Applied Numerical Mathematics 5 (1989) 375-397

375
North-Holland
DEVELOPING SOFTWARE EF FOR ME_NEDEANDANT DRMADY TRAQ ¥ IQIRIM
BASE4 Y BJRINFE BELNSTF WINFR R VV/RESE, K WJAR R MIVARSRJIUN LVESELNE K RRUDLALIVEYS UDIING
THE METHOD OF LINES AND DIFFERENTIAT . ALGEBRAIC INTEGRATORS
M. BERZINS and P.M. DEW
School of Computer Studies, The University, Leeds, United Kingdom LS2 9JT
R.M. FURZELAND *
Thornton Research Centre, Shell Research Limited, Chester, United Kingdom
The method of lines is one of the most powerful tools for the solution of time-dependent counled ODE /PDE
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systems. The attraction of this method is that the complex sys of coupled ordinary and partial differential

equations arising in mathematical rrodelling can be solved by usmg the sophisticated software which has been

developed for initial value umerenlldl-dlgeordlc equations. The SPRINT software of Berzins, Dew and Furzeiand
[2] has been developed specifically for the method of lines. This software contains a selection of spatial

discretisation methods, time integrators and linear algebra routines. These components together with utlhty
routines for spatial remeshing and discontinuity detection form an open-ended “tool-kit” for the method of
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and development of algorithms and software which employs the method of lines.

1. Introduction

Tha onnrarm ennbans foaficzrnmas FAam oAl acas ¥vnt micama)l o o SEne P S
1€ SPRINT package {Soitware 10r PROpbiemS IN Time), is a gene l'pl.llpbbt: computer program
for the m....e.ncal sol"sxor\ nf mathernﬂii-:al models that wolve r 'veﬂ systems of time-dependent

ALIAMAE Sy Siviiid Vi uiuvtlavpivialavaie

s (ODEs and PDEs). The software is the
result of Jomt research between Shell Research Llrmted and the School of Computer Studies at
Leeds University. The aim of the research is to provide a flexible and open-ended software tool
to enable a user to solve a wide range of problems within a single framework. The design
philosophy is aescrloea in Berzins, ue and rurzelana i2].
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cater for these problems. The software package cons1sts f a set of well-defined and independent
modules that are controlled by a supervisory routine. The internal structure of the package
allows the individual modules to be easily replaced and in this way the user has access to
different combinations of modules from the three main component areas in the package—the
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methods for PDEs in one space dlmension.
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The paper provides an overview of the SPRINT software and discusses the difficulties in writing
such general-purpose software. In particular, the conflicting requirements of developing an
open-ended software architecture while providing a concise user interface are partially resolved
by providing two main levels of user interface. These interfaces—a general low-level interface
which permits the mathematical modeller to have a high degree of flexibility and a high-level
interface, named SPRITE, which allows the user easy access to a fixed range of package
options—are briefly described in the paper. Further details of the interfaces can be found in [4].

General-purpose software which is based on differential-algebraic equations integrators re-
quires the provision of a number of features which are not needed in standard ODE integrators.
The sPRINT software offers the user a range of options for solving differential-algebraic
equations. In order to use the software eificiently the user needs to be aware of which options are
important for the solution of such equations. The two options described here are a method for
the estimation of the initial values of the solution and its time derivative and a local error
estimator.

The general applicability of SPRINT has led to many uses in mathematical modelling in the
petrochemical industry. We shall use two examples of such models to illustrate the flexibility of
the present software and to consider the requirements of future software.

A large prcblem class of interest is combustion modelling, in which fluid dynamics plays an
important role in determining temperature and concentration distributions. In this case the
mixed PDE/DAE system is of the diffusion convection reaction nature. These models are used
to study the efficiency of combustion both in combustion burners and in internal combustion
engines with spark ignition and/or fuel injection. The models also provide diagnosis of hazard
conditions e.g. auto-ignition along hot surfaces, and can be used to simulate situations which
would be too hazardous to perform experimentally. The flexibility that the software must have to
efficiently solve such problems is illustrated by applying some of the options within SPRINT,
including spatial remeshing, to a simple model of flame propagation in a combustion chamber.

Another in.portant application area is two-phase fluid flow in which problems such as
vapour-liquid evaporation and condensation arise, e.g. bubble growth or collapse in liquefied
natural gases. A simplified model of bubble collapse will be used to illustrate the complex nature

of such applications and to show the areas in which the SPRINT software needs to be improved to
solve such problems reliably.

2. An overview of the SPRINT software
2.1. vifferential-algebraic equations problem class

The core of the software package is a versatile set of differential-algebraic integrators with the
flexibility to deai with stiff or nonstiff DAEs coupled with algebraic equations and full, banded
and sparse Jacobian matrices computed analytically or numerically. Each integrator is designed
to solve the class of ODE initial value problems defined by

f(p,y, )=2(y,t)—A(y, t)y=0 (2.1)
with the initial condition

y(0) =K. (2.2)
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The square matrix 4 may be singular indicating a differential-algebraic system of equations. In
the special case when A4 is the identity matrix equation (2.1) is said to be written in normal form.

The advantage of the problem class defined by (2.1) over fully implicit ODE problems is that
equation (2.1) is linear with respect to the time derivative, i.e.

af/oy=—A(y, ). (2.3)
This means that the user interface in the software only requires the definition of the matrix-vec-
tor product —A( y, t)p. It is then possible to provide codes based upon (say) the backward
differentiation formulas or the theta method of Prothero and Robinson [26] which are almost as

efficient as those for normal form problems. This is because there is no need to calculate and
store the matrix df/dy.

2.2. Solving differential-algebraic equations by calling the SPRINT driving routine

In order to solve differential-algebraic equations by calling the SPRINT driving routine the user
is required to write a FORTRAN-77 program. The SPRINT driving routine is open-ended in that it is
largely independent of the time integration and linear algebra routines. This allows extra routines
to be added as the need arises without modifying the SPRINT driving routine and provides the
user with a choice of linear algebra and time integration routines. The different parameters
required by these routines makes it difficult to design a single interface that can deal with all the
different possibilities. The solution adopted in the softwarz is to have setup routines for the
linear algebra and the time integrator (and for the PDE routines discussed in Section 2.7).

