured triangular
meshes in the spatial semi-discretization of the p.d.e. This method of lings approach results in
a system of time dependent o.d.e.s which can be solved by using o.d.e. software.

Although the mesh generator provides spatial error control facilities it is still necessary
to integrate in time with sufficient accuracy so that the spatial error is not degraded while
maintaining efficiency. This is achieved by using a modified form of the error balancing ap-
proach of Lawson, Berzins and Dew [9] in conjunction with the time integrators of the
SPRINT software [4]. Key components of this error balancing approach are the estimate of
the space truncation error (which is obtained by using h-extrapolation) and the space and time
error estimates used in error control.
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The novel feature of the algorithm is that the accuracy tolerance used in the integration of the
o.d.e.s is calculated automatically. Itis calculated in such a way that the spatial discretization
and time integration errors are of the same order of magnitude, but so that the spatial discreti-
zation error dominates the time integration error.

The paper is structured in the following way. Section 2 describes the problem class,
spatial discretization method and time integration software. Section 3 indicates how the glo-
bal error may be decomposed and estimated. This allows the error control strategy for the
time integration to be summarised. Section 4 contains a summary of how the mesh generator
works and how it is used to control the spatial error, while Section 5 explains how this algo-
rithm is modified to work with the error balancing approach in a prototype fully automatic
mathematical software package for the numerical solution of time dependent p.d.e.s.

2. SPATIAL AND TEMPORAL DISCRETIZATION FOR COMPRESSIBLE
NAVIER-STOKES EQUATIONS.

The solution strategy for the Navier-Stokes equations is to follow Koren [8] by splitting
the equations into their convective and diffusive parts. This enables upwind discretization
methods developed for the Euler equations to be used for the convective part of the system
and the centered discretization methods to be used for the diffusive part. The class of p.d.e.s
to be considered is written in cartesian co-ordinates as
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with appropriate boundar¥ and initial conditions. The solution vector has the form
qlx,y,t) = [e,p.pu,pv]l’ . Here, p is the fluid density; u,v are the cartesian components
of the velocity vector, e is the internal energy. The pressure p is evaluated according to an
equation of state. The fluxes f; and g; represent the convective fluxes while f, and g, are
the diffusive fluxes [8].

The first step in the discretization process is to triangulate the region Q using the quad-
tree mesh generator, see Section 4 below. With a finite volume approach equations (2.1) are
integrated over a triangular element i (with vertices A,B and C ) and the divergence theorem
is applied and a one point quadrature rule applied along the edges of the triangle (see Chakra-
varthy and Osher [6]) to obtain

o
Arearsc o = - [(fi(qn) +F2(@an)) xas - (81(@an) + 82(0as)) Byan +

(f1(gzc) + f2(gsc) ) Axpc - (81(qc) + 82(q8c) ) Aypc +

(f1(qca) + f20qca) ) Axca - (81(qca) + 82(qca) ) Ayca 1 2.2)

where g,p is the solution value midway along the edge AB , Ax4p is the change in the x co-
ordinate in going from A to B , g4pc is the solution value associated with the centroid of the
triangle ABC and the other values in the equation are similarly defined. As the solution
values are only piecewise constant inside each triangle the evaluation of the convective fluxes
midway along the edge involves the approximate solution of three one-dimensional Riemann
problems in the direction of the normals to the edges of the triangle. This is done by using the
upwind scheme of Engquist and Osher as described by Koren [8]. This appears to be an
efficient, accurate, and robust means of solving compressible flow problems (e.g. [11]) on
finite quadtree meshes.

The piecewise constant finite volume schemes using Engquist and Osher’s flux evalua-
tions are only first-order accurate. In addition it is difficult to estimate the derivatives present
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in the diffusive fluxes. Consider the edge AB. A piecewise linear interpolant can be built up
on say the side of the edge interior to the triangle ABC by using solution values from the tri-
angle ABC and its neighbours on the sides BC and CA. This can be extended to a bilinear in-
terpolant by including the centroid value from the other triangle having AB as an edge. Lim-
ited combinations of these interpolants can be used to produce more accurate estimates of
solutions on the edge AB. Applying the divergence theorem and using both the’ interpolants
on either side of the edge AB also allows derivative values to be estimated on that edge in a
similar way to that of Koren [8].

