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Abstract

This paper describes the design philosophy behind the recent re-
placement of the NAG Ordinary Differential Equation (ODE) stiff
integrators. This replacement was is intended to update the ODE
chapter algorithmically but, more importantly in the context of this
paper, it provides a more flexible interface than has been available
in the past. This interface is designed to permit a wide variety of
problem and method definitions, to provide flexibility when introduc-
ing new methods or problem definitions in the future and to allow
straightforward use of the software as the integrator in packages im-
plementing, for example, the method of lines for parabolic partial
differential equations.



1 Imtroduction

We present an overview of the design considerations which determined the
structure and details of the new generation of NAG stiff solvers. These
solvers replace an existing set of routines which are functionally inferior and
which have a much less user-friendly interface. It is our aim to emphasize
the points of continuity and the points of change in the new design.

The aims of the redesign can be described broadly as follows:

(i) to provide continuity and stability for the users of the current NAG
stiff solvers;

(ii) to provide improved easy-to-use interfaces and a general simplification
of interfaces;

(iii) to extend the functionality of the solvers to implicit and differen-
tial/algebraic systems;

(iv) to provide flexibly structured open ended software (based on im-
plicit methods using modified Newton or functional iteration) so that
adding new integration methods is a simple matter;

(v) to provide a design and an interface which makes using the solvers
from other packages a relatively simple matter; and

(vi) to provide an interface which permits the solver to be used at the
“assembly language” level in packages written in languages more “ro-
bust” than Fortran 77 (for example in ADA) when a mixed language
environment is available.

In Section 2, we give a brief historical introduction to the NAG stiff solvers
and, insofar as it is pertinent, to other NAG ODE solvers. In Section 3, the
main design considerations for the new stiff solvers are outlined. In Section
4, we describe the actual design in more detail and some novel features of
a new easy-to-use routine. Finally, in Section 5, three practical examples
are used to show how the improved design permits a relatively simple use
of the codes in a package environment.



2 Historical Development

In the mid-1970’s one of the authors (Gladwell [1]) redesigned the NAG
Library ODE (D02) chapter to provide what were at that time state-of-the-
art codes which used a common interface across all the initial value methods
employed. The methods were based on Runge-Kutta-Merson, Adams and
Backward Differentiation Formula (BDF) algorithms. For each algorithm
the design is similar to that illustrated in Figure 1 for the BDF integrators.
There are four levels of software. At the uppermost level are a set of easy-
to-use interval oriented integrators designed to solve many of the simple
problems arising frequently in practice and to provide an easy introduction
to ODE solving for naive users, who are a significant proportion of the
market for Library software. The four routines listed below each solve the
stiff system of order NV

y’=f(x,y),y(a)=A, z>a (2°1)

and have some additional features:

(i) DO2EAF': Integrates across a range using a numerically determined
Jacobian and a scalar relative error test with an absolute error thresh-
old related to machine roundoff.

(ii) DO2EBF': Integrates across a range permitting intermediate output
at user defined points (through a user supplied subroutine). A choice
of analytical or numerical Jacobian is permitted and user specified
scalar relative, absolute or mixed error control is allowed.

(iii) DO2EGF: Specified as DO2EAF but integrates to the first point after
a where a specified component of y takes a given value.

(iv) DO2EHF: Integrates as DO2EBF but without intermediate output;
instead integrates to the first point after @ where a specified function
h(z,y) changes sign.

At the next lower level of Figure 1, a single general purpose integrator,
D02QBF, is supplied for the user with a problem which does not fit the
specifications of the DO2ExF routines. D02QBF is interval oriented but



with a comprehensive set of interrupts which permit also step or output
oriented mode of operation and provides more flexible error control than
the easy-to-use routines.

The design of D02QBF was similar in many respects to many other
ODE codes of its era. DVERK [3], DE/STEP [4], RKF45 [5], the DEPAC
codes of the SLATEC Library [6], and even codes of more recent design
such as the LSODE collection [7] and the ODEPACK standard interface [8]
share a number of features in common with DO2QBF. Amongst these codes
it is a matter of taste which particular interface is to be preferred. Suffice
it to say that DO2QBF was designed specifically for use in a Library where
the user is presented only with the compiled (object) code, is permitted
neither to communicate with the Library routines through COMMON nor
to make internal modifications to the code.

