fficient PDECOL code', Technical

tatistics and Computing Science,

abolic problems. In'Numerical

Hubbard, editor), Academic

540. PDECOL.: General colloca-
CM Trans. Math. Softw. 5,

he solution of almost block diago-
Gaussian points with monomial

, submitted.

lgorithm XXX: ABDPACK and
almost block diagonal linear sys-

1ts with monomial basis functions.

ration for solving certain linear

Developments in the NAG library
software for parabolic equations

M. Berzins

School of Computer Studies,
Leeds University, UK

Abstract The NAG Library parabolic partial differential equation
(p.d.e.) sub-chapter DO3P has recently been revised to make use of the
successful SPRINT Leeds University/Shell Research Software and so
offers a range of different space discretization methods that can be
applied to a common problem class of parabolic-elliptic systems of
p.d.e.s with coupled differential-algebraic equations. Three
significant advances over the existing software in DO3P are the wide
class of problems that can be solved, the spatial remeshing routines
that are available and the modular structure which allows a wide range
of NAG time integration and linear algebra routines to be used with all
the spatial discretization routines. The improvements that these new
routines offer over the existing DO3P routines are illustrated by a
number of example problems. The future requirements of software in
this area are considered.

Key Words Parabolic-elliptic equations, Method of 1ines, NAG Library
software.

1.0 Introduction

The work of Dew and Walsh (1981) in developing the present DO3P
parabolic equations software was instrumental in the development of
the Leeds University/Shell Research SPRINT software of Berzins, Dew
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and Furzeland (1988). Both packages are based on the successful method

of lines approach, see Gaffney (1982) for time dependent p.d.e. problems.

Although the existing DO3P routines have stood up well to the test of
time, the wider range of discretization methods in SPRINT, the spatial
remeshing facilities and the broader class of problems solved by SPRINT
will greatly improve the flexibility of the chapter.

The development of the SPRINT software resulted in three new spatial
discretization codes together with routines for adaptive spatial grids
and specialized time integration. The main routines that are available
in SPRINT are a new finite-difference spatial discretization method
developed by Skeel and Berzins (1987) and the novel variable order
Chebyshev collocation method developed by Berzins and Dew (1987). These
methods both treat second order equations directly while the Keller
(1970) box scheme code developed by Furzeland treats systems of first-
order equations. Both the box scheme and the finite difference scheme
have a spatial remeshing scheme in which mesh movement is specified by
a user supplied monitor function.

In common with the existing software, the user interface has both
high and low levels. The high level interfaces provide easy access to

routines for systems of p.d.e.s (rather like the present DO3PBF routine).

In contrast the low-level routines provide a wide range of facilities
including a choice of linear algebra, time integration routines and
spatial remeshing as well as allowing the user to solve non-standard
problems consisting of coupled p.d.e./o.d.e. problems. The low level
interface is itself called by the high level routines. All the
routines in the low-level interface call a very general time integration
driver which accesses the reverse communication driver for the DO2N
subchapter. This structure provides a clean interface between the
spatial discretization and time integration parts of the software, (see
Berzins, Brankin and Gladwell (1987)). Furthermore other integrators
(see Berzins and Furzeland (1985)) developed for the solution of the
large systems of o.d.e.s that arise when partial differential equations
are discretized in space have been added.

2.0 P.D.E. Problem Class

The master equation format for the software has been selected to fit
two types of problems. The first type of problems consist of systems
of p.d.e. problems, similar to the Dew and Walsh problem class (1981),
and correspond to the high level easier-to-use routines. The master
equation for the p.d.e.s is

NPDE au
pfl Pj’p(xatagagx) 5t + QJ-(X,t,_L_],!X) (1)
= x ™2 (MR (x,t,U,U.)) j=1,...,NPDE (x,t
X ;0660.0)) =1, x,t)e [A,B]x(O,te]

where m denotes the space geomtry type. The vector U is defined by

UG) = [0 (x,1) 5 Uy (81T (2)

