INTEGRATION ALGORITHMS FOR THE DYNAMIC
SIMULATION OF PRODUCTION PROCESSES.

M. Berzins , P. M. Dew , A. J. Preston.

ABSTRACT

The essential features needed to construct an efficient integrator for
dynamic simulation problems arising in the gas/ oil industry are examined.
A series of numerical experiments are performed using two widely used
codes: DASSL [8] and SPRINT [1], that are designed to solve
differential-algebraic equations. From these experiments, a number of
improvements to the codes have been identified and incorporated in a new
integrator.

1. Introduction.

The development of general purpose codes, such as SPRINT [1] and DASSL [8), for the
numerical solution of differential-algebraic equations (d.a.e.s), has made it possible to efficiently
solve many of the routine equations that arise in modelling dynamic gas and oil networks [3].
Nevertheless, there still exists a number of important networks that cannot be adequately handled
by existing integrators. These problems can be classified as Index two (or higher) d.a.e.s (see
below). A number of numerical experiments have been performed using both DASSL [8] and
SPRINT [1], and from these the following areas where problems may arise, have been identified:
(i) the solution of the non-linear equations that arise when using an implicit time-integration
scheme;

(ii) the accurate estimation of the local error for the fixed or variable stepsize form of the back-
ward differentiation formulae (b.d.f.) of Gear [4];
(iii) the stepsize and order selection mechanism used by the integrators, which are based on b.d.f.

formulae.
/

This paper provides a summary of the work that has been undertaken in the above and related
areas. For further details, the interested reader is referred to the companion report, [2].

The general class of differential-algebraic equations is defined by
(1) f(,y®, y(®) =20 given constants y(0) , y(0) and where f:[to, T] X R" xR" - R"
In the dynamic simulation problems considered in this paper, the function f can be written in the

form :

265

J. Manley et al. (eds.), Proceedings of the Third European Conference on Mathematics in Industry, 265-2171.
© 1990 Kluwer Academic Publishers and B. G. Teubner Stuttgart.

266
2) f=A(t, y)y—g(t, y), where Aisasquarematrixandcanbesingular.

A classification of d.a.e.s, the index of the system of equations, has been introduced by Gear and
Petzold [5]. For details on the definition of the index and its implications see [2] and [6]. This
paper is concerned with the standard index two problem [6] pp. 24-27, defined by

Y1=0(@ te[to, T], ¢eC?[t,T] > R

Y1 ¢ (0)
[%,T]>R?, Y@=

Y2 ¢ (0)

3) Y2=y1

1<
|

where we have chosen (@ =sin(2me) , te[0, 3] .

Practical experiments conducted by the authors have shown that DASSL [8] is one of the
most robust codes for solving index two problems, although it is far from being efficient. The
purpose of this paper is to carry out a series of numerical experiments which compare the perfor-
mance of DASSL [7] with that of SPRINT [1] when solving the standard index two problem. A
number of recommendations are given to improve the performance of SPRINT [1] for this class of
problems.

2. An Investigation of the Factors Affecting the Performance of DASSL.

In order that the particular features which make DASSL [8] successful in solving d.a.e.s. are
understood, the following aspects are investigated:
(i) the form of the non-linear equations to be solved, and the scaling of these equations;
(ii) the error estimates based on [6] and the stepsize and order selection algorithm,

The results were obtained using finite differencing to compute the partial derivatives of the
Jacobian matrix. Details of the statistics used to measure code performance are given in the
Appendix. The number of evaluations of the residual vector I, not counting those used in decom-
posing the Jacobian, is defined (in the case of the standard index two d.a.e) at the nth accepted
step by

Y2, —)"l,n

e = [}'1,;. - ¢ (tn)]

where y, , denotes the computational approximation to the exact value ¥1(ty) and similarly for
Y2, and y,,. The weighted vector norm of estimated local errors i y, le, is controlled at each
step by means of a standard mixed error test and using the averaged I, norm, [2].