This spatial discretization scheme results in a system of differential equations, each of
which is of the form of equation (2.2) . This system of equations can be written as the i.v.p.

AvQ = Fy (t, Q®), 2.3)
where the N dimensional vector, Q (1), is defined by

T
Q(t) = [Q(xl » Y1 't) ’ Q(x2'y2vl)' tee rQ(xvaN't)] ’

where (x; , y; ) is the centroid of the ith triangle, Q(x; , y; , ) is a numerical approximation to
q(x; ,y; ,t) and Ay(t) is an N XN matrix which may or may not be the identity matrix
depending on the discretization method. In practice the system of equations (2.3) is integrat-
ed in time to compute the approximation, V(¢), to the true solution, g(¢), of the p.d.e. The
global error in the numerical solution can be expressed as the sum of the spatial discretization
error, Q(t) =q() - Q (), and the global time error, ge(t) = Q@) - V(t). Thatis,

E() = q(0)- V(1) = @) - 20) + QW) - V(©) 2.4)

e Q(t) + ge(t).

2.1. SOFTWARE FOR TIME INTEGRATION.

The SPRINT package (Software for PRoblems IN Time) of Berzins, Dew and Furze-
land [2] is a general-purpose computer program for the numerical solution of mathematical
models that involve mixed systems of time-dependent algebraic, ordinary and partial differen-
tial equations (o.d.e.s and p.d.e.s). Shell Research Limited and the School of Computer Stu-

es at Leeds University collaborated to write SPRINT and so provide a flexible and open-
ended software tool to enable a user to solve a wide range of problems within a single frame-
work . The software package consists of a set of well-defined and independent modules that
are controlled by a supervisory routine. The internal structure of the package allows the
individual modules to be easily replaced and in this way the user has access to different com-
binations of modules from the three main component areas in the package, - the time integra-
tion method, the spatial discretization method and the linear algebra routines. The modules
incorporate recent developments in numerical analysis and software such as o.d.e. integrators
for differential-algebraic equations (d.a.e.s ) and for handling discontinuities, type-insensitive
codes for o.d.e.s where the degree of stiffness varies, and adaptive space remeshing methods
for p.d.e.s. The core of the software package is a versatile set of differential-algebraic impli-
cit integrators with the flexibility to deal with stiff or non-stiff d.a.e.s coupled with algebraic
equations and full/banded/sparse Jacobian matrices computed analytically or numerically
when Newton’s method is used to solve the non-linear equations. In the case of two space di-
mensional problems the systems of equations are large. In the case of non-stiff o.d.e.s func-
tional iteration is used while in the stiff case iterative methods, such the reduced storage
SPRINT module written by Seward [13], are used to reduce the computational cost.

The greatest flexibility is obtained when the user writes a program which calls the
SPRINT driving routine directly. This program consists of initialisations of the parameters to
be passed into the SPRINT driving routine, calls to the linear algebra module setup routine
and the d.a.e. integrator setup routine followed by a call to the SPRINT driving routine to per-
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form the integration. This call specifies the names of the time integration module, LU decom-
position and back-substitution routines, RESID (problem definition) routine and the name of
the MONTTR routine (which is called at the end of every timestep).

The user-supplied RESID routine defines the system of differential-algebraic equations
to be solved. In the case of p.d.e. problems this means that it is this routine that performs the
semi-discretization of the p.d.e. The integrator supplies approximate vectors for the solution
and its time derivative, V(t) and V(t) The main purpose of the RESID routine is to compute
the residual vector R which is obtained by substituting the vectors V(t) and V(t) into the d.a.e
system that is being solved. Le. for equation (2.3),

R=AW® - Fy (1, Y©), 2.5)

The integration may be interrupted by the user from RESID to force the integrator to either
stop the integration, reduce the time-step to avoid a physically impossible solution value or to
terminate the current step and enter the MONITR routine.