The alternative is for the user to call the SPRITE routine, described below in Section 2.8, which
calls the setup routines with default values for the parameters and then calls the SPRINT driving
routine. Although this option is suitable for many users there is inevitably some loss of
flexibility. For instance Section 3.3 provides an example of an error estimate option that is
specified in a call to a setup routine and which the user may require when solving differential-al-
gebraic equations but which may not be needed for ordinary differential equations.

The greatest flexibility is obtained when the user writes a program which calls the SPRINT
driving routine directly and consists of the following:

(i) Initialisations of the parameters to be passed into the SPRINT driving routine.

(ii) Calls to the linear algebra module setup routine and the DAE integrator setup routine.

(iii) A RESID routine (see Section 2.3) that describes the form of the differential-algebraic
equation and also provide an optional MONITR routine. The MONITR routine is callzd after each
step taken by the integrator and gives the user the opportunity to perform intermediate output or
calculations. Alternatively MONITR routines are provided for tasks such as the estimation of the
global error, discontinuity handling, spatial remeshing and parameter sensitivites.

(iv) A call to the SPRINT driving routine to perform the integration. This call specifies the
names of the time integration module, LU decomposition and backsubstitution routines, RESID
routine and the name of the MONITR routine.

The structure of the user’s calling program and of the underlying SPRINT software is illustrated
in Fig. 1. The diagram reflects the novel internal structure of the software in that the time
integration module, the nonlinear equations solver and the problem description routines are
quite separate and communicate with each other owly through the main driver using the reverse
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Setup routine for p.d.e.
discretisation module
(P.D.E. problems cnly)

Setup routine MATSET
SMTSET or SPANUF for the
linear algebra module

I

USER'S CALLING PROGRAM

Setup routine BDFSET,
THESET, THBSET, BLDSET
for 0.D.E. integration

SPRINT driving routira
including input clecks,
general time management
scheme and non-linear
equations solver that
can be accesseda by all
the other .modules. All
module camunication is
performed through this

Time STEP integration

RESID ~ definition of
implicit o.d.e. residual
possibly by calling pde
space discretisation
routines or by the user
writing his own semi-

routine. discretisation in here

MONITR routine for
possible interrupts at
the end of every timestep

Linear algebra routines
JACFRM and BACKSB to form
and LU decampose the

Jacobian wmatrix.

Fig. 1. An overview of the SPRINT package.

communication approach described by Berzins, Dew and Furzeland [2]. In practice low-level user
programs are built up from example programs such as those supplied with the software [4].

2.3. The RESID problem description routine

The user-supplied RESID routine defines the system of differential-algebraic equarions to be
solved. The integrator supplies approximate vectors for the solution and its time aerivative, y
and y. The main purpose of the RESID routine is to compute the residual vector r which is

obtained by substituting the vectors y and y into the DAE system that is being solved. Le. for
(2.1),

r=g(y,t)—A(y, 1)y (2.4)

It is also required that the y-dependent parts of the residual can be computed by a call to RESID
and also returned to SPRINT via the vector r, i.e.

= _A(y’ t)j" (25)

One of the parameters that SPRINT passes into the RESID routine is the integer IRES; if this is
set to 1 then the user must supply the form of the residual defined by equation (2.4), and if it set
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to —1 equation (2.5) must be used. Sections 3.2.1 and 3.3 below provide instances of cases when
the RESID routine is called with IRES = —1. The integration may be interrupted by the user
changing the value of IRES in RESID to force the integrator to either stop the integration, reduce
the time-step to avoid a physically impossible solution value or to terminate the current step and
enter the MONITR routine.

The form of RESID required is:

SUBROUTINE RESID (NEQ, T, Y, YDOT, R, IRES, WKRES, NWKRES)
INTEGER NEQ, NWKRES, IRES
DOUBLE PRECISION T, Y(NEQ), YDOT(NEQ), R(NEQ), WKRES(NWKRES)
C THE ARRAY WKRES(NWKRES) IS A USER-DEFINED WORKSPACE
IF (IRES.EQ.- 1)
THEN

...for I =1,NEQ set R(I) to be the second form of the residual, as in equation (2.5). Note if
no time derivatives are present in the Ith equation then set R(I) = 0.0D0.
RETURN
ELSE
...for I=1,NEQ set R(I) to be the full residual. as in equation {2.4)
RETURN
END IF
END

2.4. DAE step integration modules

The first release of the package contains four DAE step integrators all of which are capable of
solving DAE:s of the form (2.1). These are:

(i) The sPGEAR module which implements both the family of Adams’ methods up to order 12
and the family of backward differentiation formula (BDF} methods up to order 5. This module
was developed from the LsoDI1 code of Hindmarsh [18], but includes a modified step size/order
selection algorithm (based on [22]) which improves the performance of the code on the type of
ODEs discussed by Gaffney [16] (see Berzins [7]).

(ii) The STHETA module, which is based on the theta method codes of Prothero and Robinson
[26] and Chua and Dew [11}, is a stiff integrator designed for low to medium accuracy
requirements.

(iii) The STHETB module which is a type-insensitive (stiff/nonstiff) Theta method code for
problems with variable stiffness during the course of integration (see Berzins and Furzeland [6]).

(iv) The SBLEND module is also designed to cope with botlh stiff and nonstiff equations by
blending the formulas in the SPGEAR code in the manner of Skeel and Kong [29]. This results in
formulas with better stability regions than BDF formulas.

Prior to the first call of SPRINT a corresponding setup routine must be called for each of the
integrators. The ease with which integrators can be changed encourages the user to cxperiment to
see which is best suited to the problem. Although we have found that all these modules perform
well on all the differential-algebraic equations that we have encountered in practical applications
we have since found that none of the codes is particularly successful on the index-2 differential-
algebraic equations discussed by Gupta, Gear and Leimkuhler [17].
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2.5. Linear algebra modules

All the time integration methods above are impl: :it methods and so at each time step a system
of nonlinear equations must be solved, usually by a variant of Newton’s method. This means that
a system of linear equations must be solved at each iteration. The sparsity pattern of these
equations may vary from being completely full to very sparse. This is taken into account by the
full, banded and sparse linear algebra routines in SPRINT. For each type of Jacobian matrix the
matrix handling is split into three routines—a setup routine for validation of inputs, a
lower /upper decomposition routine, and a backsubstitution (solution) routine.