The other codes at the second level in Figure 1 are the interpolation
routines, DO2XHF and D02XGF. They provide a continuous approximation
to the solution by the same interpolation procedure used internally by the
code but differ in approximating either a single specified component of the
solution or all the components simultaneously. To compute the solution
these codes need access to scaled derivative information produced by the
integrator. Prudence, and to a lesser extent library design, dictated that
this information be passed by workspace. This mode of communication is
desirable for the following reasons. When two pieces of code, such as an
integrator and an associated interpolant, may be used independently it is
necessary to specify precisely their method of intercommunication. In a
library, the use of COMMON for this purpose implies revealing more of
the internal organisation of the codes to the user than is strictly necessary.
Also, in an overlaying or in a multiprocessing environment, the COMMON
blocks must be saved separately and so their use should be avoided.

Note, that the DO2ExF routines make direct calls to the routines at
the second level and also, in some cases, to routines at the lowest level;
these latter are themselves NAG Library routines callable directly from a
user’s program. In contrast DO2QBF calls a number of auxiliary routines
directly which are not “visible” to the user, and are not documented in
NAG Library manuals and were taken, with minor modifications, from the
Gear (Revision 3) package [9].



The other ODE solvers in the NAG Library have a slightly simpler de-
sign, described in [1]. The aim of the design was to permit users to switch
between codes implementing different algorithms with minimum modifica-
tion to the calls in their programs. There is every reason to believe that
this has proved a popular innovation.

Despite the success of the design outlined above there are a number
of deficiencies and restrictions from the point of view of use in a Library
environment. In the next section we show how the design may be improved
to provide a more flexible environment for the solution of stiff systems. The
improved design is described in more detail in Section 4 and a schematic
representation of this improved design is given in Figures 2a—c.

3 Design Considerations

In this section the reasons behind the choice of interface for the new NAG
stiff solvers are discussed. In many respects the design is borrowed from
that of the stiff integrators in the partial differential equation (PDE) pack-
age SPRINT [10] but this design has been modified to provide a cleaner and
simpler ODE solving interface. In Section 5 we describe how this redesigned
interface is to be reused in a set of PDE solvers for the NAG Library.
Some of our observations apply equally to ODE solvers in general whilst
others are specific to codes in a Library environment. Amongst these latter
observations many are relevant to other areas besides ODE solving.

3.1 Continuity and its Impact on Design

In the introductory section we described the interfaces used in the earlier
NAG Library stiff solvers and remarked that this design was not specific
to the stiff solvers. When making a major modification of a chapter of
Library software it must be borne in mind that this software may have
many adherents already. It is important to these users that their programs
continue to run, preferably with no modification at all but at worst with a
few minor modifications. This could be achieved by leaving the old software
unchanged but ceasing to recommend it and just adding the new software to
the Library. However this approach would deny existing users the benefits



to be gained by using the more modern software as normally they would
see no reason to change working programs. Also, in the long term, this
catholic approach could have serious consequences for library management.

Accordingly, the DO2ExF routines are replaced by others with almost
identical interfaces (there are some changes in workspace definition and
size). Also, the general purpose routine DO2QBF has been replaced by
another, DO2QDF, with an almost identical interface. This allows the user
to switch from any of the above mentioned routines to the corresponding, as
yet unchanged, Runge-Kutta-Merson and Adams codes in the NAG Library
with minimal programming effort.

The new software has two major additions. First, in response to user
prompting, an easy-to-use code DO2EJF has been supplied which combines
intermediate output and root finding in a simple driver routine. At the same
time, for reasons of continuity and uniformity the temptation to withdraw
DO02EGF has been resisted. The availability of two root finders, DO2EGF
and DO2EHF, with similar capability may confuse users who do not appre-
ciate the gains apparent to the software designer of solving only the problem
of finding a sign change in a component of the solution rather than the gen-
eral root finding problem. With the advent of DO2EJF the multiplicity of
codes for similar problems is likely to prove even more confusing and so the
documentation designed to assist the user has been changed so that in al-
most all circumstances the new routine is recommended, the other DO2ExF
routines being retained for the above stated reasons of continuity and of
uniformity with other codes available in the ODE chapter. In the long term
it is intended to provide routines implementing Adams and Runge-Kutta
methods with a similar interface to that of DO2EJF. This novel interface is
considered in some detail in subsection 4.2.