An important feature of SPRINT is the capability to handle p.d.e. space remeshing
schemes. After each step taken by the SPRINT integrator a routine, generic name MONITR,
is,called which allows the user to perform intermediate output or calculations (e.g. the in-
tegration may be restarted , the step-size changed or restricted to satisfy a CFL condition).
The unique feature of the MONITR routine is that it has the power to access the whole of the
non-linear equations solver in SPRINT. The MONITR routine was designed for tasks such as
o.d.e. global error estimation and remeshing at discrete times.

2.2. TIME ERROR CONTROL IN CODES FOR SOLVING O.D.E.S.

Most codes, such as SPRINT, for solving time dependent o.d.e.s control either the local
time error per step, (LEPS), with respect to a user su}ghed accuracy tolerance, TOL, or the

le 4 ,
local time error per unit step (LEPUS), fn( "I:l . When controlling the LEPS it is
n

difficult to establish a relationship between the accuracy tolerance, TOL, and the global time
error. On the other hand, if the LEPUS is controlled then it can be shown, Stetter [14], that
the time global error is proportional to the tolerance that is

ge(®) = v(t) TOL + o(TOL), @€

where v(¢) is independent of TOL and v(¢) and v’(f) are bounded on [0, ] . Although
LEPUS control is generally thought to be Tnefficient for standard o.d.e.s, there is a fundamen-
tally different situation in the time integration of p.d.e.s in that the time error control strategy
must take account of the spatial discretization error already present. In particular it is not
generally efficient to use a fixed value of TOL.

3. BALANCING THE SPACE AND TIME ERRORS.

In order that the solution is computed efficiently, the time integration error should not
dominate the error due to the spatial discretization of the p.d.e. but nor should the o.d.e.s be
integrated with a much higher degree of accuracy than that already attained in space.
Although these errors should be balanced, in practice the spatial discretization error must ac-
tually dominate so that the estimate of the spatial discretization error and the spatial remesh-
ing process remain unpolluted by temporal error. One way to balance the error in this way is
to make use of the equation for the evolution of the spatial error.

Ayés = Fy(t, Q@) +es()) - Fy(t, Q1)) + TE(L,q()) 3.1)
where the vector of spatial truncation errors as denoted by TE(,q) , is defined by

TE(Lg) = A - Fy(t, q()) and es(0) = 0 . (32



AUTOMATED FE SOLVER 185

The estimate of the spatial truncation error used is calculated by using h-extrapolation. -
The ’coarse’ mesh A° is that created by the Finite Quadtree mesh generator described below
while the actual mesh A used to compute the numerical solution to the p.d.e. is created by un-
iformly subdividing each coarse element into four. Let g°(t) be the restriction of the p.d.e.
solution g(x,y,!) to the new mesh A° , The vector of spatial truncation errors , TES(¢ , ¢°(t) ),
on the coarse mesh A° is defined in the same way as the truncation error on the fir® mesh
(equation (3.2) ) by

TES¢.q°()) = A g ‘0 - Fyt, q°®) (3.3)

and the components of the coarse and fine truncation errors at ‘the centroid of the ith coarse
triangle and the 4i th fine triangle are approximately related by

[TE*(t, g°®): =2 [TE(.q() s 34

where p is the order of the space truncation error. The spatial truncation error can then be es-
timated by defining the M dimensional vector V°(¢) as

(VO L = {VO i i=1,....M

(and Ve (¢) is similarly defined using V(t) ) . Lawson et al. [9] show that providing the space
error dominates the time error then the truncation error on the coarse mesh can be estimated
by

TES(t . q VEn))] 3.5)
The spatial truncation error in the solution on the mesh 8 may then. be estimated by using
equation (3.4) and by using linear interpolation to estimate the truncation error at those cen-
troids of the fine mesh not present in the coarse mesh.