The subset of full and banded matrix LINPACK routines [13] and the Yale sparse matrix
package (YsMP) of Eisenstat et al. [14] as used in the LsOD* integrators of Hindmarsh [18] and
the MA28 sparse matrix routines of Duff as used by Berzins, Brankin and Gladwell [8] are
implemented in SPRINT. Before the first call to SPRINT the common setup routine (MATSET) for the
full and banded matrix routines must be called. Alternatively, before the first call to SPRINT the
sparse matrix setup routine SMTSET for the Yale routines or SPANUF for MA28 must be called. In
both the sparse cases the user can force the sparsity pattern to be automatically updated by a call
to an auxiliary routine and can also obtain diagnostic information about the sparse Jacobian
matrix.

2.6. Pariial differential equations problem class

In the method of lines the partial differential equations are spatially discretised over NPTS
points using finite difference, finite element or collocation methods. This discretisation results in
a system of NPTS nonlinear, coupled DAEs for each given PDE and provides a unified approach
to solving mixed systems of DAEs and PDEs. The SPRINT software provides routines to spatially
discretise PDEs with one space dimension. However, no SPRINT routines are available for
probiems in two or more space dimensions and in this case the user must supply the discretisa-
tion.

In the case of one-space-dimensional problems it is expected that most users of SPRINT will use
the system routines to perform the spatial discretisation. This involves writing a few simple
subroutines to describe the PDE in terms of a master equation format given by

NPDE du,
,;1 G, (x,t,u, u, D)W +0,(x, 1, u, u,, v, 0)

= x %(x'”Rj(x, t, u, ux,'v)),

j=1,...,NPDE, (2.6)

where m is an integer (usvally m =0, 1 or 2) which denotes the space geometry type, and the
dots denote time derivatives. The vector v and its time derivative © are assumed to be defined by
a coupled ODE system (see equation (2.8)). The vector u(x, t) is defined by

u(x, t)= [ul(x, t),..., unppe(x, t)]Ts

the vector u,(x, t) is similarly '=fined, The function R ;( ) can be thought of as a flux which is
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used also in the definition of the boundary conditions. For the jth PDE the boundary conditions
have the form:

B()R,(x, t, u, u,, v)=v,(x, t,u,u,0v,d). (2.7)

f(v, ©, & u*, uf, R*, u}, uy)=0, (2.8)

where this system of equations is assumed to be linear in the derivatives ©, u* and u¥. The
arrays

* % % % %*
u*, uy, R*, u}, uj

are all of dimension (NPDE, NXI) and hoid the solution, flux and derivative values at the array
of NXI coupling points § which are a set of NXI distinct points defined by

a<§ <§< -0 < sbh.

These coupling points are independent of the spatial mesh points used by the spatial discretisa-
tion routines.

This choice of problem class was influenced by the work of Schryer [28] who shows that
multi-phase PDE problems and PDE problems with coupled moving boundaries can all be
formulated as coupled systems of ODEs and PDEs. The problem class described above is more
restrictive than that of Schryer [28] as we wish to ensure that the ODE system is of the form of
equation (2.1). An example of the broad range of probleins that fall within this problem class is
provided in Section 5.

2.7. The SPRINT spatial discretisation routines

There are currently two discretisation modules in the software: SPDIFF, a lumped finite
element method developed by Skeel and Berzins [30] and SGENCO, the C° collocation discretisa-
tion of Berzins and Dew [3]. Each of these modules has a setup routine which performs the
initialisation tasks and which must be called before the SPRINT driving routine is entered. The
three other main components are the RESID routine discussed above, the MONITR routine that is
called at the end of every time step and an interpolation routine that can be used to generate
extra solution values after the required output time has been reached.

The sppIFf discretisation method is analogous to the usual central, three-point finite dif-
ference formula for problems in Cartesian coordinates. However, for problems in polar and
spherical coordinates the three-point formula is suitably modified to maintain second-order
accuracy. An option is provided wiihin this module to allow the user to adaptively vary the space
mesh in time (see Section 4).

The collocation discretisation module SGENCO offers a famiily of high-order formulae based on
Chebyshev polynomials. The user can select the order of approximation to be used and also
whether the approximation to the solution of the PDE consists of one global polynomial or of a
piecewise polynomial. It is necessary to define the degree of polynomial (> 1) used to approxi-
mate the solution between the breakpoints. The formulae ensure that the solution possesses only
C° continuity at each breakpoint regardless of the degree of polynomial used. The power of the
collocation method, however, lies in the ability to use high-order polynomials and there is no
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pre-set upper limit to the degree of polynomial that can be used. The uscr interface to this
1outine is almost identical to that of the finite difference module; however, no adaptive space
mesh opticn has yet been developed.

In order to use the spatial discretisation routines the user has to perform a similar set of
operations to those needed for solving ODEs except that:

(i) An initialisation routine must be called for the spatial discretisation module.

(i) It is no longer necessary for the user to provide a RESID routine or a MONITR routine.

(iii) The user must provide one routine to describe the PDE (equation (2.6)), one routine to
describe the boundary conditions (2.7) and one (optional) routine to describe the coupled ODEs
(2.8) (if any). In addition routines for initial conditions of the PDE variables and a routine
(optional) for the ODE vanables must also be provided.

(iv) In the case of the spDIFF finite difference module when spatial remeshing is being used a
routine must be provided to describe the form of the remeshing indicator (monitor) function and
also a remeshing setup routinz must be called.

In practice user programs for PDE problems are built up from a catalogue of example
programs supplied with the software [4].