The second novel feature of the new software is its greater functionality
as it provides a variety of methods and a range of problem structures within
a single framework. This will be described in subsection 4.1, after we have
explained the design requirements for the software.

3.2 Functionality or Simplicity?

We have provided an extensible framework which permits the software de-
signer to add new integration algorithms within the structure We have
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provided a set of integrators:

(i) BDF (an adaptation of LSODE [7] with error estimates based on the
work of Petzold [11]),

(ii) blended formulae (based on the code of Skeel and Kong [12]), and

(i) a type insensitive f-method with an error estimate [13] (for use in the
method of lines only in the first instance).

We also provide a choice of linear algebra for varying structures of Ja-
cobian (9f;/dy;). In the first release full, banded and sparse matrix struc-
tures are provided. The linear algebra codes used are already available in
the NAG Library; in particular the code for sparse problems is based on
the Harwell Library code MA28 [14].

It is our intention to provide an interface capable of handling both
explicit problems of type (2.1) and implicit (including differential /algebraic)
problems which may be written in the quite general linearly implicit form

M(ts y)y = g(ta y) (3'1)

where M can, and often will, be singular. The software does not even
require that the user specifies M and g directly. Instead, given any y and
y, the residual

M(t,y)3 —g(t,y) (3.2)
and the product
M(t,y)3 (3.3)

must be specified separately. Though this might seem an obtuse approach
it does in fact permit great algorithmic flexibility.

All these options are provided through a single interface without em-
ploying subroutine arguments which are sometimes redundant; for example
arguments defining bandwidths are redundant in the case of a full matrix
and are inadequate to describe the sparse case. Such redundant parameters
are common in interfaces of modern stiff solvers and are a potential source
of confusion and error for the inexperienced user. This redundancy can be
a particularly serious matter for Library software where errors such as the
mistaken omission of redundant arguments from a parameter list because
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they are “not needed” can be almost untraceable on many systems due to
their “knock on” effect. This is compounded by the lack of information
available to the user about the internal workings of the routine.

The option of handling both explicit and implicit ODE’s through the
same interface is clearly attainable simply by employing the most general
interface needed to include both the problems. Then users with a prob-
lem which can be written simply in the form (2.1) must adopt instead the
relatively complicated interface required for the system (3.1). Also, if this
“solution” were adopted, for the DO2ExF' routines to link to the more gen-
eral interface without change from their earlier specifications which were
designed to solve (2.1) would require the user to supply fixed name routines
defining the differential system. These considerations and the significant
internal simplifications which can be made when solving the explicit prob-
lem (2.1) directly led us to supply two interfaces, one each for (2.1) and
(3.1). Note that the resulting “explicit” code is simply a stripped down
version of the “implicit” code and that one should obtain identical results
to within the effects of roundoff by solving (2.1) using either of the two
codes.

This design should allow developments in the future to permit, for ex-
ample, the straightforward addition of other integrators, in particular a
type insensitive code [15] and the differential/algebraic solver DASSL [16],
and of other Jacobian structures, in particular unsymmetric almost block
diagonal systems [18] and symmetric positive definite banded or profile sys-
tems. In this, the design has been successful. The code for some of these
additions has proved to be simple to incorporate. However, our overall de-
sign cannot be pushed too far without further modification. For example, if
second derivative methods [17] were used, we would require the derivative
of f in (2.1) (that is the second derivative y”) and this is not requested
in the current interface though it would be a fairly straightforward matter
to include it. A more serious problem would arise with the inclusion of
iterative or “matrix free” linear algebra. In the underlying design we have
assumed that there will be a factorisation phase and a solution phase as
is invariably the case with direct methods. However an iterative scheme
which simulated these phases would be easy to incorporate.



3.3 Use in Packages

An increasingly common use of stiff ODE solvers is in the method of lines
for solving PDE’s (in particular for parabolic/elliptic equations such as
arise in reaction kinetics and fluid dynamics problems). In general, a semi-
discretization of such equations using finite differences or finite elements
leads to a system of equations of the form (3.1) which will represent a
differential/algebraic system when derived from a mixed system such as a
parabolic/elliptic system. For use in a package for such problems, ODE
software should have a number of properties:

(i) It should be able to operate in a one-step mode so that the user and
the code can inspect and possibly adjust the solution at each time
step, for example by remeshing in the space dimensions.

