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GLOBAL ERROR ESTIMATION IN THE METHOD OF LINES
FOR PARABOLIC EQUATIONS*

M. BERZINS?

Abstract. A method is described for obtaining an indication of the error in the numerical solution of
parabolic partial differential equations using the method of lines. The error indicator is derived by using a
combination of existing global error estimating algorithms for initial value problems in ordinary differential
equations with estimates for the PDE truncation error. An implementation of the algorithm is described
and numerical examples are used to illustrate the reliability of the error estimates that are obtained.
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1. Introduction. The method of lines has proved to be an important general
purpose technique for the integration of time-dependent parabolic and parabolic-
elliptic partial differential equations. One of the desirable features of a general purpose
method of lines algorithm for time-dependent PDE’s is that both the method of spatial
discretisation and the positioning of the spatial discretisation points should be chosen
so as to model accurately the properties of the exact solution to the PDE. In other
words, both the spatial mesh points and the discretisation method must be chosen to
control the spatial errors as far as this is possible. In solving the ODE initial value
problem defined by the discretisation method and the choice of mesh points, it is
desirable that the ODE time integrator should control the local error, subject to the
user’s tolerance, and should also provide a means of estimating the global error incurred
in the integration. Finally, in order to provide the user with information about the
reliability of the numerical solution, estimates of the error in the space and time
dimensions should be combined so as to provide an overall estimate of the error in
the computed solution at any stage of the integration.

There has been much interest in the development of adaptive spatial mesh methods
for parabolic PDE’s. One of two approaches is usually adopted; the mesh is either
refined continuously with the computed solution [12], [1] or mesh refinement is only
performed at discrete time levels [2], [4]. An alternate approach is to combine the
discrete and continuous approaches [13], [5]. All of these methods seek to place the
mesh points to follow the changing nature of the solution. In addition, some methods
seek to equidistribute the spatial discretisation error [1], [2].

As the time integration in the method of lines is most commonly performed by
using the backward differentiation formulae it is possible to use the ODE global error
estimators developed for this method (see Shampine [14]) to estimate the time integra-
tion error. The only restriction on the choice of global error estimator is that the
estimator must be applicable to systems of differential algebraic equations, such as
those arising from the spatial discretisation of the parabolic-elliptic PDE’s.

At present there have been few attempts to combine the estimates of the spatial
and temporal errors to produce an accurate error indicator. One example of a package
which does attempt to estimate these errors is the software of Schonauer et al. [15].
The importance of such an indicator is that it allows the reliability of the numerical
solution for both fixed and adaptive mesh methods to be evaluated. In addition, the
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estimates of the error can be used in adaptive mesh schemes as a basis for mesh
modification. It is the aim of this paper to demonstrate a simple algorithm that allows
the overall error in the computed solution to be estimated. In order to make this
algorithm as clear as possible the paper will consider a restricted class of parabolic
equations and use a spatial discretisation method that is readily analysed. This paper
is based on the earlier work of Berzins and Dew [3] but overcomes two limitations of
the earlier work in that the error estimating algorithm is applicable to second-order
finite difference discretisations and that a more accurate time integration method is
used to monitor the evolution of the error.

The paper has nine sections. Section 2 is concerned with the class of parabolic
equations that will be considered while § 3 describes the discretisation method that is
used to spatially discretise the PDE’s. Section 4 is concerned with the time integration
and with a global error indicator for ODE initial value problems. This indicator is
combined in § 5 with an estimate of the PDE truncation error to estimate the overall
error in the computed solution. Sections 6 and 7 provide details of the estimate for
the spatial truncation error and of the experiments to illustrate the capability of the
error indicator, while §§ 8 and 9 consider the potential uses of and extensions to the
error estimates.

2. Problem class. The problem class considered here is sufficiently general to
illustrate the algorithm for error estimation. The algorithm extends naturally to systems
of partial differential equations and to equations in more than one space dimension,
provided that the same method of lines approach is employed.

For notational convenience, the class of parabolic PDE’s to be considered will
be written as

@21) c(x =2 r(x, f -"—l—‘) +f(x, f u, a—”), (x, 1)eQ=[a,b]x (0, 1,]
ot 0x 0x 0x

where we assume that there exist constants ¢, and ¢, such that
(2.2) 0<c<celx, t)<ec, VY(x, t)eQ.