The function R() can be thought of as a flux, e.q. K%%, and is used al
in the definition of the boundary conditions. For each p.d.e. the
boundary conditions have the master equation form:

Bj(t)R(x,t,g,gx) = ~G(x,t,g,gx,gt), j=1,...,NPDE at x=A and x=B. (3)

The initial conditions for U(X,t,) are assumed to be supplied by the
user in the form

U(x0)=[Ky (x) 5.« Kyppg ()17 (4)

2.1 Coupled 0.D.E. and P.D.E. Problems

The second class of problems is that of coupled p.d.e.s. and o.d.e.s.
The p.d.e. variables are denoted as above and the o.d.e. variables are
denoted by a vector V of Tength NV. The o.d.e.s may be coupled to the

p.d.e.s at various space points £ which may or may not be equal to some
of the spatial mesh points.
The master equation is

NPDE B_UQ
X . .
p=1 Py, plotslhlol) 57 + 0506 t.U,0,,V,0) (5)
= x ™2 (MR (x,t,U,U.,V)), j-1 P '
X AR AN AR J-1,...,NPDE (X,t)E [A,B]X(O,te]

where m denotes the space geometry type.



2 R

The boundary conditions have a similar master equation form to that

in equation (3) above at x=A and x=B

»
| =<
~—

[}

¥;(6,t,0,U, V,V),j=1,...,NPDE. (6)

The master equation for the coupled o.d.e.s is

E(V, ¥, &, U, Ux, R, Uy, U*

xt) =0 (7)

The arrays

* * * * *
Uk, Uk, RE, UE, U

hold the solution, flux and derivative values at the coupling points &.
The initial conditions for U(X,t) and V(t) are assumed to be known

vectors which can be supplied by the user in a subroutine.

2.2 First Order P.D.E. Systems

The underlying assumption in the above problem classes is that the
p.d.e. involves second order space derivatives. However, many systems
of p.d.e.s can be written more naturally as systems of first-order
p.d.e.s, e.g. see Section 3.4 below. In this case the master equation

for the p.d.e.s is

NPDE BEE_
p=21 Pj,p(X,t9!9!X!!) 3t + Q(X;t,!,y_x,_\i,!) =0 (8)

» j=1,...,NPDE (x,t)e[A,B]x(O,te]

The evaluation of the p.d.e. functions P and Q is performed at the

mid-points of the user supplied mesh.

2.3 Boundary Conditions for First Order Systems

The main difference between first-order systems of p.d.e.s and second-
order systems of p.d.e.s is that in the first-order case each p.d.e.
component only needs one boundary condition rather than two as in the
second-order case. Furthermore the user must choose which component
has a boundary condition at the left or right boundary with some care.
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The general rule is that if the characteristic direction of

the ith solution component at the (say) left boundary points into the
interior then the boundary condition for the ith component should be
specified at the left-hand boundary. In other words at x=A the
boundary conditions must have the general form

NPDE LY .
L L = .=
Pfl Ej’p(x,t,!,gx,y) 559 + sj(x,t,g,gx,y,y) 0,3=1,...,NLEFT (9)
and at x=B
NPDE U .
R p R PO
pE’l E‘]"p(x9tag3!xs!) 3t + SJ(X,t,H,QX,M,D-O,J-l,---,NRIGHT (10)

where NLEFT + NRIGHT = NPDE, the number of p.d.e.s in the system. Non-
Tocal boundary conditions which cannot be separated into left and right
boundary conditions can be included by making use of the coupled
o.d.e./p.d.e. facility, as in Section 3.2 below.

2.4 Coupled 0.D.E. Equations

The master equation for the coupled o.d.e.s is exactly the same as in
equation (7) above except that for first order systems the flux R* is
undefined and so the problem class is

EAY ¥, 8 UE, UF, Uf) = 0
3.0 Example Problems

The probTem class outlined above allows many interesting problems to be
solved such as moving boundary problems by co-ordinate transformation

and p.d.e. problems with non-local boundary conditions. Several
interesting examples of this type of problem are described by Schryer
(1984). In this section we shall present four examples of such problems.