(i) It should provide a template into which it is a simple matter to map
the parameters of the package.

(iii) It should be robust in the following regards:

(a) the possibility of internal breakdowns in the integrator should
be minimised;

(b) all exits and error exits should be through the interface, and
there should be no side effects; and

(¢) as far as possible all input should be checkable and should be
checked.

The aim here is to ensure that all errors reported by the package
are reported from package level; the user should be unaware of the
properties of the underlying ODE software.

(iv) The ODE software should be portable so that the only hindrance
to portability is the package itself. In this respect the fact of our
software meeting NAG Library standards is a major advantage. The
codes make full use of NAG’s machine constants [19] and BLAS [20]
(where appropriate). Machine specific coding is restricted to mod-
ules which are the responsibility of specific implementations of the
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(vi)

4

NAG Library. Considerable attempts have also been made to en-
sure portability across machine architectures. Hence, for example,
there has been emphasis on using structures and portable directives
to assist vectorisation.

Perhaps the most important feature of ODE software for use in a
package environment is that the problem definition (2.1) or (3.1) be
supplied by reverse communication. In fact we provide two pieces of
reverse communication software; one requires f in (2.1) and the other
requires the expressions (3.2) and (3.3). Though individually each of
the three applications described in Section 5 could be achieved using
a conventional forward communication interface, the simple imple-
mentation of all three is a direct result of the provision of the reverse
communication facility.

The reverse communication feature and the design decision to pass in-
formation only in one-dimensional array parameters imply that these
routines could be used in mixed language packages at the “assembly
code” level. That is, other language versions of the forward commu-
nication interfaces or of external packages could be written calling
the Fortran reverse communication routines. For example, in Figure
4 below the whole code would be written in a language other than
Fortran but would call the Fortran reverse communication routine
DO02NxF. Of course the availability of a suitable framework for mixed
language programming is machine and operating system dependent.

Structure of the NAG Stiff ODE Solvers

As has been indicated in the previous two sections, the aim of our soft-
ware is to provide new facilities combined with greater flexibility than in
the past. The structure of the software is outlined in Figures 2a—c, which
should be compared with Figure 1. The basic structure is the same but
that there are two significant differences. First, the existence of the reverse
communication codes has been exploited so that all the forward commu-
nication codes call them directly. This includes the easy-to-use routines
DO2ExE' which, if the practice of Figure 1 were to be followed, would call
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D02QDF, the replacement for D02QBF. Second, there is a proliferation of
forward communication comprehensive routines DO2NxF', essentially one
for each linear algebra structure available for both (2.1) and (3.1). This
design is forced on us by the restrictions of Fortran 77 since we must pass
the Jacobian for the current structure of (2.1) or (3.1) and since we have
determined to use no redundant parameters, visible or invisible to the user,
except in those routines which are direct successors to those in Figure 1.
It would have been possible to reduce to one the number of routines asso-
ciated with each of (2.1) and (3.1) only if we had been willing to rely on
linkers not checking the number of parameters and their types carefully.
However, our emphasis on robustness precludes us from indulging in trick-
ery of this type. In fact this profusion of routines is not an obstacle for the
user as we shall see in subsection 4.1. Then, in subsection 4.2 we consider
in detail the specification of subroutine DO2EJF. Finally, in subsection 4.3
we discuss briefly the successors to the earlier NAG stiff solvers.

4.1 'The DO2N Subroutines

Each of the DO2N forward communication routines is designed to be called
in essentially the way represented by the pseudocode in Figure 3.

C
declarations

EXTERNAL EQN, JAC, MONITR
call linear algebra setup routine (sets RWORK)
call integrator setup routine (sets RWORK)

set T,TOUT,Y, (YDOT for implicit problems,) RTOL,ATOL,
ITOL (and ITRACE to monitor course of integration if
required), IFAIL.