2.8. The SPRITE interface

SPRITE is an “‘easy to use” high-level interface routine to the SPRINT driving routine which
avoids some of the setup calls and is thus more in line with standard library packages such as the
NAG Library. The routine contains the setup calls for the linear algebra routines and the time
integrators as well as the call to the SPRINT driving routine itself. This allows the routine to be
used as a high-level FORTRAN interface to the software but has the disadvantage that the default
parameters used in the setup calls inside SPRITE may not be suitable for all applications. A
companion routine for initialising PDE setup routines (SETPDE) is also provided to allow SPRITE
to be used for PDEs. Appendix A contains a skeleton driving program which shows how
straightforward it is to solve the exemple PDE in Section 5 using SETPDE and SPRITE. It is
expected that once users have become familiar with using SPRITE they will make use of the
greater flexibility provided by the low-level interface and call the SPRINT driving routine directly.

3. Practical aspects of using SPRINT to solve DAEs

In order to help the user cope with the particular difficulties that may arise in trying to solve
differential-algebraic equations a number of options and features within SPRINT have been
devised which may help the user. In this section two of these features are described as follows.
The general form of the equations that are solved within SPRINT is described and this description
is used to help explain two cptions available in the software which the user must be aware of

whgn solving differential-algebraic equations. These are the method of initialising the integration
and the method of estimating the local error.
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3.1. The nonlinear equations solved in SPRINT

The implicit time integration methods used in SPRINT all approximate the time derivative at a
given time ¢, by

t —
t")=g£,;1_)y__z’ h=t,—t,_,. (3.1)

¥
where the vector z depends on solution values at previous times and the constant y depends on
the integration method being used. For all these methods the following system of nonlinear
equations has to be solved at each time step for the new solution vector y.

—hv[g(y, t,) —A(y, t..)(—J—%,—z-)-] =0. (3.2)

The algorithm used in SPRINT to solve this system of equations is based on our practical
experience of solving differential-algebraic equations and on the theoretical justification pro-
vided by Petzold and Lotstedt [25]. In the case when algebraic equations are present in (2.1) one
or more of the equations may not depend upon any of the time derivatives. In this case the
equations of the system (3.2) should not be multiplied by — Ay as is normally done [25]. This row
scaling procedure is implemented by defining a vector d in the following way:

d.=

1

{ 1, if the ith equation contains a time derivative,
0, otherwise.

The use of this vector enables us to treat the algebraic equations more efficiently when soiving
the system of equations (3.2). The ith equation of (3.2) can then be rewritten as

[— gAi,j(y(t)9 t)‘(—yjh_y—zj) +gi(y7 t)|(=hyd;—1 +di) =0. (3.3)

The indicator array, d, is checked periodically throughout the integration to ensure that the
equations have not changed from beir.,, algebraic to differential or vice versa. This is not
expensive as we only have to determine which of the equations do not depend upon any of the
time derivatives. In the case when the matrix A( y, ¢) is singular but has no empty rows, no
algebraic equations are isolated and the procedure reduces to that used by Petzold [22].

The system of equations (3.3) is solved by using the modified Newton’s method used by most
stiff ODE integrators (see Shampine [27]). The (i, j)th component of the Jacobian matrix, J; ;, is
then defined by

w M vz 1 ag;
==y S ——A,; + ==L (—hyd, +1—d,). 3.4
Jn] kgl ay_, h'Y h.YAtj(y’ t) ayj ( Y i l) ( )

Further details of how the Newton method is implemented are provided by Berzins et al. [7].
3.2. Calculating the initia! values and starting integration
The difficulties encountered in estimating the initial values of differential-algebraic equations

are documented by Gupta, Gear and Leimkuhler [17]. In particular the user-supplied ir.li.tial
values may not satisfy the algebraic equations and all the time derivatives may not be explicitly
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defined as the matrix A( y, t) in equation (2.1) may be singular. The need for good approxima-

tions to the initial solution values and their derivatives is so that the integrator can move away

from possibly inconsistent initial values as smoothly as possibie. in this section we shail describe
) e th
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The approach used by Dew and Walsh [12] was to calculate the initial values of the algebraic
part of the differential-algebraic system of equations separately. This approach is only applicable
when the equations can be clearly split into an algebraic and a differential part, as when the
matrix A y, t) in equatlon (1_ 1) has linearly dependent nonzero rows. An aiternative approach
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by using a damped Newton method The obwous dlsadvantage of thi rocedur that the
derivative va'ues for the algebraic components (and possibly some of the dlfferenual components
also) will contain errors of O(1/h), where h is the stepsize, when the initial values of the
algebraic components are in error. In addition in the case when the matrix 4 in equation (2.1) is

smgular but has no zero rows it may not be clear which are the “differentiai” components and
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I

3.2.1. The SPRINT initialisation algorithm
Practical experience with the class of problems handled by SPRINT has suggested the following

algorithra. In the first instance an attempt is made to use functional iteration io compute the
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backward Euler method. On =ach step the system of equations for both the unknown solution
(and derivative) values is solved by using a damped Newton iteration. The local error is
estimated on]v on the second step so as to allow for the case when inexact initial values are

this iteration fails to converge the procedure adopted is to take two equally small steps with the
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the sum of the corrections to the initial values. In the

case when the initial values do not satxsfy the algebraic equations the solution and derivative

values obtained for the algebraic components are again in error on the first step by a factor of

0(1 /h). At the end of the second step all the solution values should be correct as should the

derivatives, uniess me index of the DAE system is tw or more [17].
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whe:e the vector f( y. p, t) is defined by (2.1) and d, is the indicator array used in (3.3). This
step may be explained as follows. Partiticn the vecte < y in (2.1) into two component, U and V
so that equation (2.1) can be writien as the pair of equations

A(1)U=g (U, V, 1) (3.7)
and

0=g,(U, V,1), (3.3)

where the matrix A4(¢) may be singular. Equation (3.5) may then he written as

[A(z)—hag,/au —hdg,/dr U]~
o=

dg,/dU 0g,/oV

The subtraction of the O(h) term hA(r)U from the right side of the top equation turns equation
(3.9) into an equality that may be derived by differentiating equations (3.7) and (3.8) in time. The
first-order backward Euler approximation used to calculate U in the right side of equation (3.9)
also leads to an O(h) error, i.e. hU. The error in estimating the derivatives y by using the
method of equation (3.5) could thus be expected to be O(#). However, it 1s straightforward to
construct index-2 DAEs for which the inverse of the J matrix has entries of O(1/4), thus leading
to O(1) errors in y. In this case the main function of the extra step is to try and filter out
excessively large initial values caused by inconsistent initial values being supplied.