3.1 A Fourth Order P.D.E., Zaturska, Drazin and Banks (1988)

The first problem provides an example of a p.d.e. problem that can be
solved very easily using the high-level p.d.e. interface. The problem
consists of a fourth order p.d.e. which can be written as a pair of
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second order elliptic parabolic p.d.e.s for U(x,t) and V(x,t).

0=27-v (11)
X

3_V=3_2_!+V_3_U_ﬂu (12)

ot 3x2 9X  9X

The boundary conditions are given by

Q
L

I

=0 at x = -1 and at x = 1, U(-1,t) =1 and U(1,t) = -1

Q
>

The absence of boundary conditions for V(x,t) does not pose any

difficulties provided that the derivative flux boundary conditions are
assigned to the first p.d.e. (equation (11)) which has the correct flux
(2.
the second p.d.e. by setting Bz(t)=0 in equation (3) and placing the

The conditions of U(x,t) at the boundaries are then assigned to

Dirichlet boundary conditions on U(x,t) in the function YZ("')'

3.2 Periodic Boundary Conditions, Schryer (1984)

The next example shows how the coupled p.d.e./o.d.e. problem class
allows problems with non-local boundary conditions to be solved. The
problem consists of a quasi-linear heat equation with periodic boundary
conditions:

Q
(e
Q

= + g(x,t) (13)

fo >
—+

The boundary conditions are given by

Q
[
Q

(-m,t) = 2Y(r.t) and U(-m,t) = U(m,t).

(o)
>
Q
>

The boundary conditions are modified by introducing an o.d.e. variable
vl(t) which is equal to the common flux at the boundaries:
3l

22(-m,t) = v(t) and gg(n,t) = vy (t)

The extra coupled algebraic equation needed to define all the variables
is
U(""’t) - U('lT,t) =




t) and V(x,t).

(11)

(12)

u(1,t) = -1

oes not pose any
toundary conditions are
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)

.e. problem class
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(13)

U(m,t).

"ing an o.d.e. variable
sundaries:

{t)

Jefine all the variables

The spatial coupling points are thus defined by g = [-ﬂ,ﬂ]T. Another

example which also results in an algebraic coupled equation which
does not contain the coupled o.d.e. variable is given by Berzins and
Furzeland (1986).

3.3 AnIntegro-Differential Equation, Schryer (1984)
Let U(x,t) be defined by the integro-differential equation:

2
567 P 3y 4 cluy)Ulyat)) dy (x,t)e [0,10x(0,1]. (14)
X

with given boundary and initial conditions. In practice we need to be
able to evaluate the p.d.e., defining functions one mesh point at a
time, whereas the integral involves values across the entire spatial
range. The problem can be cast as a coupled p.d.e./o.d.e. problem in
the following way. Assume that the spatial mesh is defined by

A = x1< x2<x3<... <xN =B

and that the approximate solution has the form

U(x,t) =

n M=
S

-

—

>
~—
(o)

i=1 1
where Ui(t) is the nodal solution value at x; and ®1(x) is the spatial

basis function defined by ¢i(xj) = where & is the Kronecker §.

S..
1]
We now define the functions ci(x) by
_r1 ‘o

c;(x) =Jg clx,y) e.(y) dy, i=l,...,N
and the N coupled o.d.e. variables vi(t) by

vilt) - U(t) = 0,i=1,...,N. (15)
The integral can now be approximated in terms of the o.d.e. variables
v,(t) and the functions ci(x) and a suitable quadrature ruie such as

i
the trapezoidal rule with weights Wi i=1,...,N may be used to give

N
Iowgci(x) vi(t) =1 clx.y) U(y,t)) dy
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Wi ci(x) vi(t), (x,t)e [0,1]x(0,1].
In this case the coupled o.d.e. system consists of the N equations
(15), and the coupling points space vector £ consists of all the
spatial mesh points £ = [xi,...,xN]T as the coupled o.d.e.s (equations
(15)) involve p.d.e. values at all these points. The vector v(t) is
made up of the N coupled o.d.e. variables in the following way

- 5 g Wi L Bl

W(8) = [vy(t), vylt)see oy (9

where Vi(t) is defined by equation (15).