6o 6 n 6o

CALL DO2NxF (NEQ,NEQMAX,T,TOUT,Y,YDOT,RWORK ,RTOL,ATOL,
ITOL,INFORM,EQN, JAC ,MONITR, ITRACE,IFAIL, and
* linear algebra parameters)
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check IFAIL(the error indicator)

c
c post processing:
c optional linear algebra diagnostic call, sparse case
c only (reads from INFORM)
c optional integrator diagnostic call (reads from INFORM)
c optionally reset TOUT and go back to the call of DO2NxF
c
STOP
END
SUBROUTINE EQN(T,Y,YDOT,HNEQ)
c
C user supplied routine to define the system of
c differential equations or to calculate a residual
c in the case of implicit aystems
c
RETURN
END
c
c optional user supplied Jacobian forming routine (JAC)
c optional user supplied integration monitor (MONITR)
c

Figure 3 A typical call to a forward communcation DO2N routine.

The first call to any integrator must be preceded by a call to two setup
routines. One of these defines the integrator to be used and all the options
appropriate to that choice of integrator; each option will take a default
value if set accordingly. The other setup routine defines the structure of
the Jacobian and options in the associated software. This option passing
scheme is of particular importance in the case of sparse equation software
where various combinations are permitted of numerical and analytical de-
termination of the non-zero sparsity structure and of the corresponding
numerical values of the non-zero elements. The integrator called must cor-
respond to the linear algebra routine for its particular structure. An error
is flagged if the two calls do not match. Also a check is included to test
that both an integrator and a linear algebra setup routine have been called
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prior to the call of the integrator itself.

The call of the integrator has a particularly simple form due to the ex-
traction of all the options associated with the chosce of integrator and the
choice of linear algebra structure. The remaining arguments are concerned
with the definition of (2.1) or (3.1), the error tolerances, a variable defining
the task of the integrator (for example, one-step or interval mode of integra-
tion), variables to define error exits and the printing of trace information,
a monitor routine described in detail in [22] and workspace used in part to
pass information from the setup routines to the integrator. The user is not
expected to set or access this workspace at any stage.

Essentially the calls to all the forward communication integrators are the
same. There are however variations in the subroutines defining the ODE’s
(or residuals) and the Jacobian. It is hoped that this commonality of user
interface will permit users to switch between explicit and implicit ODE
definition and between linear algebra structures fairly painlessly. That is,
the user can gain experience on simple structures and with simple defini-
tions and then change to formats more appropriate to his problem simply
by changing setup calls and redefining the subroutines for the differential
equation and Jacobian. This feature will become more important as other
structures such as almost block diagonal solvers are included; in this case
the simpler alternative of using a banded solver might be tried first.

In addition to the forward communication routines we provide just two
reverse communication routines, one for explicit and one for implicit ODE’s.
There is no proliferation of routines for the different types of linear algebra
as the Jacobian evaluation is part of the reverse communication scheme; this
design will be sufficiently general for future additions to the linear algebra
facilities. The other major parts of the reverse communication scheme are
the evaluation of the ODE (or residual) and the call of the monitor. Hence
these routines have no subroutine or function arguments.

Precisely the same setup calls are required before a call to a reverse
communication routine as to a forward commaunication routine, and the
same continuation and diagnostic equivalents are available. The only dif-
ference is that any linear algebra setup call is permitted with each reverse
communication routine. That is, the position with linear algebra structure
choice is the same as that with integrator method choice in this case.
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~ Inevitably a call to a reverse communication routine is rather compli-
cated. To assist the user, an example is given in the NAG documentation
which is intended as a template. A pseudo code version is reproduced in
Figure 4. Unlike for the forward communication routines, we have not at-
tempted to provide a clean interface. We have concentrated on efficiency
and so in particular we do not copy arrays on each entry; for this reason
we require the user to plant information in the correct area of workspace.
We do not feel this is a major disadvantage as these reverse communication
routines are intended mainly for package use. In fact, their success can be
judged from their use as the building blocks for the forward communication
routines, see Figure 2b, and by the experience reported in the next section.

declarations

call linear algebra setup routine
call integrator setup routine
IREVCM=0
CALL DO2NxF (NEQ, NEQMAX,T,TOUT,Y, YDOT,RWORK ,RTOL,ATOL,
* ITOL,INFORM,IREVCM, ITRACE,IFAIL)
check IFAIL (the error indicator)
IF (IREVCM > 0) THEN
IF(1 < IREVCM < 5) THEN
IF(IREVCM = 2) THEN
supply the Jacobian
ELSE IF (IREVCM = 3) THEN
perform monitoring tasks
ELSE IF (IREVCM = 4) THEN
indicates an unsuccessful step (normally call
DO2NxF again directly)
END IF
ELSE
supply definition of the system of differential
equations or of the residual
ENDIF
goto call of DO2NxF
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O 6O 0O 6 60