2.1. The Form of the Non-Linear Equations,

DASSL [8] uses the kth order b.d.f of Gear (k =1,2,3,4,5) to approximate y, by

k
Y = % + Y0 Yoy , where h, is the stepsize used on the previous step and
B ofo =1 -

Yo, 01, 0y, ..., O are the method dependent parameters,

267

The rate of convergence of the non-linear equations can be accelerated by using relaxation
techniques. In DASSL [8] the relaxation factor used is p (see below), so that the j+1th iterative
value of Newton’s method, y{*?, is found by solving for the correction A Zﬁ,’) : :

» k
ﬂ + =L ﬂ [A)’2)] =fltns yf.’) ’ L + 20iyai| X P
3y hoYo 3y = = hy g =

Z'('M) = XS'D +AZ$,’) , j=1,23,.
2 he Ye . . .
where p = |[—————— | and the subscript ¢ denotes current values, while the subscript o
ho Yo + he Yo

denotes old values. A further modification to the way in which the non-linear equations are
solved is given by Petzold and Lostedt [9]. In this case, if the jth equation contains derivatives,
then the factor 2 h; 7, in p is replaced by 4,7y, and a scaling of p = 1 is applied to the algebraic
constraints.

An improvement to the above is to adopt the approach used in SPRINT[1], but select the
relaxation factors by the following procedure. The row(s) of the iteration matrix representing the
differential equation(s) are multiplied by h,Y, and the corresponding residual entry is multiplied
by hcY. . This is expected to lead to a faster convergence of the iterates. The system of equations
to be solved is then given by

-1 0 }'Y.)n - ¢ (tn)

[59)
1 ko) U

]

. ()
2hyY, he (yy,)n - y(ll,n)
hoYo + kY.

Zslﬂ-l) = Zg) + A' Zg) j B 1,2,3,...

y®P

YO + A"y

. By comparing the results in Tables 1 and 2a, a large improvement to the errors in y; for the
standard index two problem can be observed. Indeed, the algebraic equation is now satisfied to
within unit round-off error. It should be noted that although there is little improvement to the
errors in y, there is some improvement for the errors in y, and also a considerable reduction in
the amount of work performed, compared with DASSL [8]. However, the results show that the
maximum global error in y, is still well beyond accepted bounds.

2.2. Estimating the Local Error.

In DASSL [8], after convergence of the iterates has been achieved, the error estimates at ord-
ers k , k-1, k-2 are given by e = o’ (y, — y{) where the superscript p denotes the predicted
value and where o = o th,hy,hy, e , 7%) depends on the current stepsize, 4, and on the
previous k stepsizes at order k, In particular, at order one, the value of o is given by

268

Clearly, if [t,—; , 2,] spans a discontinuity or sudden change in gradient the error test can
always be satisfied in DASSL [8] at order 1, since the code can always select a small enough step
size. However o' does not have a convenient form for any of the higher orders. In contrast, the
error estimate used in the codes of Hindmarsh [7] and in the b.d.f. SPGEAR module of SPRINT
[1] is given by E=0 (y, — y,(,”)) where o is a constant which, at order one, has the value

e % In this case, if [t , ¢,] spans a discontinuity in y, it is not always possible to satisfy
the error test at order one.

The results in Table 2b show that a strong relationship exists between the number of error
test failures, the work done by the code, and the order selected. When the number of error test
failures is high, the code spends a long time at order one, taking advantage of the stability proper-
ties, but in order to achieve the required accuracy, the code takes many steps.

An alternative is to use only the error estimates that arise from the differential equations in
the system. The local error estimate, le, is now defined by le = M~ A e rather than le=¢asin
SPRINT [1], where M is the iteration matrix used in solving the non-linear equations, and A is the
matrix defined by equation (2). These equations are then solved by performing an LU decomposi-
tion on M, and using back-substitution.

Tables 2b and 3b show that with this modification to the local error estimate , the new code
takes advantage of the efficient high order methods. The number of error test failures has been
reduced considerably and there is a drastic reduction in the global error.

2.3. Stepsize and Order Selection.

Suppose that at order k, the estimates of the error at the orders one above and below are
denoted by e**! and e*!. Then in the order selection algorithm of DASSL [8], e*! , ¥, and
5"* 1, are replaced by A 5"'1 » A g" ,and A g"*’l respectively. This is expensive as it requires
three matrix-vector products, each of which costs "half'* an o.d.e. residual evaluation in the
SPRINT [1] software. However, this appears to be one of the few ways of ensuring that the code
selects the correct order. DASSL [8] also tends to make sure that || g"‘zll > || g"l |, to ensure that
the order selection algorithm does not force the code to stay at an unnecessarily high order. In the

case when this condition has been violated, the order is reduced whenever ||A e"'zll <||A _e_k I .