3.4 A First Order System of Differential Equations
Consider the boundary layer equations

8_t+8x=0
ou _ oy . 9w
Ut TV oax tax (16)
w=-8_
IX

with boundary conditions

i
8

u(0,t) = v(0,t) = 0 at x = 0 and u(0,t) = 1 at x
and the initial conditions
v{x,t) = 0, u(x,t) = 1 for x>0

A non-standard feature of the above problem is the semi-infinite
spatial range and the boundary condition at inifinity. Some of the
different possible ways of treating p.d.e. problems on infinite domain
are described by Grosch and Orszag (1977). It is possible that if,
as x tends to infinity, the solution rapidly approaches some constant
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value then the infinite domain may be mapped onto a finite one.

However these mappings may not be effective in some cases (see Grosch
and Orszag (1977)) and it may be necessary to approximate infinity by

a large positive value, X . This is the approach adopted for the above
problem. However it should be noted that the steady-state solution to
the above problem is dependent onthe value of x« and is given by

v{x,t) = 0, u(x,t) = X/Xw, W(x,t) = 1/Xe fOr t>5

This shows that some care must be taken when using the approach.

4,0 The New DO3P Software

Three aspects of the software will now be considered in detail. These
are the user interface, the spatial discretization methods and the
time integration interface.

4,1 User Interface

The general user interface is very similar for each of the three dis-
cretisation methods in that the user writes a driver program which calls
the library subroutines and the user also writes subroutines to describe
the p.d.e. in terms of the master equation format in Section 2 above.

In the case of the high-level interface these names are fixed whereas

in the case of the low-Tevel interface these names can vary. In the
case of p.d.e. problems the user supplies three subroutines:

(i) One routine to evaluate the functions P(...), Q(...) and R(...)

in the p.d.e. equation (1),

(i) One routine to evaluate the functionB(...) and y(...) in the
boundary conditions equation (3), and

(iii) One routine to supply the initial conditions, equation (4).

In the case of coupled p.d.e./o.d.e. problems the user must also

supply:

(iv) A routine to evaluate the residual of the coupled o.d.e. system,
equation (7).

and, in the case when remeshing is used, the user must supply

(v) A routine to describe the form of the remeshing monitor function
which is used (see Furzeland (1985)) to calculate the new mesh.
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It should be noted that the last parameters of each of the usersupplie
problem definition routines is the integer IRES. This parameter can be
reset, so as to force the integrator to retake the step to avoid
unphysical solution values or so as to stop integration completely.

4.2 Spatial Discretization Routines
The new finite difference routine developed by Skeel and Berzins {1987,
is an improvement over the existing routine as it has increased accurac
for polar problems and problems with material interfaces. In order to
accurately model the solutions of problems which involve some kind of
travelling wave it is necessary for the spatial mesh points to follow
the wave. The remesh module that is based on the work of Furzeland
(1985) allows the mesh to be changed to discrete time levels according
to a criterion supplied by the user and based on the current solution
profile. This criterion consists of a remeshing monitor routine which
has access to solution and derivative values at the mesh points and
which returns the value of a function which should be equi-distributed
by the new mesh. Although this method is not a complete solution to
this class of problems, in that it is not designed to cope with shock
wave problems, it has been very successful in dealing with flame prop-
agation problems in which steep but smooth wave fronts are generated.
In order to solve p.d.e. problems with smooth solutions it may be
more efficient to use spatial discretization methods with greater
accuracy than the second-order method of Skeel and Berzins (1987). It
is for this reason that the CO collocation method of Berzins and Dew
(1987) has been implemented in SPRINT and in the DO3P software. This
method is applicable to a broad class of problems and offers a family
of high-order formulae based on Chebyshev polynomials from which the
user can select the order of approximating polynomial to be used. The
piecewise polynomial has c® continuity at each breakpoint. The lowest
degree of polynomial that can be used is one (linear polynomial), how-
ever the power of the collocation method lies in its ability to use