The cost of the extra step defined by (3.5) is two function evaluations to form the vector f
defined by equation (3.6), “half” a function evaiuation to calculate A(z)U by calling the RESID
routine with IRES = —1 and one backsubstitution using the already factored Jacobian m-trix.
This procedure extends naturally to DAEs of the form of equation (2.1) and is also used when
integration is restarted after several convergence or error test failures on a single step.

A(t)U + hdg, /31 — h(a4/at)t]]

3.9
—0g, /0t (39)

3.2.2. Initialisation example

We shall now use the second example problem of Dew and Walsh [12] to illustrate the effect
of varying the w.ay the initial values are calculated. The problem consists of the following pair of
elliptic-parabolic PDEs:

19 (,0u)_, [ . v
75;(1"5;)-4&(04‘)‘8’)

and
dgv 1 0 ( dv
—_ 2\ = e

(1-r )at r ar(’ar rvu),
where (r, t) €[0, 1] X [0, 1] and the boundary conditions are given by

u= 9 _ 0 atr=0

ar

and

%(ru)=0, v=0 atr=1.

The initial conditions at ¢ = 0 are given by

u=2ar, v=1 for re [0, 1].
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Table 1

Initial step taken for Dew and Walsh problem

Initialisation method /Tol 0.1d-2 0.1d-4 0.1d-6
Two backward Euler steps wi:h filter 0.287d-7 0.179d-10 0.489d-13
Two backward Euler steps only 0.349d-7 0.137d-8 0.125d-10
One backward Euler step with filter 0.241d-8 0.480d-12 0.821d-15
One backward Euler step only 0.585d-8 0.237d-10 0.602d-12

The problem was integrated using the SPGEAR integrator and using the SPDIFF spatial
discretisation. The value a = 1 was used in the problem definition. A mesh of 81 points was used
with the circular mesh spacing employed by Dew and Walsh [12] to cluster the points towards
the right side of the spatial interval. One difficulty with this problem is that the time derivative of
v at the mesh point closest to the boundary is of O(—1/Ax?*) which has a value of about —10’
where Ax is the mesh spacing between the two rightmost mesh points. This means that both the
algebraic (elliptic) and ODE (parabolic) components change significantly over the first step
which is being used to calculate the initial values. In Table 1 we compare the size of the first time
step successfully taken for this PDE. Tol is the relative error tolerance and was used in
conjunction with an absolute error tolerance of 0.001 Tol. Table 1 shows that for a range of
tolerances when the filter is not used the use of two backward Euler steps results in a larger
initial stepsize being used tnan if a single backward Euler step is used, as in [7,22]. This has been
confirmed on a number of other test problems. Although the filter is not beneficial in this case
there are contrasting examples of problems for which the use of the filter results in a much larger
stepsize being used regardless of whether one or two backward Euler steps are used. It is for this
reason that we have included the filter as an option in SPRINT. Regardless of whether or not the
filtered derivatives are adopted as the derivative values the norm of the filtered derivatives is
used in the algorithm to automatically select the initial stepsize.

The comments in Section 2.3 also apply to the initialisation procedure. Although the
procedure works well for differential-algebraic equations of index 1, the same cannot be said
with confidence for index-2 problems. The development of an efficient and accurate general-pur-
pose technique for determining the initial values of differential-algebraic equations is an
outstanding research problem (see e.g. Leimkuhler, Petzold and Gear [20)).

3.3. Choice of local errcr estimate

The second option that the user must be aware of when solving differential-algebraic
equations is concerned with local error estimation. The option is provided by the setup routine,
named BDFSET, to the SPGEAR time integration module. Petzold [23] has shown that for some
differential-algebraic equations of the type of equation (2.1) it is essential to modify the usual
local error estimate vector of the backward differentiation method of order k, denoted by e*, by
solving the system of equations

Jeqew =(A(y, t)e*) (3.10)

for the new estimate of the error, ef,,. This estimate is relatively expensive because it involves
part of a residual evaluation with IRES = —1 (with e, substituted for y, see Section (2.2)) to
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evaluate the matrix-vector product A( y, t)e* and a backsubstitution using the LU factors of the
Jacobian matrix J as defined by (3.4). It is because of this computational expense that the
estimate is provided as an option in the setup routine BDFSET. Although the extra overhead of
this error estimator does not sometimes appear to be computationally worthwhile, it is not
difficult to find situations (e.g. see Petzold [23]) in which this error estimator is crucial to the
success of the integration.

It should be noted that the other time integration methods used in SPRINT automatically have
error indicators of the type defined by equation (3.10) (see Prothero and Robinson [26] and Skeel
and Kong [29]).

4. Spatial remeshing using the MONITR routine

An important feature of SPRINT is the capability to handle both discrete and continuous
remeshing schemes. After each ~tep taken by the SPRINT integrator a routine, generic name
MONITR, is called which allows the user to perform intermediate output or calculations (e.g. the
integration may be restarted, the stepsize changed and the residual defined by equations (2.4) or
(2.5) calculated). The unique feature of the MONITR routine is that it has the power to access the
whole of the nonlinear equations solver in SPRINT. The MONITR routine was designed for tasks
such as ODE global error estimation, discontinuity detection and discrete time remeshing. In
discrete remeshing a new mesh is created at certain times in the integration (based on the current
solution profile), the solution and its time derivatives are interpolated onto the new mesh and
then the integration continued.