ENDIF

post processing:
optional linear algebra diagnostic call (sparse case)
optional integrator diagnostic call

if not finished reset TOUT and goto call of DO2NxF

STOP
END

Figure 4 Pseudocode for a call to a reverse communication integrator.

The integrators have several novel features and modifications from their
predecessors such as LSODE including:

(i)

(id)

(i)

On a call to the implicit ODE solvers, the initial values of the deriva-
tives of the dependent variables may be unknown. On request, the
integrator will attempt to calculate these values before starting the
integration proper, see [22] for details.

In all the integrators a special starting step size algorithm similar to
that described in [2] is used. This is designed to permit the integrator
to get “on scale” immediately. The earlier NAG stiff solvers used a
primitive version of this algorithm [1], but many other stiff solvers do
not insist on starting “on scale”.

When calling any of the integrators associated with the sparse setup
routine the corresponding internal routine adopts a special strategy
if the sparsity structure is to be determined numerically. It is often
the case that at the initial point the solution has zero components.
This causes the initial Jacobian sparsity structure to differ from that
occurring later in the integration. Because of this and also because
numerical determination of structure is less reliable close to zeros of
components, we choose to mistrust the sparsity structure determined
numerically at the initial point and on the first occasion we need to
re-evaluate the Jacobian, we also re-evaluate its structure. This has
proved a significant improvement when solving several problems over
the usual strategy of evaluating the structure only at the initial point.
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(iv)

A utility to allow the user to force recomputation of the sparsity
pattern at any time in the integration has also been provided.

The reverse communication routines can return just before a step is
taken; this and a step size override facility are included to permit
efficient treatment of problems with discontinuities. The pseudocode
in {23] shows how this might be exploited.

If, during the course of the integration, the user wishes to change the
number of differential equations he may be able to avoid a restart
and use at least some information already generated. Though a new
factorisation of the Jacobian may be needed, the user may be able
to start the new problem with the current order and stepsize. The
facility to change the number of equations, and especially to reduce
the number, has been available for some time elsewhere [10,22]. We
are providing these features but in a novel way. There are two rou-
tines, one for subtracting a specified component and one for adding
a component into a specified position in the list. Al the internal
reorganisation is handled invisibly and the user is asked to supply
extra information, when adding a component, in a form which is im-
mediately comprehensible. It is hoped that this facility will prove
particularly useful when, for example, remeshing in solving parabolic
partial differential equations by the method of lines.

Two interpolation routines are supplied. One, D02XJF, correspond-
ing to DO2XGF and DO2XHF in the earlier design (see Figure 1), is
essentially the code used internally to the integrator for prediction
and error estimation. The other, DO2XKF, is a C! interpolant which
is recommended for general use in conjunction with the BDF method
and, indeed, is used in internal calls from the DO2ExF routines for
root finding and intermediate output. Both interpolation routines
are designed to return just the first M(< N) components. Hence
one can achieve significant efficiencies for large systems when only a
few components are needed by the simple device of numbering the
components of interest as the first.
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(vii) An “error” was made in many earlier BDF codes, whereby before re-
turning after a successful step, the order of the method was changed
to that needed for the next step. This is corrected so that the inter-
polants now use the correct order of polynomial when evaluated on a
step just taken.

4.2 Subroutine DO2EJF

As mentioned in Section 3.1 an easy-to-use routine DO2EJF has been sup-
plied which combines all the facilities of the earlier DO2ExF' routines. It has
been our aim in providing this new routine to simplify the calling sequence
as far as possible. The resulting arguments are:

T REAL-—initial point of integration (and final point or root on output);
TCRIT REAL-—final point of integration;
N INTEGER—number of ODE’s;

Y REAL array of length N—solution at initial point (and solution at
TCRIT or at root on output);

FCN external SUBROUTINE—defines ODE’s;
JAC external SUBROUTINE—defines Jacobian or is a NAG dummy;
TOL REAL-—local error tolerance;

RELABS CHARACTER*1—determines whether error control with TOL

is mixed, absolute or relative (with a threshold related to machine
accuracy) which is also the default;

OUT external SUBROUTINE—used for intermediate output oris a NAG
dummy (on each call it defines the next output point);

G external REAL FUNCTION-—defines function whose first root is re-
quired or is a NAG dummy;

LW INTEGER—length of workspace;
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W REAL array of length LW—workspace—not accessed directly by the
user; and

IFAIL INTEGER—error indicator and controller of error output.