high-order polynomials, up to degree fifty.
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The discretization method employed for the many systems of p.d.e.s
which can be written more naturally as systems of first-order p.d.e.s
is based on the well-known box scheme of Keller (1970). However,
within the method of 1ines framework, the box scheme is applied in the
space variable only and the time integration performed by using the
DO2N integrators. The same spatial remeshing option as for the finite
difference routines is also available.

4.3 Time Integration

One of the main differences between the old and new chapters is that
the new chapter calls the DO2N sub-chapter routines to perform the
time integration, rather than using its own integrator. The DO2N sub-
chapter, also developed from SPRINT, is specifically intended to be
used with p.d.e. method of lines software (see Berzins and Gladwell
(1987)) and solves differential-algebraic equations of the form

At Y)Y = G(t,Y(t)) (17)

where A(t,Y) may be a singular matrix. The default integrator is that
based on the backward differentiation formulae of Gear (see Berzins
(1986)) while the default linear algebra routines are the banded
matrix routines. The new integrators are more efficient, treat systems
of differential algebraic equations better and allow different linear
algebra modules to be selected for the different discretization methods.
The main implication of the problem class solved by the DO2N
routines on the p.d.e. problem class is that the discretization method
must generate a differential-algebraic system of the form of equation
(17). This means that the p.d.e. functions Q(...), yj(...) and F(...)
defined by equations (5), (6) and (7) must be Tinear in any of the time
derivatives present in their argument lists. This means that there
should be no multiplication of one time derivative by another and that
there should be no functions of time derivatives present in the functions
The following convention is used by the DO3P routines introduced
above in discretizing systems of p.d.e.s that are coupled to o.d.e.s.
The o.d.e. solution vector, say Y(t), that is passed to the DO2N sub-
routines is ordered as follows. Suppose that a system of NPDE partial
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differential equations has NV coupled o.d.e.s, and that NPTS spatial
mesh points are used in the discretization of the p.d.e. The p.d.e./
0.d.e. solution component that is stored in a given component of the
solution vector used by DO3P, Y(t) is defined by:

Yk(t)=Ui(xj’t) where k=NPDEx(j-1)+i,i=1,...,NPDE, j=1,...,NPTS and

Yl(t)=Vm where 1=NPDExNPTS+m,m=1,...,NV.

In other words the p.d.e. components are stored column-wise i.e. all
components at mesh point 1, then mesh point 2, etc. and all the p.d.e.
solution values are stored before the coupled o.d.e. components.

The most efficient Tinear algebra routines to be used in conjunction
with the method of lines and DO3P are the banded matrix routines. The
above convention used by the discretization routines in ordering the
o.d.e. solution vector means that banded matrix routines CANNOT in
general be used with coupled o.d.e./p.d.e. problems. In the case of
such problems the sparse matrix techniques are probably the most ef-
ficient anyway. Moreover in the case of the CO collocation method when
only two or three breakpoints are employed, the o.d.e. system integrated
in time will have a structure that makes the full matrix routines the
most appropriate.

The integrators in D02 are not specifically designed for the Tow
accuracy solution of large systems of o.d.e.s that arise when the
method of lines is applied to parabolic equations. The SPRINT integrator
STHETB of Berzins and Furzeland (1985) is based on the well-known theta
method and on existing theta method codes developed at both Leeds
University and Shell Research. The code can be selected from the Tow
Tevel DO3P interfaces and is tuned for the solution of parabolic
p.d.e.s with the option to use function iteration, where possible,
to improve efficiency.