The SPDIFF discrete remeshing option was developed by Furzeland [15]. The user calls a setup
routine to define when remeshing should take place and supplies an auxiliary subroutine that
specifies the particular aspect—the remeshing monitor function F, (x, u)—of the solution
behaviour that he wishes to track. This function typically depends on the solution « and its space
derivatives and may represent a measure of the spatial discretisation error. Using this monitor
function as a guide, the remesh routines apply the ideas of Kautsky and Nichols [19] to construct
a new mesh at the current time step which satisfies certain sensible criteria on the space mesh
sizes and adjacent mesh ratios. The user interface to the monitor routine provides the user with
solution values at mesh points, the mesh points and with flux values haifway between the mesh
points. This provides sufficient flexibility in defining the function that dictates the shape of the
mesh.

In order to supply the user with sufficient flexibility with regard to when spatial remeshing
should take place the user can specify the following options through the setup rouine.

(i) Specify remeshing after a fixed time interval.

(ii) Specify remeshing after a fixed number of integrator time steps.

(iii) Specify remeshing only if remeshing will move one mesh point by more than a given
fraction of the old mesh spacing at either side of that point. This means that a possible new mesh
must be computed after every time step or after a fixed number of time steps.

(iv) Use a fixed or variable number of mesh points. In the case when the number of points
does not vary certain mesh points can be specified as fixed and are not changed by remeshing.

(v) Put a bound on how closely the monitor function is equidistributed by the new mesh.
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Once it has been ascertained that remeshing should take place and the remesh routine has
determined a new mesh the MONITR routine uses complete cubic spline interpolation to
determine the solution, its time aenvanve and any other higher time aerlvauves used Dy

bemg mtegrated in time, is changed by the remeshmg routine. In thlS case it is necessary to
recompute the Jacobian matrix before integration can continue. Once the linear algebra routines
have been initialised a change in the number of equations will automatically cause the initialisa-

tion process to be restarted. it is not necessary to restart the mtegrauon at the current ume
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not necessarlly the most efficient approach.

4.1. A test problem to illustrate remeshing and the flexibility of SPRINT

This flame propagation test problem arises from the modelling of the onsci of ignition and
cnnhcannant ame nrnnannﬁnn af a nraomived fmel Z7air mivture The cimnlified Aana_dimencinnal
ouuo\«\iuwllt AlCALAANY Plvyu&ullvl Wi l.ll\‘ ALARIAWwNS lu\il/ a1 RARANLUL Ve 2 LAINY allllyllllvu, /1AW WBllllwviiloIviidlL
model presented by Furzeland [15] results in two coupled partial differential ec_ll_la_tions for the
temperature, W, and mass fractlon (concentration). V, of the single species undergoing ignition,
viz,

,
v oV V. K(W)
ot Jx? i,
aw  9°u K
+ V- |74
= (W)
S K VI _ 1A MI-1/(W+01) ™
WIETE AW ) = 14.0 € ”. The initial and Dounaary conditions are:
W(x,0)=0, V(x,0)=1, 0<x<10
w_ 0 at x=0,10
dx
ow [ —1/0.05 0<1r<0.05, ~
_ = at x=40
dx | —cos(m(r—0.05)/1.9), 0.05<t<3.08
aw
— =0 at x=10.
dx
The qu 1estion of interest is what snark ionition strenoth as madellad hy the haat innut at
vvvvvvvvvv Spain 1g2 1on Uliviigiil, ao ivuviIiva v IV lIval 1puLr at

x =0, is needed to ignite and maintain flame propagation.

A space mesh of 41 equally spaced points is used along with the sPDIFF discretisation. This
gives rise to a system of 82 ordinary differential equations in time which are solved using a local
error tolerance of 10™* and a mixed error test. The numerical resul:s given in Table 2 compare

PR VO T B
the theta codes STHETA and STHETB with the backward differentiation module SPGEAR. In the case
of sPGEAR the maximum order of the method ecified in the

tne metnod, as specified in the setup routine, was restricted to
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Table 2
Integrator statistics for the flame problem
NPTS Mesh Method Steps FUN JAC CPU ModCPU
STi{ETA 105 381 17 294 4.26
41 Fixed STHETB 124 385 8 1.97 3.31
SPGEAK 104 435 24 326 4.68
Adapt/ STHETA 139 639 40 1.48
15 Forced STHETB 144 680 30 1.55
Jacob. SPGEAR 154 770 49 1.74
STHETA 137 454 17 1.11
15 Adaptive STHETR 176 570 15 1.34
SPGEAR 157 536 25 1.37
STHETA 149 517 19 2.63 4.85
41 Adaptive STHETB 159 567 22 3.10 5.49
SPGEAR 141 553 25 2.76 5.02

3 so that the storage overhead of the three integrators was identical. In Table 2, ModCGPU is the
CPU time using the IBM FortVS compiler and CPU is the CPU time with the optimising switch
OPT(2) on the same compiler.

In the fixed mesh case the switching code STHETB is more efficient than the STHETA code
because it only needed to switch to the Newton method when the boundary condition at x =0
changes at t=0.05 and switched back to functional iteration at ¢t = 0.66. The Newton method
was used from ¢ = 1.0 until the end of integration.

Furzeland [15] has shown how this problem can be solved more efficiently by using the
discrete remeshing approach to adapt the spatial mesh every four time steps by using the monitor
function

2w
0x?

o
9x?

F;,,(x, v, W) =

This procedure results in a much smaller minimum mesh spacing if 41 spatial mesh points are
used than the equispaced mesh used earlier. Figure 2 shows typical meshes and solution profiles
at times 0.3 and 1.0. The stiffness of the ODE system integrated is proportional to 1/Ax;Ax;
where Ax, is the mesh spacing between x; and x,, . The value of this ratio for the fixed mesh of
spacing 0.25 is 16 and the maximum value for the adaptive mesh is approximately 500. In order
to keep the minimum mesh sizes comparable we use an adaptive mesh of 15 points which results
in a minimum space size of 0.085 at about 7 = 0.5 and 0.24 at later time.