It is difficult to see how the number of arguments could be reduced further
without reducing the facilities provided except, for example, by requiring
the user to communicate through workspace. Whether or not the user
supplies a Jacobian, whether intermediate output is required and whether it
is a root finding problem are all specified without using indicators. Instead,
the user is required to use a named NAG dummy in each case where he
does not wish to supply the corresponding external subroutine. DO2EJF
determines for itself what is the situation by calling each of these routines at
the initial point, as it must in any case if all the options are being used; on
this call the NAG dummies set internal markers not specified for the user.
The only danger with this approach is that the user may specify incorrectly
the name of a NAG dummy. In this case he will either get an unsatisfied
external on linkage or, in the unlikely event of specifying the wrong but an
existing external routine, unpredictable results. Both problems could arise
in the normal course of events so should not concern us overmuch; in any
case a strict linker will usually trap the latter case.

4.3 The Successors of the Earlier NAG Stiff Solvers

We have to preserved the interface of the earlier NAG stiff solvers to provide
a degree of continuity for users with production programs. Hence we have
built the DO2ExF' routines on the reverse communication explicit solver
D02NMF making appropriate setup calls internally (as in Figure 2c). As
far as the user is concerned the interfaces and specifications are unchanged
except that the same arguments as used previously are used to define an
improved local error control. Also the workspace has been redefined and
slightly extended — hence users must be warned.

Routine D02QDF has an almost identical interface to its predecessor
DO02QBF although some of the interrupts and their method of access are
changed a little as is the workspace definition. One additional feature of
DO02QDF is to permit banded as well as full matrix linear algebra. This
extension brings this code into line with LSODE [7] in almost all respects;

19



however even with this extension the NAG Library manual contains a strong
recommendation that the DO2NxF routines be used instead.

5 Package Use of the NAG Stiff Solvers

We report our experiences with the NAG stiff solvers when used:

(i) to solve time dependent partial differential equations in two space
dimensions using a finite element space discretization;

(ii) to develop NAG Library software for the solution.of systems of one
space dimensional parabolic/elliptic PDE’s; and

(iii) to solve the systems of differential/algebraic equations arising in the
dynamic simulation of chemical engineering process plant.

First, we describe the use of the reverse communication routine for
solving equations of type (3.1) arising from use of the NAG Finite Element
Library (FEL) [24]. At present there are no time integration routines in the
FEL but methods of solution of time-dependent problems are described via
example programs. One principal method is direct integration, after a finite
element mesh is used to discretize the solution in the spatial coordinates.
For linear problems, depending on the type of PDE, this may yield an
implicit system of second order ODE’s

Bi+Ca+Da+f=0 ‘ (5.1)
or an implicit system of first order ODE’s
Ca+ Da+ f =0, (5.2)

where a is the vector of displacements of the nodes on the finite element
mesh, f is some forcing term, and B,C and D are matrices assembled
independently of the time variable. The derivatives with respect to time are
then replaced by finite differences and thus integration is performed by some
low order constant stepsize scheme, typically the Crank Nicolson method
for first order systems or Newmark’s method for second order systems.
Often, a more efficient and a more accurate technique is to use a higher
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order ODE integration method for solving implicit systems of type (5.2),
such as the BDF method implemented in the NAG stiff solvers. Note that
second order systems of type (5.1) can be reposed as first order systems of
the following form

Qi+ Py+g=0, (5-3)

where

r=|g Gle=[7 8]e=|s]s=]2]

A forward communication routine could be used to solve the resulting
first order systems, except for the fact there is no convenient way for the user
to supply the matrices B,C and D to the residual forming routine. For the
general case, the use of COMMON is not permissible as the size of B, C and
D depends on the parameters of the problem. An alternative would have
been to design the residual forming routine with a user specified workspace
parameter, thus requiring the user to pack this information therein. We
view this technique as cumbersome and error prone. The most convenient
solution is to call the reverse communication implicit routine and indeed
this approach has been adopted successfully by McCauley and Smith [25].
Since B, C and D are constant throughout the integration, the construction
of problem specific driver routines for the reverse communication routine
for commonly occurring PDE's is a relatively simple task.