Equation (3.1) shows how the spatial accuracy varies with time and can be used to
define an error control strategy in which the accuracy tolerance is related to and varied with
the spatial discretization error. Lawson, Berzins and Dew [9] have developed one such stra-
tegy which controls the local time error to be a fraction of the growth in the spatial discretiza-
tion errors over the interval [¢, , {4 ], that is,

| llens1(tasr , TOLY | < € || e5(tpi1) - €5} 1. (3.6

It can be shown, [9], that, for a suitable value of €, this yields a time integration error which
is dominated by the spatial discretization error. That this is a form of LEPUS control can be
applying the mean value theorem to the right side of the equation.

| 1lens1(tnsr , TOLY| | < € kpyy 11€5G7)[| for somet™ € [ty , tns1]. 3.7
where k,.1 = luy - L,

Other approaches in a similar spirit are discussed by Lawson et al. [9]. In practice we
need to integrate equation (3.1) for the spatial error at the same time as the main equation is
implemented. In the case when an implicit method is used for the main integration computa-
tionally simple methods can be devised, [9]. In the case of explicit methods low order
Runge-Kutta methods can be applied to equation (3.1). In both cases this subsidiary integra-
tion is performed by the MONITR routine in a modified LEPUS version of SPRINT.

It is worth noting that the approach defined by equation (3.6) also has similarities with
existing local refinement methods such as those described by Flaherty et al. and Berger, see
[7]. These methods balance the local time error against a local estimate of the space error.
Define es(t) as the local solution of equation (3.1) glven the assumption that es(t,) =0 - in
other words as the local in time space error. A local in time error balancing approach is then
given by
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| Heasi(tasr , TOLY| | < € kps1 | 1€5Unsn) (1. 3.8

It is by no means clear as to which of the approaches (3.6) or (3.8) will prove the most robust
and reliable in the long term. It is however clear that whichever is used it is desirable to have
an estimate of the spatial error that reflects how this error changes globally in time.

4. FINITE QUADTREE MESH GENERATION AND ADAPTION.

The Finite Quadtree meshing procedures consist of two main steps [1]. In the first step,
a quadtree is utilized to discretize the model and to keep track of the discrete information
The quadtree is a collection of hierarchically structured cells that are subdivided to the re-
quired sizes and are tied together through the use of a tree data structure. Each cell contains
discrete topological information about the portion of the model where the geometry spatially
overlaps the position of the cell. The model intersections with the cells, and the cell corners
and portions of the cell edges that are within the model become finite element nodes and finite
element edges in the mesh. In the second step, additional edges and nodes are added to the
tree and mesh databases as the terminal cells of the quadtree are broken down and grouped
into finite elements.

The Finite Quadtree mesh generator contains two coupled databases, that of the tree
and the mesh [2]. The meshing procedures access the mode! information through geometric
communication operators, allowing the use of other modelers, and no duplication of data.
The tree database contains the root, the continuation quadrants, and the terminals quadrants of
the tree. All quadrants point to their parents, a continuation quadrant points to its four
subquadrants, and a terminal quadrant points to the edges and the nodes within it. The mesh
database contains the finite elements, the finite element edges, and the finite element nodes.
A finite element points to its finite element edges, the quadrant from which it was created, and
the model face it is in. A finite element edge points to its finite element nodes, the finite ele-
ments and terminal quadrants on either side of it, and the model edge if appropriate. The
finite element nodes point to its finite element edges, and its parametric value along a model
edge when appropriate. The finite element edges and nodes are the same entities that are ac-
cessed by the terminal quadrants. The abundancy of information in the tree and mesh data-
bases are important in adaptive mesh updating.

A very simple approach has been taken to link the analysis program with that of the
mesh generator. Functions were written for each analysis mesh database entity. For example
the function edges(i,j) returns the pointer information i = 1,2 for mesh points at the ends ot
the j th edge or the element pointer information to the elements on either side of the j th edge
i =3,4 . When called, the functions act as retrieval operators and access the corresponding
information in the Finite Quadtree mesh database. Using this approach, the existing mesh da-
tabase in the analysis program did not have to change.