The results for the adapiive mesh version of the problem are shown in Table 2 under the
heading “Adapt/Forced Jacob.”. In this case the Jacobian matrix was re-evaluated after
remeshing. The increased stiffness results in the STHETB code switching to the Newton iteration
at ¢t =0.015 due to the failure of functional iteration to converge. At a later time, ¢ = 0.66, the
code correctly takes advantage of the decreasing stiffness of the problem by switching back to
functional iteration when the minimum mesh size starts to increase. A final switch back to the
Newton method is made about = 1.0.
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Fig. 2. Temperature () and concentration (V') profiles at 1 = 0.3 and 1.0.

The alternative approach of not re-evaluating the Jacobian matrix after the remeshing
algorithm is called gives the results in Table 2 under the heading “ Adaptive”. This shows that for
this particular problem the most efficient strategy is not to re-evaluate the Jacobian until this is
deemed necessary by the DAE integrator. Using this strategy we can now compare the overhead
of remeshing by using 41 mesh points, adapting the mesh and only re-evaluating the Jacobian
when necessary. The bottom entries in Table 2 show that an important feature of the method is
that the extra computational cost when compared to the fixed mesh approach is about one third.
It should also be noted that using the optimising compiler the adaptive mesh option executed
more quickly than the fixed mesh option. This unexpected result has been traced to the effect of
the optimising compiler on the SPDIFF discretisation module.

Despite the encouraging results that we have obtained with this remeshing scheme it should be
noted that the discrete time approach may not be suitable for hyperbolic problems with shocks
where space-time characteristic information is important. In this situation, even if discrete
remeshing is performed at every time step, the mesh will lag behind the shock wave. For such
problems the continuous remeshing approach, as typified by the moving finite element approach
of Miller and Miller [21], has proved more effective (see Furzeland [15]).

5. A bubble collapse problem

This section provides an example of a complicated problem that has been soived very
effectively using the SPRINT software. The solution of this problem also serves to indicate some of
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the areas in which the software could be improved. A simplified model of the collapse of a
vapour-filled bubble contained in liquid consists of the following two PDEs and eight ccupled
differential-algebraic equations. Let v(y, ) be the temperature inside the bubble of radius s(¢)
where 0 <y < s(¢) and suppose that the bubble is contained in a liquid whose temperature is
w(y, t) where y > s(¢). On applying the transformation,

ﬁj for 0 <y <s(t),
X =
f-(yi)- for y > s(t),

the PDE:s for v(x, t) and w(x, t) are

( v 2 AN a{xzav .
P )s() G + (70 =x5) 32| = S5 2| 5 52| + B (1)
ow ow 1 0 (x* ,ow

2O (3 217 LW L 9 X7 40w

s (t)( 5 (6x3 — x2U,, — x5) ax) 2 { D, ox }, (5.2)
where

v(1, ) + 3.664
=~ D,= = . = . .

D,=~18600, D,=205, =95, p(v(x, () ”4uu,o+1w4} (5.3)
The boundary conditions are given by

v dw

5}——&—0 at x=0, v(1, t)-—w(l,t), (5.4)

ow ov . — - 5

x +O'04_5; +5(t)p, (5 —Uy) 136.58=0 at x=1. (5.5)

The condensation rate m and the collapse rate of the bubble S (where S = §) are connected by
the relationship

3IS + Is(t) — m(t) 1002 =0 (5.6)

where I(?) is the integral of the function p(v(x, t)) (see (5.3)) as approximated by equation (5.9)
below. The position of the bubble wall, s(¢), is governed by a second-order ODE which is
written as a pair of first-order equations for s and its time derivative S. The first equation is

. 9.92
qns+Lxsf=mqo+muxs+%mu»+amw—;55—5ux (5.7)
where m(t) is defined by
—0.682P,(t) +0.02
m(t)=7.89x107* (P (1) ) (5.8)

(v(1, t) + 3.664)"*

and P,(t) is defined by

_[359:, 1<0.04,
P(1) {1.436, 1> 0.04.
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The second equation of the pair is defined by equation (5.13) below. The function I(¢) in (5.6) is
defined by

I(t)= j:xzp(v(x, t)) dx.

This integral thus depends on the temperature inside the bubble and is evaluated using the
discrete temperature values and a weighted Gaussian quadrature rule for the x?-weight, i.e.

N
1(:) - Ewixizp(v(xi’ t)) =0, (5.9
i=1
where N is the number of spatial mesh points and w, are the quadrature points associated with
the mesh points. The ODE variable /() thus depends on every mesh point solution value of
V(x, t). The vapour pressure and density (p,, and P,(t)) are related by

P = (1.87P,(1) + 0.056) /(v(1, t) + 3.664), (5.10)
while the vapour velocity at the interface U,, and the liquid velocity there U,, are given by
+ 1
U,=S+ ﬂ(_ﬂp___m_)g. (5.11)
U.,=S—-—m(1); (5.12)
and the final equation to connect § and § is simply:
§=8§. (5.13)

In this case then the coupled ODE system consists of the eight equations numbered from (5.6) to
(5.13). The vector ov(t) is made up of the eight coupled ODE variables in the following way:

o(t)=[s. S, m, 1, p, P,(1), Uy, Uy]"
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Fig. 3. The collapse of the bubble w.r.t. time and its internal pressure.
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Fig. 4. The temperature profile inside the bubble at ¢+ 0.2 and ¢ = 0.221.

In this case the spatial coupling points consist of all the spatial mesh points as all the mesh point
solution values of v(x;, t) at a particular time are required in forming the approximate integral
defined by (5.9).

The initial temperature is zero in both liquid and vapour phases, s(0) =1, §(0) =0, P,(0) =0
and the initial values of S, m, I, p,,, U,, and U, are defined using the initial values already
given and equations (5.13), (5.8), (5.9), (5.10), (5.11) and (5.12) respectively.

The problem was integrated using a mesh of 25 points clustered towards x =1 so as to take
account of the boundary layer there. The SPDIFF spatial discretisation and the SPGEAR integrator
were employed with a mixed local error test of 10~° relative and 10~ absolute. Figures 3 and 4
show the decrease in the bubble radius, the increase in bubble pressure and two examples of
temperature profiles inside the bubble.