The above example shows how the reverse communication interface can
be used to provide finite element solutions in conjunction with FEL. We
now consider how the reverse communication interface can be used to ease
the construction of method of lines library software for general systems
of PDE’s in one space dimension. The general class of problems may be
written as

C(z,t,u)ue = R(x,t,u,us)r + F(z,t,u,u,), (2,t) € (0,1) x (0,00] (5.4)
Bo(t)R(0,,u,uz) = go(t,u(0,t))
ﬂl(t)R(l’ta”s“x) b gl(tau(l’t))

together with an appropriate initial condition. In calling software to solve
such a problem the user defines the PDE by means of two variable name
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subroutines, one describing the PDE functions C, R and F and the other the
boundary conditions functions 3y, 31,¢0 and ¢;. In a Library context these
should not be fixed name subroutines and so the names must be passed
to the routine that performs the spatial discretization (that is defines the
initial value problem in time). It is only possible to do this in Fortran 77
without changing the body of the ODE integrator if the integrator is writ-
ten in the reverse communication style. The calling sequence to the PDE
software will, in general, be more complicated than that of the ODE soft-
ware since the user requires access to the full range of integrators and linear
algebra routines. The PDE driver need not be concerned with performing
the time integration; it is enough to interface to the reverse communica-
tion interface. Using this approach the first author has constructed new
routines for solving parabolic PDE’s without the code duplication that pre-
viously existed in the parabolic PDE (D03P) and the ODE (D02) chapters
of the NAG Library when each used their own BDF codes. The open-ended
nature of the ODE software interface has made it very easy to supply a spe-
cialised type insensitive f-method integrator that is tuned for the solution
of method of lines PDE problems.

As a final application, consider the construction of a package for the
dynamic simulation of a large chemical engineering process plant. This
example provides an illustration of another situation where reverse com-
munication allows the problem to be formulated in a natural manner and
allows a clean interface to be constructed between the application driver
and the time integrator. Kuru and Westerberg [26] take as the general
model of a chemical engineering process the differential/algebraic system

& ) (5.5)
0 = g(z,t,u,z2) (5.6)

with an appropriate initial condition. Here u is a given vector of r control
variables, x is a vector of n state variables and z is a vector of m algebraic
variables. In realistic simulations the total number of variables may be of
the order of thousands but n < m and the differential/algebraic system
has a sparsity pattern that depends on the physical connections in the
process plant. The functions f and ¢ will also depend on a wide range of
physical constants and individual models of subprocesses. One approach to
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solving the system of differential algebraic equations is to use the algebraic
equations to eliminate the algebraic variables, that is to solve (5.6) for

z = §(, u,t), (5.7)

for instance by using specialised techniques based on the direction flows of
liquids and gases. The problem can then be formulated as an ODE system
in normal form p

d—:’ = f(2,t,u, §(z, u,t)) (5.8)
Every evaluation of the function f thus requires the solution of the system of
equations (5.6). The complex nature and the size of this system of equations
together with the complexity of the network and its control structure make
it unrealistic to define the function f by a subroutine. One of the early tests
of the reverse communication interface involved joint work with chemical
engineers of Leeds University on constructing experimental software for this
type of dynamic simulation problem.

6 Conclusion

We have reported on major developments in the stiff system solvers in the
NAG Library. We have provided a set of Fortran 77 routines designed to be
both simple to use and flexible enough for the package writer to build upon.
Our successful experiments in package building have validated the design
used. Considerable effort has been expended in providing state-of-the-art
integrators with an interface which is easy to use and difficult to fool — a
very important point in designing Library software. As far as the continuity
of the NAG Library is concerned, we have ensured that the earlier driver
routines are preserved with very minor changes, we have provided a new all-
embracing driver routine, and we have replaced the previous comprehensive
routine by one with more facilities.
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