The form of the solution produced by the DO3P software consists of
p.d.e. values at spatial mesh points. Solution values at non-mesh
points can be generated by calling one of two spatial interpolation
routines. A simple routine based on linear interpolation is available
for the finite difference routines and a Chebyshev polynomial routine
is available for use with the CO collocation generated solution.
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5.0 Summary

Table 1 shows the range of routines in the revised DO3P chapter for the
solution of parabolic-elliptic equations with coupled algebraic equa-
tions. This enables many non-standard problems to be solved provided
that they can be defined as a coupled p.d.e./o.d.e. system.

Table 1 Summary of DO3P Subroutines

Method Type High Level Low Level  Remeshing

Module Module Available
Finite Diff. DO3PCF DO3PHF Yes
€O Collocation DO3PDF DO3PJF No
Keller Box DO3PEF DO3PLF No

Although there is no software in DO3P for the solution of p.d.e.
problems in two space dimensions it is planned to produce such software
in the near future. The main disadvantage of the present software is
that there is no attempt to estimate or to control the space error by
remeshing. The required solution is a robust global error tracking
procedure which includes both space and time error components and has

a strategy for balancing these errors. Berzins and Dew (1987) have
implemented such algorithms, but more research is needed before NAG
Library software of this type becomes a reality. This research is

now underway.

References

Berzins, M. and Furzeland, R.M. (1985), A type-insensitive method for
the solution of stiff and non-stiff differential equations. Leeds
University, Department of Computer Studies, Report No 204

Berzins, M. (1986), A C1 interpolant for codes based upon backward
differentiation formulae. Applied Numerical Analysis, Vol 2
pp 109-118

Berzins, M. and Furzeland, R.M. (1986), A user's manual for SPRINT - a
versatile software package for solving systems of algebraic ordinary
and partial differential equations : part 2 partial differential
equations, TNER. 86.00, Thornton Research Centre, Chester

71




© Pre————————— - T

Berzins, M. and Dew, P.M. (1987), CO Chebyshev methods for parabolic
p.d.e.s. I.M.A. Journal of Numerical Analysis, Vol 7, pp 15-37

Berzins, M. Brankin, R. and Gladwell, 1. (1987), The design of stiff
integrators in the NAG Tibrary, University of Manchester, Department
of Mathematics Report, 7, see also SIGNUM Newsletter (1988)

Berzins, M., Dew, P.M. and Furzeland, R.M. (1988), Developing software
for time-dependent problems using the method of lines and differen-
tial algebraic integrators, in press with Appl. Num. Math.

Dew, P.M. and Walsh, J.E. (1981) A set of Tibrary routines for solving
parabolic equations in one space variable. ACM Trans. on Math.
Soft., Vol 7, No 3, pp 295-314

Furzeland, R.M. (1985), The construction of adaptive space meshes,

TNER,85,022, Shell Research Ltd., Thornton Research Centre, P.0. Box

1, Chester CH1 3SH
gaffney, P. (1982), U
boundary value p.d.e.s.

R. Stepleman, IMACS/North Holland.
Grosh, C. and Orszag, S.A. (1977), Numerical solution of problems in

unbounded regions: co-ordinate transforms. Journal of Computational
Physics, Vol 25, pp 273-296

Keller, H.B. (1970), A new difference scheme for parabolic equ
Numerical Solution of Partial Differential Equations, Vol 2,

sing the method of lines technique to solve
In 'Scientific Computation', ed

ations,

(J. Bramble, ed) Academic Press, New York
Schryer, N.L. (1984), Partial differential equations in one space

variable, Computing Science Technical Report No 115, 1984, AT and

T Laboratories, Murray Hi1l, New Jersey 07974
(1987), Spatial discretization methods for

Skeel, R. D. and Berzins, M.
d to SIAM Journ. of Sci. and Stat.

parabolic p.d.e.s, paper submitte
Comp.

Zaturska, N.B.,
a viscous fluid driven along a channel by suction at po

Drazin, P.G. and Banks, W.H.H. (1988), On the flow of
rous walls.

Fluid Dynamics Research, Vol 4, 1988, in press