The boundary conditions are taken to be of the form

(2.3) B(a, t)r(a, L u(a, z),j—:) — g (1, u(a, 1))
and
(2.4) (b, t)r(b, t u(b, t),j—:) = g,(t, u(b, 1)

for te (0, t.]. The initial condition has the form
(2.5) u(x, 0)=k(x), xe[a, b].

We assume that the PDE defined by the above equation is well posed and has a unique
continuous solution u(x, t), for all (x, t) € (). The spatial mesh is defined by

(2.6) 5: a=x1<x2<"'<xN=b.
This mesh partitions the interval [a, b] into N —1 subintervals, of length h;, where

(2.7) hj= j+‘—xj j=1,2,'°',N—1.
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3. Spatial discretisation method. For many of the parabolic equations that arise
in practice second-order finite difference methods are very popular. Recently Skeel
[16] derived a modified form of the box scheme [11] that is particularly convenient
as it spatially discretises the PDE of § 2 into an ODE system in normal form. The
discretisation method can be written as

oU
(3.1) (hj—lcj—1/2+ hjcj+l/2) 'aT (xj, t) =2(Rj+l/2_ Rj—l/2)+(hj—l 12t hjf;'+1/2)

where R;.,,; and R;_,,, are defined by

xj +x_j-l-l U(x,p t)+ U(xj+l, t) U(xj+l ) t) - U(xj) t)
+1/2 =r ] rs ) 3
2 2 h

R.

)

x;+x-,  Ulx, )+ U(x-,t) Ulx, ) —U(x;i_y, t)
Rj*t/?.: r 3 f, ] ’
2 2 h;_
and j=2, -+, N—1. The quantities ¢,/2, ¢_1/2, fi+1/2 and f;_,,, are defined similarly

and U(x;, t) is the approximate solution defined by the spatial discretisation method
at the point x;. The boundary condition at x = a is implemented as

oU
(3'2) B(aa t)(c3/2) 57 (xl ’ t) = 2(ﬁ(a, I)R3/2 . ga(t’ U(xl » t)))/hl +ﬂ(a, t).f3/2
and the condition at x = b is treated similarly. It should be noted that the functions

B(a, t) and B(b, t) may be zero and so the boundary condition at, say, x =b may
reduce to the algebraic equation

(3'3) gh(t, U(xNa t))=0
The initial condition is defined by evaluating the function k(x) at the spatial mesh points
(3.4) U(x,',o):k(x,'), lzl, . N.

4. Integration in time. The system of differential algebraic equations in time
defined by the spatial discretisation method (e.g., (3.1), (3.2), and (3.3)) can equivalently
be written as

(4.1) An(U = Fn(1, U (1)
where the N-dimensional vector is defined by
U(x,t)
un=| 0"
U e, 1

where Ay (t) is an N by N matrix with nonzeros only on its leading diagonal defined
by (see (3.1))

(4.2) [An(D)]i;=8i;(hi_ici1/2t hici+1/2), i=2,--+,N—-1, j=2,---,N—-1
The first diagonal element is defined by the particular boundary condition (3.2) as
(4.3) [An(D]ii=c328(a, 1)

and the bottom diagonal element by the algebraic equation (3.3) as

[An()InnN =0.
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The vector Fx(t, U(t)) is then defined by the right-hand side of (3.2) followed by the
N —2 right-hand side of (3.1) followed by the left-hand side of (3.3). The initial
condition for U(t) is given by (3.4).

4.1. Time integration: global error estimate. In practice (4.1) is a stiff or mildly
stiff system of ordinary differential equations in time that is usually solved by software
based on the backward differentiation formulae, e.g., [9], [4]. The ODE global error
is defined by

(4.4) ge(N=U(-Y(1), te(0,t,]

where V(1) is the approximation to U(t) that is computed by the time integration
method at discrete times ¢,, t,, - - -, f..4 using local error control and may be calculated
for other values of by using a suitable interpolating routine provided by the integrator.