In this paper, the local remeshing capabilities [2] of the mesh generator are being used
to guide the mesh updating. The input to the local remeshing procedure consists of a list of
elements and the level of refinement or unrefinement being requested. The quadtree in the
area of the elements requesting new sizes is changed, creating new quadrants, and therefore
new element sizes. The local mesh updating procedures consist of the following steps. First,
the quadrants to be changed are obtained from the element-to-quadrant pointers in the finite
element mesh database. Next the old information that is associated with the quadrants to be
changed is deleted. The only information that is saved is the starting and ending parameter
values of the discrete boundary edges, along with the corresponding model edge pointers.
This information is examined in a later step to determine which portions of the boundary are
to be rediscretized. With the discrete edge and node information already removed in the qua-
drants to be refined, it is simply a matter of subdividing empty quadrants to the levels request-
ed by the adaptive error estimator. The reverse holds true when unrefinement is requested.
For unrefinement, the information is deleted in all siblings of a parent quadrant, the empty ter-
minal quadrants are deleted, and the parent becomes the new terminal quadrant. The
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unrefinement process can continue upward to the requested level in the quadtree, creating
larger terminal quadrants, until a quadrant is encountered that has requested refinement.
Unrefinement has to stop at this point, since refinement takes precedence over unrefinement.
After the tree has been changed to the new levels, a transition zone is created around the lo-
cally changed quadrants. The mesh information is deleted in these quadrants since a new
mesh will have to be generated at these locations that will hook up the old unchanged mesh
with the new locally updated mesh. The portions of the model edges that need to be locally
rediscretized are now reintersected with the new locally changed tree. The last step of the lo-
cal remeshing algorithm is the local generation of the finite elements within the locally updat-
ed quadrants and the quadrants in the transition zone [2].

5. TOWARDS AN AUTOMATIC ALGORITHM.

The automatic algorithm basically consists of the error control strategies described in
the previous Sections. The strategies for deciding when to remesh are essentially those of
Lawson and Berzins [10]. One fundamental difference from the one-dimensional case is that
of specifying how many levels of quadtree should be refined or coarsened. In most cases only
one level of refinement or coarsening is requested.

The input required from the user consists only of the problem specification, an initial
spatial mesh from the mesh generator and an error tolerance for the spatial discretization er-

ror, EPS. At each time step the estimate E(t) of | | es(1)|] is calculated, and if
£() > 0.95-EPS

then a new mesh is constructed that ensures that the subsequent error is less than EPSDN
where EPSDN is a fraction of EPS. The underlying assumption in this adaptive process is
that the introduction of extra mesh points will cause the error to decrease. Should this not be
the case it will be necessary to backtrack to an earlier time at which the solution and error es-
timates have been saved.

Once a new mesh has been found, the computed solution and the time history array
used by the time integrator are interpolated, using a conservative interpolation scheme of
Ramshaw [12] onto this mesh and the time integration is restarted. A " flying restart " , which
uses the same stepsize and order used immediately before remeshing, is performed. This is
often faster than performing a full restart, but there is an increased risk of convergence
failures. A full restart will be performed automatically by SPRINT [4] in the event of repeat-
ed convergence failures. Since the accuracy tolerance for the time integration over the next
time step depends partially on the error incurred prior to spatial remeshing, this tolerance
must be modified according to the expected reduction in the spatial discretization error. Once
the time integration has been restarted, the time integration proceeds until the next point
where remeshing is required is reached or the end of the computation, whichever is soonest.

6. CONCLUSIONS.

In this paper a blueprint has been produced for the construction of a prototype solver
for time dependent fluid flow applications. The results obtained frem preliminary experi-
ments on time-dependent convection-dominated problems indicate that the algorithm is a
promising start to developing codes which automatically control the error in the computed
solution.
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