6. Discussion and conclusions

The bubble collapse problem illustrates several interesting points. To discretise a problem such
as this one by hand is time-consuming. Software that allows complex problem formulations to be
solved reduces the coding time and allows the scientist to concentrate on the physics of the
problem. Appendix A contains a concise outline code which calls SPRITE to solve the bubble
collapse problem. In the program the choices of sparse linear algebra, BDF time integration and
SPDIFF spatial discretisation routine are specified by setting CHARACTER variables to
“SPARSE”, “GEAR”, and “SKEEL” respectively. The difficulty of coding the problem is thus
confined to defining the coupled PDE/ODE system. The convention used by the discretisation
routines in ordering the CDE solution vector is that the coupled ODE components are stored
after the PDE components. The resulting sparsity pattern takes the form of a banded matrix
bordered by rows underneath and columns to its right. The bordering rows and columns may be
large in number but may also be sparse in structure. In the case of the bubble collapse problem
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Fig. 5. The Jacobian matrix for the bubble problem (8 indicates a nonzero entry).

Fig. 5 illus rates the nature of the sparsity pattern of the Jacobian matrix for a spatial mesh of
seven points only so as to more clearly illustrate the coupling between the different ODE and
PDE components. Although it is possible to develop special routines for such matrices or to
re-order the matrix to get a banded matrix in some cases, a more straightforward solution is to
employ sparse matrix techniques. This also has the advantage that the resulting code can be used
to solve large sparse ODE systems and can alsn be used for PDE problems in two space
dimensions. Although there is no software in SPRINT for the solution of PDE problems in two
space dimensions many two-dimensional problems have since been solved by users employing
their own discretisation methods within the SPRINT framework and by making use of the banded
and sparse linear algebra options. It is planned to produce such software in the next phase of the
project. The use of this software to solve two-space-dimensional problems within SPRINT will
result in very large systems of equations of the form of (3.2) which will make it necessary to use
iterative methods, such as those considered by Brown and Hindmarsh [9] and Chan and Jackson
[10] to complement the sparse matrix routines already present.

The difficulty of verifying numerical results against experimental results for complicated
problems such as the bubble collapse problem suggests that what is required is a robust global
error tracking procedure which includes both space and time error components. Berzins and Dew
[3] have implemented simple algorithms of this type by using the MONITR facility of SPRINT, but
more research is needed in this area, particularly in balancing the space and time components of
the global error.

Similar problems also of interest are two-phase vapour-liquid flow in pipes. These pipe flow
problems are usually of a hyperbolic PDE nature and are nonconservative in form due to the
presence of source or sink terms. These problems are solved with a hybrid approa'ch with a
flux-corrected transport algorithm being used to accurately resolve shock waves (pressure pulse
propagations) and SPRINT to integrate the source/sink term contributions.
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In conclusion it can be said that despite the areas “or future research suggested above SPRINT
has already proved to be a valuable modelling tool within Shell Research. A modified form of the
differential-algebraic part of the software has been released in the D02 (ODE) chapter of the
NAG Library (see Berzins, Brankin and Gladwell [8]). Plans are also well advanced to release the
remainder of the software in the DO3P (parabolic PDE) chapter of the NAG Library.

Appendix A. Outline code for bubble collapse problem using SPRITE

PARAMETER (NPTS = 25, NPDE = 2, NXI = NPTS, NV =38)
NPTS = no. of mesh points, NPDE = no. of PDEs, NV = no. of coupled ODEs
and NXI = no. of spatial coupling points (same as mesh points).
PARAMETER (NEQ = NPTS * NPDE + NV)
workspace required for sparse matrix algebra routines
PARAMETER (NRWK =20 * NEQ+93+4 «* NEQ+11 * NEQ/2)
workspace for res-skeel discretisation and dummy MONITR rouiine.
PARAMETER (NRESWK = NPTS * 21 +35+ NV, NDUMWK =1)
real workspace and integer workspace
PARAMETER (NRW = NRWK + NRESWK + NDUMWK, NIWK =2 * NEQ+14)
INTEGER 1, IBAND, ITRACE, IW(NIWK), M, MAXNPT, NIW(3), NT, NEL, NPTL, !BK
DOUBLE PRECISION T, TOUT, XI(NPTS), XBK(1),
1 Y(NEQ), X(NPTS), RTOL(NEQ), ATOL(NEQ), RW(NRW),
LOGICAL REMESH
CHARACTER =* 6 RESULT, SNORM, MATZ, STEP, SPACE
C  SKLRES is the name of RESID routine for SPDIFF module, EZMNTR is a
C simple system-provided monitor. M = 2 for spherical space geometry.
EXTERNAL SKLRES, EZMNTR
M=2
C Place mesh points in array X(I) and pass inte XI(I) for coupling points
DO 10 I=1, NPTS
X(I) = {user-defined mesh}
10 XI1(I) = X(I)
C call seRITE interface using sparse matrix routines and BDF integrator.
MATZ =“SPARSE”

a 0o 0O 00

STEP =“GEAR”
RESULT=“BRIEF”
T = 0.0D0

C Invoke SPDIFF discretisation by calling SETPDE with SPACE = “SKEEL”

SPACE =“SKEEL”

REMESH=.FALSE.

MAXNPT= NPTS

CALL SETPDE(NEQ, NPDE, NPTS, X, Y, SPACE, STEP, RW, NRESWK, M, T,

1 IBAND, 1, REMESH, MAXNPT, XBK, IEK, NEL, NPTL, NV, NXI, XI)

C Parameters in call to SPRITE, trace level, tolerances, norm, indicators.

DO 201=1, NEQ

RTOL(I) =1.D-4

20 ATOL(I) =1.D-4

ITRACE =1

SNORM =“L2NORM”

W@ =0

IW@3) =0
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NIW(1) =NIWK

NIW(2) =0
NIW@3) =0
NT =1

TOUT =0.221D0
CALL SPRITE(NEQ, T, TOUT, NT, RESULT, Y, RTOL, ATOL, ITRACE,
1 SNORM, MATZ, STEP, SKLRES, EZMNTR, RW, NRW, IW, NTW)
STGP
END
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