Shampine [14] describes a number of methods for estimating the global error in
ODE initial value problems. The algorithm best suited to estimating the overall error
is an extension of one of Shampine’s algorithms that is used by Chua and Dew [6] to
estimate the global error in integrating differential-algebraic equations using the theta
method. Suppose that an estimate of the ODE global error at time ¢, has already been
obtained ge(t,) and that the integrator takes a step of size h to time ¢, by using local
error control and without using local extrapolation. The solution of the variational
equation

(4.5) An(W =W, W(t,) = ge(t,)

(where J = (3Fxn/dU)) is shown [14] to be related to the global error at the end of the
step by

(4.6) _g_‘—’(tnﬂ) = W( tn+1)+l_e_n+l(tn+l)+ O(Ez(tn+l))

where le, ,(t) is the local error incurred on a step from time ¢, to time L, St=t,.,,
and consequently le,.,(t,) =0. Shampine integrates (4.5) by using s steps of size h/s
of the well-known theta method (e.g., see Chua and Dew [6]) to compute an approxima-
tion to W(t,.,). This integration is accomplished by making use of the Jacobian matrix

(4.7) M=AN(t)—hyJ

that is calculated by the ODE integrator and by assuming that this matrix is constant
over the interval [¢,, ¢,,,]. Define 8 = ys, where the integer s is chosen so that ;= ys = 1
and so that the theta method is stable. For the backward differentiation formulae of
orders 1 to 5 the value of s is at most 2. The extension of the formula used by Shampine
(and by [6] with s =1) to integrate equation (4.5) is

-1 1 ih
(4'8) Wn,i+l=[—0_+5M_1AN(tn+l;)]Wn‘h l=0, 1’.. .5s—1

where W,o=ge(t,) and W, = W(t,,,). The global error ge(t,+,) is then given by
(4.9) ge(thr)=le, i (ti)+ W(t,r)

where le, . (t,+,) is the local error estimate calculated by the integrator at the end of
the step from time ¢, to time ¢,.,.

4.2. Implementation of the ODE global error estimator. A possible difficulty with
the error indicator described above is that the integrator may, for reasons of efficiency,
take a step of size h* while still using the Jacobian matrix (4.7) that was calculated
with a step of size h. The effect of this is to change the value of theta by a multiplicative

R

e
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factor of h/h*; in codes such as the Hindmarsh [9] codes this factor may vary between
0.7 and 1.3. An acceptable way to keep the integration of the error equation stable is
to change the integration strategy so that the Jacobian matrix is re-evaluated whenever
the step size is changed. The effect of this change of the integrator’s strategy will be
seen not to be significant for the numerical experiments described in § 7. The reader
should note that the Jacobian matrix is used in the main integration to ensure only
that the Newton iteration converges whereas in the error estimating procedure the
Jacobian is central to the method used to integrate the error equation (4.5). While it
is theoretically difficult to ensure that the Jacobian will be updated by the integrator
frequently enough for the error integration to produce good estimates of the error this
does not seem to be a major problem in practice.

Experiments with the error indicator have shown that it is necessary to monitor
the local error incurred in the integration of the error equation. This may be done by
using divided differences of the term W(¢) in estimating the O(h?) term in the local
error of the theta method [10]. In the case when this error is significantly larger than
the local error added to W(t,.,) then the integration for the global error will have
become unreliable and must be terminated. This situation has been observed in practice
when the main integration method uses a large step size, such as may be the case when
low local error accuracy is requested by the user. Experiments have shown that the
local error estimate used for differential-algebraic equations (e.g., [4], [6], and [10])
given by

(4'10) I£n+l(tn+l)=M_IAN(tn+l)I_e>r':+l(tn+l)

where le¥,, is the usual local error estimate when AN (t) = I, improves the reliability
of the global error estimate, even when AN (¢) is the identity matrix. The option to use
this form of the error estimate in the SPRINT software has therefore been used in the
numerical experiments reported in § 7.

5. A combined ODE/PDE error indicator. The vector of the values of the overall
error at the spatial mesh points at any time is defined by E(t), where

(5.1) E(t)=u(t)— V(1)
where u(t) is the restriction of the PDE exact solution to the mesh §, i.e.,
[y(t)]i=u(xi7 t)’ l=1, : .sN

The vector E(t) may also be written as a combination of the restriction of the PDE
spatial discretisation error es(t), as defined by

es(t)=u(t)—U(1),
and the ODE global error ge(t) (see (4.4)),
(5.2) E(1)=es(1)+ ge(1).

The function es(t) represents the accumulation of the spatial discretisation error
at the mesh points, [7]. An equation for the evolution of this error may be derived by
adding terms to both sides of (4.1) to obtain the identity

An(0)u(6) = An(1) U = Fn (1, u(1)) = Fn (8, U(1) + An (D)u(t) — En (1, u(1)),
which on using the definition of es(¢) may be written as

(5.3) An(t)és = Fn(t, u(t)) - En(t, U(1))+ TE(t, u(1)),
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where the vector of spatial truncation errors on the mesh 4, as denoted by TE (¢, u(t)),
is defined by
(5.4) TE(t, u(t)) = An()1 — Fn(t, u(t))
and from the initial conditions (2.5) and (3.4)
es(0)=0.