3. Conclusions and Recommendations.

In this paper and also in [2], a number of important issues concerning the design of an effi-
cient integrator for index two d.a.e.s. have been discussed. In particular, the strategies used in
both DASSL [8] and SPRINT [1] concerning the method of solution and scaling of the non-linear
equations have been mentioned. The experiments have shown that the form of the non-linear
equations used in SPRINT [1] works well, and that scaling of the equations is an important issue.
For this reason, the form of the non-linear equations as solved in SPRINT [1] is adopted with the
DASSL [8] convergence strategy. The numerical results have also shown that the formulation of

269

the local error estimate can have a major impact on the efficiency of the d.a.e. integration. There-
fore the local error estimate based only on the differential variables is adopted. To ensure that the
code selects the correct order, the strategy adopted is identical to that used in DASSL [8], except-
for an additional criterion based on the comparison of two matrix-vector products.

Applying these modifications has enabled an index two module to be constructed, SPDASL,
which can be used within the SPRINT [1] software. The results from this new index two solver
are given in Tables 4a and 4b. In fact, a comparison of the results in Table 4a with those in Table
1 shows an extremely large reduction in the work performed by the new code. Table 4b shows
that the order selection strategy has worked extremely well, allowing a large proportion of time to
be spent at a high order. The errors in y, have been reduced considerably, and the algebraic equa-
tions are better satisfied since the errors in y; have been reduced. This indicates a very large
improvement over the original code.

We have also tested our module on a dynamic simulation problem supplied by Shell
Research Ltd, and the preliminary results are encouraging [2].

Acknowledgements.

We wish to thank Shell Research Limited for permission to publish this paper and for fund-
ing the SERC CASE studentship for Andrew Preston. We are also grateful for the help that has
been given by S Frost and L Scales of Shell Research Ltd.

REFERENCES.

[1] Berzins M., Dew P.M.,, and Furzeland R.M. (1986), Developing P.D.E. Software Using The
Method of Lines and Differential Algebraic Integrators. High-lighted Talk presented at 1986
O.D.E. Conference, Albuquerque, New Mexico, July 1986 (to appear in Appl. Numer. Math.).
[2] Berzins M., Dew P.M., Preston A.J., (1988), Integration Algorithms for the Dynamic Simula-
tion of Production Processes, Report 88.20, School of Computer Studies, Leeds University, Leeds
LS2 9JT.

[3] Capstick M.A., (1987), On Improving the Performance of Dynamic Process Simulators, Ph.
D. Thesis, Departments of Chem. Eng. and Comp. Studies, Leeds University, Leeds LS2 9JT.

[4] Gear C.W., (1971), Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice Hall, Englewood Cliffs, NJ, U.S.A.

[5]1 Gear C.W., Petzold L.R., (1984), ODE Methods for the solution of leferenUal/Algebralc Sys-
tems, SIAM Journal on Numerical Analysis, 21, pp. 716-728.

[6] Gupta G.K., Gear C.W., Leimkuhler B., (1985), Implementing Linear Multistep Formulas for
solving D.A.E.s, Report UIUCDCS-R-85-1205, Department of Computer Science, University of
Illinois, Urbana IL61801.

[7} Hindmarsh A.C., (1981), O.D.E Solvers for use with the method of lines, Advances in Com-
puter Methods for Partial Differential Equations IV, R. Vichnevetsky and R.S. Stepleman, eds.,
IMACS, New Brunswick, NJ, pp. 312-316.

270

[8] Petzold L.R., (1982), A Description of DASSL : A Differential-Algebraic System Solver,
SANDS82-8637, Applied maths division 8331, Sandia National Laboratories, Livermore, California
C.A 94550. 2

[9] Petzold L.R., Lostedt P., (1983), Numerical solution of Nonlinear Differential Equations with
Algebraic Constraints, Report SAND 83-8877, SSISC, Sandia National Laboratories, Livermore,
California C.A 94550.