By making use of the approximation ¢

oFy _ —
o S0~ En( u(0) = En(4, U(1)

= =

(5.3) can be written in vector notation as
. dFN
(5.5) An(1)és(t) =a—Uﬁ(t)+_T£(t, u(r)), es(0)=0.

The integration of (5.5) is performed by using s steps of size h/s of the theta method,
as in the estimation of the ODE global error, (4.8),

6—-1 1 [+ 1
(5.6) _e_s_ni+l=[—+—M—1AN(tn+l——-h>]_g:§ni
’ 0 0 s ’

[he h(1-6
+M ][—S—Iﬁn,i+l+ (-9

s LE_n,i:| +t_e*(t)
where
TE, =TE(t,+ih/s, u(t,+ih/s)), i=0,1,---,s—-1;

and where the vector te*(t) is the ODE truncation error that arises in numerically
integrating the error equation using the theta method. This error is considered in § 6.2.
Defining

(5.7) Z(t)=es(t)+ W(1)
and adding (5.6) and (4.8) gives
0 — j +
(5-8) Zni+1=[__1'+'1'M—1AN(tn+'l_l)]_Zni
’ 0 0 s ’

h(1—9)
s

hé
+M—l|:';‘LE_n,i+1+ E.n.i:l+_t_e*(t),

i=0,1,---,s— L
The overall error at the end of the step is then given by
(5.9) E(tur1)=Z(tns1) +lensi(tar).

In order to compute the terms TE, ., and TE,; in (5.6) the exact solution on the
mesh & at the intermediate time points ¢, +ih/s as approximated by

(510) y(tn + lh/S) i _.U(tn + ih/s)+Zn,i+l_8n,i

L

must be known. The term le,; is the local error at the intermediate point t,+ih/s.
Equation (5.8) is thus a nonlinear equation for Z, ;. as this term is used (see (5.10))
in evaluating TE,;.,. The issue of how to estimate the spatial truncation errors will
be discussed in the next section.
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6. Implementation of the error indicator. In this section estimates for the spatial
truncation error are derived and the implementation of the error estimator derived
above is described.

6.1. Derivation and estimation of PDE truncation error. The estimate of the spatial
truncation error used relies on the result [16] that the components of the spatial
truncation error vector for the discretisation method of § 2 using the mesh 8 satisfy

[TE(¢, u(1))], = O(hy),
(6.1) [TE(t, u(1))]: = O(h'?+ hihi—l+h%—l); i=2,.--,N-1,
[TE(t, u(1))]n =0

where the spatial mesh widths h; and h;_, are defined by (2.7). This result allows the
spatial truncation error to be estimated by using Richardson extrapolation. The actual
mesh 8 used to compute the numerical solution to the PDE is used as the “fine”” mesh
in the Richardson extrapolation process. The ‘“coarse’” mesh A° is defined by

(6.2) Ata=2,<z,<---<zp=b
where
Zi=X3i_y, i=1 -+ M, M=(N+1)/2, N isodd,
and the mesh points x; as defined by (2.6) are assumed to satisfy
X =3(Zi + Zigy), i=1,---,M

so that we can make use of Richardson extrapolation. Let u“(t) be the restriction of
the PDE solution u(x, t) to the new mesh A‘, The vector of spatial truncation errors,
TE“(t, u“(t)), on the coarse mesh A° is defined in the same way as the truncation error
on the fine mesh (5.4) by

(6.3) TE(t,u’(1)) = Ap (0)u“(t) — Fp (1, u®(2))
and satisfies

(6.4) [TE“(t, u*())]; =4[ TE(t, u(1))]ois + O(hi+ hi_y)
except at the left-hand boundary, where

(6.5) [TE (¢, u“ (1)), =2([TE(t, u(1))); + O(h}).

The spatial truncation error will be estimated by making use of two assumptions.
The first is that there exists an exact solution to the discretised PDE on the coarse
mesh. In other words there is an M-dimensional vector w(t) which satisfies

(6.6) Ay ()w—Fu(t, w(t)) =0,

together with an appropriate initial condition. The second assumption is that the spatial
error es(t) is second order with respect to the spatial mesh intervals h;. Define the
vector U“(t) by

(6.7) [U'(D)E=[U(Dki-, i=1,--- M.

From the second assumption it follows that
u'()-U()=ilu ()~ w(1)]

and so

(6.8) u()=3U°(t) —3w(1).
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From (4.4) it follows that

(6.9) Ue(t)= V(1) +ge*(1)

where the M-dimensional vector V°(t) is defined by
[V'()]i=[Y(Dlaimn, i=1,-, M

and V¢(1) is similarly defined using V(t). The M-dimensional vector ge“(t) and its
time derivative ge(¢) are defined in the same way from the vector ge(t). On substituting
(6.8) and its time derivative into the right-hand side of (6.3) and manipulating the
expression using (6.6) we get

(6.10) An () U(t) = Fr(t, US(1)) =3 Am (D)1 (1) = Eye (6, (D)) + Olige‘ (D).
Substituting (6.9) and the time derivative of this equation into the left side of (6.10) gives

A (D V7(0) = F (1, V() =5 (A (030 = Eut (6, 5°(0))
(6.11)

oF .
— Ay (Dge () + = ge‘(N+ Olige“ (D’
ou(t) —

and using the definition of the spatial truncation error, (5.4), it follows that
(6.12) TE“(t, u* () =3TAm (D Y = En (1, Y()].
The error in (6.12) is thus:

dFv . e 2
ay"(t)g—e (1) +Ofge (D"

(6.13) F(Au(ge"(0)-

This expression is difficult to quantify for a general matrix A (t), however when the
ODE global error is dominated by the spatial truncation error then this term will be
“small”” and (6.12) will provide a suitable estimate of the spatial truncation error. As
the ODE global error is only indirectly controlled by the local error control used in
the time integration it is not clear at present how the validity of the estimate defined
by (6.12) can be guaranteed in practice.

The implementation of the estimate based on (6.12) thus requires one call to the
subroutine that implements the spatial discretisation method, though with vectors that
are one-half the length of those used to compute the numerical solution. The spatial
truncation errors of the “fine” mesh solution can then be recovered using (6.4) and
(6.5). In the case when the spatial truncation error is required at the points t,+ih/s,
0<i<s interpolation is used (see §4.1) to generate the values of V(¢) and V(1)
required for the spatial truncation error estimate. The spatial truncation error in the
solution on the mesh 8 may then be estimated by using (6.10) and by using linear
interpolation to estimate the truncation error at the points x,;, i=1,-- -, M —1 which
are not in the mesh A i.e,, ’

(6.14) [TE(t, u(1)) ] _— (LTE(t, V(1)) 1ihai + [TE (8, Y(£))]inih2ioy)-
4(h2i—l + hZi)

It should be noted that the lower order of accuracy of the boundary spatial truncation

errors when derivative boundary conditions are present means that care has to be taken

in this interpolation at the second and penultimate points of the fine mesh. The solution

adopted here is to interpolate at these two points as though the spatial truncation error

is zero at the boundaries. This provides estimates of the spatial truncation error at the

{
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second and penultimate points of the fine mesh with the correct power of the spatial
mesh width.

6.2. Computational considerations. Equation (5.8) can be used to estimate the
components of the error vector Z(¢,.,) providing that we can estimate the vector te*(t)
that arises in numerically integrating the error equation (5.4). This term te*(¢) can be
estimated from the usual error estimate for the theta method but it is not clear whether
or not this term needs to be included to provide a reliable error estimate. It is possible
to monitor the size of this term and to ensure that it does not dominate the terms
TE, .., and TE,, and so corrupt the error estimating procedure. In the case when the
error grows too large in the parallel integration it would be possible to reject the step
in the main integration and to force it to be retaken using a step size that is appropriate
for both integrations. In the numerical experiments described below the term te*(t)
has not been estimated or monitored.

The terms on the right-hand side of (5.8) involving M ™' can be combined so that
only one application of back substitution using the LU decomposition of the matrix
M instead of two is required. Once the first time step of the integration has been taken
only one new evaluation of the PDE truncation error per step of (5.8) is needed as
the estimate of the truncation error used at the end of one step may also be used at
the start of the next step.

The computational overhead of the error indicator has been found by experiment
to be as large as a factor of between 2 and 3 when the local error requirement forces
the use of the backward differentiation formulae of orders 4 and 5. This in turn requires
the use of s=2 in (5.6) with a cost of two back substitutions and two calls to the
spatial discretisation method subroutine. This contrasts with less than two (on average)
back substitutions and applications of the discretisation method per step of the main
integration (excluding the cost of forming and decomposing a banded Jacobian matrix).