Authors’ Address.

School of Computer Studies, Leeds University, LEEDS LS2 9JT.

Appendix.

The tables below illustrate the results obtained for the numerical experiments. For the
standard index two problem, the initial conditions for the test problem are consistent with the
analytic solution. The column headings denoted by err y1, err y, etc., denote the maximum glo-
bal error (in y;, y2 etc.) that occurred over the interval [¢o , T] for all accepted steps using a
tolerance value TOL. The column EF denotes the number of error test failures and STEP the
number of steps taken by the integrator. CALL records the number of function evaluations for the
problem, not counting those used in the decomposition of the Jacobian. JAC is the number of
decompositions of the Jacobian and SOLVE denotes the total number of iterations incurred by the
non-linear equations solver. The number of steps taken at each of the five orders is also recorded.

Tab. 1 The standard index two problem using DASSL [8].

TOL err y, err ys erry; eIT y5 STEP CALL JAC SOLVE

0.5D-02 0.21D-03 0.92D-01 0.92D-01 0.90D+03 462 1504 521 1504
0.2D-02 0.31D-04 0.17D+00 0.17D+00 0.87D+02 608 2115 644 2115
0.1D-02 0.60D-05' 0.28D-01 0.28D-01 0.12D+04 908 3179 1376 3179
0.5D-03 0.26D-05 0.16D-01 0.16D-01 0.13D+03 4936 19381 7638 19381

Tabs. 2a,b The standard index two problem after modifications to the non-linear equation solver.

TOL eIy err y, err y; err ys STEP CALL JAC SOLVE

0.5D-02 0.00D+00 0.81D-01 0.81D-01 0.10D+04 331 ~ 1042 344 1042
0.2D-02 0.00D+00 0.33D-01 0.33D-01 0.59D+01 369 1278 509 1278
0.1D-02 0.14D-16 0.26D-01 0.26D-01 0.12D+03 1296 4841 2173 4841
0.5D-03 0.00D+00 0.95D-01 0.95D-01 0.27D+02 469 1298 399 1298

TOL ORD1 ORD2 ORD3 ORD4 ORDS EF
0.5D-02 259 32 28 12 0 176
0.2D-02 290 21 18 22 18 256
0.1D-02 1167 60 36 31 2 1108
0.5D-03 n 66 45 31 16 167

271

Tabs. 3a,b The standard index two problem after changes made to the estimation of local error.

TOL erry; err y; err y3 err yj STEP CALL JAC SOLVE
0.5D-02 0.00D+00 0.10D-01 0.10D-01 0.17D+01 66 141 11 344
0.2D-02 0.14D-16 0.67D-02 0.67D-02 0.62D+00 85 198 7 482
0.1D-02 0.14D-16 0.48D-02 0.47D-02 0.62D+00 95 218 7 532
0.5D-03 0.00D+00 0.22D-02 0.14D-02 0.40D+02 123 289 20 676

TOL ORD1 ORD2 ORD3 ORD4 ORDS5 FEF
0.5D-02 1 1 7 20 37 2
0.2D-02 1 1 15 7 61 10
0.1D-02 1 1 17 69 10
0.5D-03 6 12 11 14 80 14

Tabs. 4a,b The standard index two problem modifying the order selection strategy, convergence
strategy, and error test in the SPDASL module of SPRINT [1].

TOL err y; erry, err y; err ya STEP CALL JAC SOLVE
0.5D-02 0.31D-12 0.51D-01 0.18D-01 0.46D+01 73 291 10 201
0.2D-02 0.12D-11 0.27D-01 0.73D-02 0.43D+01 86 319 1 217
0.1D-02 0.88D-13 0.11D-01 0.54D-02 0.70D+00 99 347 11 232
0.5D-03 0.40D-13 0.41D-02 0.24D-02 0.21D+01 118 425 9 286

RTOL=ATOL ORD 1

ORD2 ORD3

ORD4 ORDS5 EF

0.5D-02
0.2D-02
0.1D-02
0.5D-03

e S " T T Y ey

11
1
1

12

15
17
22
23

13
24
22
19

33 3
43 2
53 1
63 5