In the case of the backward differentiation formulae the use of =1 and s=1in
(5.8) (regardless of the value of y in (4.7)) provides a less theoretically sound but
much more efficient procedure defined by

(615) Zn,i+l=M_IAN(tn+l)_Zn,i+hM—lIEn,i+l, l=0’
which, by using (5.9), can be written as
(616) E(tn+l) = M_I(AN(tn+l)E(tn)+ hEn+l) +I_e"+l(tn+l)

where the local error estimate is given by (4.10). (When le¥, (t,,,), the more usual
form of the local error estimate, is used by the time integrator, then (4.10) can be used
to rewrite (6.16) as

E(tn+l) - M—][AN(tn+l)(E(tn)+I_e>r':+l(tn+l))+hEn%—l]

so that the global error indicator still incorporates the modified form of the local error
estimate given by (4.10).)

Equation (6.16) requires only one back-substitution and one evaluation of the
truncation error per step and is similar to the procedure employed by Berzins and
Dew [3] with their Chebyshev polynomial method. In practice the reliability of the
error estimates does not appear to be compromised by this scheme. In the case when
the ODE time integration error dominates this procedure is consistent with the global
error estimator of Dew and West [8]. It is however more difficult to estimate the error
in the integration defined by (6.16).
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In the case when this approach is used with the backward differentiation formulae
or if the theta method is used in the main integration the overhead of the global error
estimator is reduced to an acceptable level of between 10 and 30 percent for moderately

sized problems.

7. Numerical experiments. The following four test problems illustrate the effective-
ness of the error indicator derived above. (Details of grid errors and error indices for

Problems 1-4 are illustrated in Tables 8-11 in the Appendix.) _
ProBLEM 1. The first problem is Burgers’ equation which is defined by ¥

3.5 [ i e

Ju du_ Ju
—=g—+u—, , £)€(0,1)x(0,1 ¢
ot Cax? lox (% 1)€(0,1)x(0, 1]

where the value of € = 0.015 was used in the experiments. The solution satisfies Dirichlet

boundary conditions and initial conditions consistent with the analytic solution defined

by

0.1A+0.5B+C

A+B+C

(—OAOS(x—0.5+4.9SI)/e)’ B= e(—0.25(x—0.5+0.751)/e) and C - e(—O.S(x—O.375)/s).

u(x, t)=

where A=e
ProBLEM 2. This problem was used by Berzins and Dew [3] to provide an example
of a problem with a nonlinear source term and with nonlinear boundary conditions:

ou d° au\?1
—u=—l;—2<—u) —+(2+4x)u’, (x,¢)e[0,1]x(0, 1],
ot o0x ox/) u

with boundary conditions
ou
— (0, t)=—u’(-2+1%
ax
and
ou
— (1, t) = —u’t*.
ax

The initial conditions are consistent with the analytic solution

1

M

ProBLEM 3. This problem provides an example of a problem with a nonlinear
source term and a traveling wave solution:
MU p-w), (% 0€0,10)%(0, 1]
T - a2Tu —u), ) > ’
ot ox’
with Dirichlet boundary conditions and initial conditions consistent with the analytic
solution of

]
y
=
4

1

u(x, t) = 1+ ep(x—p')

where p =0.5V2.




lae
ror

ely

Ve-
or

GLOBAL ERROR ESTIMATION 697

ProBLEM 4. This problem is the heat equation with Neumann boundary
conditions:
ou d’u
—=— , 1) €[0,1]x(0,0.2],
oo (% DE[0,11x(0,02]
with the boundary conditions

Ju
a—(x, t)=me ™" cos (mx)
x

at x =0 and x = 1. The initial condition is consistent with the analytic solution
u(x, t)=sin (mx) e ™",

7.1. Testing procedure. The testing procedure employed for each of the problems
was as follows. Equally spaced meshes of 11, 21, 41, 81, and 161 points (NPTS) were
used with a mixed local error test and local error tolerances (TOL) of 1072, 107%, 1073,
107°, and 107%, respectively. The only exception to this was for Problem 2 where a
tolerance of 107" was used in the case of 161 mesh points. The time integration module
used was the SPGEAR module of the SPRINT software [4] with the Linpack banded
matrix routines. The computed measure of the accuracy of the error estimates calculated
was the error index E,(t) defined by

E (1) = || Estimated grid errors at time |
! | Actual grid errors at time ¢||,,

This error index was calculated at the end of every time step of the integration.
Tables 1-4 contain information on the values of the error index for the four test
problems above.

Key to Tables 1-4.

Start is the value of the error index at the first output point (¢t=0.01).

Finish is the final value of the error index at the end of integration.

Average is the average value of the error index sampled at the end of every time
step.

TABLE 1
Error indices for Problem 1.

NPTS Start Finish Average Max Min Cost 1 Cost 2
11 0.71 0.52 0.50 0.78 0.23 1.09 1.09
21 0.62 0.50 0.65 0.87 0.43 1.18 1.21
41 0.98 0.82 0.91 1.10 0.64 1.23 1.22
81 1.10 0.88 0.91 1.10 0.75 1.25 1.30

161 1.10 0.94 0.95 1.20 0.79 1.30 1.32
TABLE 2

Error indices for Problem 2.

NPTS Start Finish Average Max Min Cost 1 Cost 2
11 0.83 0.25 0.91 1.60 0.23 1.17 1.17
21 0.92 0.83 1.10 1.50 0.39 1.19 1.25
41 0.94 1.00 1.30 2.10 0.55 1.17 1.40
81 0.96 0.78 1.20 2.70 0.61 1.25 1.25

161 0.97 0.98 1.40 3.40 0.64 1.26 1.26
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TABLE 3
Error indices for Problem 3.

NPTS Start Finish Average Max Min Cost 1 Cost 2
11 0.81 1.00 0.83 1.00 0.63 1.05 1.10
21 0.95 1.00 0.96 1.10 0.97 1.05 1.20
41 0.98 1.10 1.10 1.20 0.99 1.13 1.25
81 1.00 1.20 1.10 1.30 0.99 1.17 1.23

161 1.20 1.30 1.20 1.40 1.00 1.21 1.21
TABLE 4

Error indices for Problem 4.

NPTS Start Finish Average Max Min Cost 1 Cost 2
11 1.10 1.30 1.20 1.40 0.65 1.12 1.05
21 1.20 1.30 1.30 1.60 0.66 1.17 1.09
41 1.20 1.30 1.30 1.60 0.67 1.20 1.12
81 1.40 1.30 1.40 1.70 0.67 1.23 1.00

161 1.40 1.40 1.50 1.70 0.67 1.27 0.84

Max is the maximum value of the error index calculated at the end of every time
step.

Min is the minimum value of the error index found throughout the range of
integration.

Cost 1 is the computational overhead cost in supplying error estimates, neglecting
the change in integrator strategy described in § 4.2, and is defined by

c.p.u. time including calculating error estimates

Cost 1= - ; s . .
c.p.u. time excluding calculating error estimates
In this case the integrator uses the same stepsize sequence and number of Jacobian
evaluations whether or not the global error estimates are calculated.
Cost 2 is the computational overhead cost in supplying error estimates and
including the change in integrator strategy described in § 4.2, and is defined by

c.p.u. time including calculating error estimates

Cost 2= ; = . - - s .
c.p.u. time excluding calculating error estimates and using original integrator

In this case the integrator uses slightly different stepsize sequences and numbers of
Jacobian evaluations depending on whether or not the global error estimates are
calculated.

7.2. Comments on numerical results. The error estimates for Problems 1 and 3 are
in good agreement with the actual error. For Problems 2 and 4 the combination of
derivative boundary conditions and the nonlinear source term makes it more difficult
to provide good estimates of the error.

An interesting feature of the above results is that the error indices do not appear
to converge to one as we increase the number of points. In particular the minimum
value of the error index remains fixed at 5 for the problems with derivative boundary
conditions. There are two main sources of inaccuracy in the approach we have used:

(1) The global error from the ODE integrator may be corrupting the estimate of
the space discretisation error.

¥
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(2) The time integration scheme used in integrating the error equation may be
sufficiently inaccurate to degrade the quality of the error estimates.

In order to investigate this situation the exact spatial truncation error was used
and the experiments repeated. This resulted in only minor changes in the quality of
the error estimates. A similar situation occurred when a local error tolerance of 10~°
was used with the original estimate (6.12) of the spatial truncation error in that the
overall quality of the error estimates was undiminished. Finally the experiments were
repeated again using the original estimate of the spatial truncation error but using the
backward Euler method for the main integration with a local error tolerance of 107,
This ensured that the spatial discretisation error was dominant and that the integration
formula (6.16) could be justified on the basis of the approach of § 5. The error indices
for Problems 1 and 4 are shown in Tables 5 and 6.

In Table 5 the error indicator exhibits good asymptotic behaviour as we increase
the number of mesh points.

In Table 6 the asymptotic behaviour of the error estimates is also good apart from
the consistently low value of the minimum error index. These low values of the error
estimate occur at the very start of integration when the error is dominated by the initial
error in approximating the derivative boundary conditions. Table 7 shows the values
of this error at the end of the first time step for different values of NPTS using a local
error tolerance of 10~°. From Table 7 it is clear that the initial space error is first order
and so the second assumption used to derive the spatial truncation error estimate does
not apply. This causes the estimate (6.12) to underestimate the spatial truncation error

TABLE 5
Error indices for Problem 1.

NPTS Start Finish Average Max Min
11 0.56 0.60 0.50 0.79 0.20
21 0.44 0.71 0.74 0.95 0.42
41 0.91 0.93 0.91 0.97 0.84
81 0.96 0.97 0.97 0.99 0.95

161 1.00 1.00 0.99 1.00 0.99
TABLE 6

Error indices for Problem 4.

NPTS Start Finish Average Max Min
11 0.90 1.00 0.98 1.00 0.65
21 0.98 1.00 0.99 1.00 0.66
41 0.99 1.00 1.00 1.00 0.67
81 1.00 1.00 1.00 1.00 0.67

161 1.00 1.00 1.00 1.00 0.67
TABLE 7

Maximum grid errors for Problem 4 at end of first step.

NPTS 11 21 41 81

Error 49E -6 24E -6 1.2E-6 6.0E -7
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for the first few time steps. Eventually the spatial discretisation error exhibits second-
order behaviour and the error index tends to one. It is not clear if this behaviour is
particular to this problem or to the discretisation method described in § 3. One solution
to the difficulty would be to modify the discretisation scheme so that derivative boundary
conditions are treated more accurately. This point requires further investigation.

Despite this difficulty with derivative boundary conditions for the discretisation
method described in § 3, the error indicator provides a generally good indication of
the overall error.

In general the computational cost of the approach has been reduced to an
acceptable level for the class of problems that we have considered and the effect of
changing the integration strategy does not seem significant. In the case of Problem 4
the new integration strategy is more efficient (once the overhead of the error indicator
is taken into account) as the more up-to-date Jacobian matrix (4.7) results in faster
convergence and allows the integrator to use fewer time steps.

Appendix 1 contains more detailed information on the size of the error indices
and the size of the maximum grid error at a subset of the discrete times at which the
error was estimated. The estimate of the maximum grid error computed by the error
indicator is then given by

Estimated grid error = actual grid error X error index.

The Appendix thus shows that the error estimates computed are in general in reasonably
good agreement with the actual error.

8. Exploiting the global error estimates. The idea used to estimate the combined
error can be extended to more general PDE’s, provided that the PDE truncation error
can be estimated in the same way and that local error control is used in the time
integration. The implicit ODE form, (4.1), used in estimating the ODE global error
will allow the error estimator to be extended to mixed ODE/PDE problems and to
parabolic-elliptic systems of PDE’s. Though in this case it may be necessary to modify
the ODE global error estimating procedure to take account of differential-algebraic
equations.

The error indicator can be applied to discrete time remeshing methods such as
that used by Berzins, Dew and Furzeland [4]. The interpolation procedure used to
interpolate from the old mesh to the new must also be applied to the error estimate
and some attempt made to estimate the error introduced by interpolation. It might
also be possible to try to balance the local contributions to the global error from both
space and time.

9. Summary. From our practical experience, the error indicator derived above
seems to be a promising means of estimating the total error in the numerical solution.
Over a limited range of simple parabolic equations the indicator has been found to
be reliable and a considerable improvement over the earlier method of Berzins and
Dew [3] both in terms of the accuracy of time integration of the error equation and
in terms of the accuracy of the PDE truncation error.

Further work needs to be done to consider how the time-integration scheme for
the error equation might be made more reliable and how the time integration error
can be controlled so that the spatial discretisation error estimate remains valid. Further
work also needs to be done to extend the error estimate to differential-algebraic
equations and to coupled ODE/PDE problems and to combine the error estimates
with adaptive space remeshing in order to equally distribute the error between the
space and time integrations.
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Appendix 1. Details of the grid errors and error indices for Problems 1 to 4. See Tables
8-11.
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