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A family of spatial discretization formulas, based on piecewise Chebyshev
expansions with C° continuity, is given for the solution of a general class of
parabolic equations. These formulas are obtained by first expressing the
generalized Chebyshev method of Berzins & Dew (1981) in, a Galerkin
framework, and then using this framework to simplify the method. An analysis of
the new and old discretization formulas is given and a comparison made with a
finite-difference method. A method is described for obtaining an indication of the
error in the numerical solution that takes account of both the spatial and
temporal approximations.

1. Introduction

IN recent years there has been considerable interest in the development of
general-purpose codes for time-dependent partial differential equations (see the
survey by Machura & Sweet (1980)). These codes are generally based on the
method of lines using Gear’s method for the temporal integration. Two ex-
amples are the C' collocation code PDECOL written by Madsen & Sincovec
(1978) and the finite-difference code of Dew & Walsh (1981). PDECOL is the
first widely available general-purpose code to provide the user with the option of
selecting the order of the approximation to be used in spatial discretization. The
formulas providled by PDECOL have been derived using C' polynomial
approximations.

In this paper we are concerned with deriving a family of spatial discretization
formulas that are based upon piecewise polynomials, with C° continuity. The
formulas are easy to implement and apply to a wide range of parabolic equations.
The advantage of using C° continuity, compared with C* continuity, is its much
wider applicability (e.g. problems with material interfaces and with discontinuous
initial and boundary conditions) coupled with the fact that it is possible to derive
a complete class of formulas, including first- and second-order ones. The formulas
have been derived using an improved form of the generalized Chebyshev method
of Berzins & Dew (1981). A distinctive feature of the method is the use of a
Chebyshev weighted inner product that allows the well-known advantages of
Chebyshev polynomial approximations to be exploited.

The family of discretization formulas derived in this paper have been
implemented in a general-purpose p.d.e. solver SGENCO, which is part of the
SPRINT package of Berzins, Dew, & Furzeland (1985). The main drawback of
providing such a general-purpose routine is that the user now has to make an
additional choice in selecting the order of the formula to be used. In order to help
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with this task we have been investigating various ways of providing an error
indicator which combines the errors in both spatial discretization and temporal
integration using Gear’s method. One such technique is described in Section 4.
Although such indicators are in their infancy, this is clearly a necessary first step
towards selecting automatically the order of the polynomial to be used in the
spatial discretization.

2. Preliminaries

For the sake of clarity we shall consider a problem class that is sufficiently
general to illustrate the main features of the method and remark that the method
extends naturally to systems of partial differential equations and to boundary
conditions of much greater generality. The class of parabplic equations con-
sidered is given by

2] u du Ju
a—xr(x, t, u, a_x) = q(x, tu, — Foe ) (x, ) e Q), 2.1)
where Q=[a,b] X (0,t.] and u = u(x, t), with
Ju Ju ou u
tu,—,—|= ——flx, t, u,—), :
q(x, L a:) c(x, t, u) P f(x, ) U, ax) (2.2)

¢ being bounded by constants c¢; and c,:
0<ci<c(x, t,u)<c, VY(x,t)e Q.
The boundary conditions are taken to be of the form

u(a, £) =0, r(x, : u,z—;‘)=g(t, W) atx=b (te(,t])  (2.3)

and the initial condition has the form
u(x,0)=k(x) (xela,b]. (2.4)

We assume that the p.d.e. defined by the above equation is well posed and has a
unique continuous solution u(x, t), for all (x, r) € Q. For each ¢ € (0, t.], we shall
approximate the solution by a Cy-continuous piecewise polynomial U(s, t), with
C° continuity in ¢, and introduce the approximate functions

glx, t)=c(x, ¢, U) a7 —f(x, t, U, 8_§Q’ F(x, t)= r(x, t, U, %]) (2.5)

It is assumed throughout that:
1. the functions g and 7 tend to g and r respectively as U tends to u;
2. r is continuous on £;
3. @ is piecewise continuous in the x variable with known points of discon-
tinuity that are independent of ¢.
The spatial mesh is defined by 6 = {X,, . .., X}, where

a=X<X,<---<X,=b; (2.6)
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the X; are referred to as break points. This mesh partitions the interval [a , b] into
J subintervals,

L=[X_,X] (j=1,...,)) 2.7)
of length h;, where
h]=Xj—X]_1 (j=1,...,J). (2.8)

We shall assume that the break points are chosen to include any points in the
interval [a, b] at which the function g(*) is discontinuous with respect to the
spatial variable x.
It is helpful at this stage to define the piecewise-polynomial spaces that are used
in this paper. Let
Me(r, 8):={veCa,b]:veP () (j=1,...,))}, (2.9)
where P,(I;) denotes the set of polynomials of degree <r defined on the interval
IL; further, let

M*(r, 8):=M*(r, ) N {v: v(X)=0 (j=1,...,J)} (2.10)

and
M(r, 8) := M°(r, 6) N {v : v(a) =0}. (2.11)

These spaces have been used by a number of authors to analyse spatial
discretization methods; see, for example, Dupont (1976).

The following two t-parametrized families of inner products are also used: the
L, inner product

(u,v)' = fbu(x, tu(x, £)dx (te€(0, t])

and the piecewise-Chebyshev inner product

4, (%
W o)== f pu(x, o, ) de (€ (O, £.]),
T j=1/x,
where u(e, t) and v(e, t) are in M*(N, ) and

pi)=[1-Wix)]? (xel);

here, W is the linear mapping of [, onto [—1,1]. The norm associated with the
Chebyshev inner product is denoted by

e, Ollo = Vi, u),

3. Chebyshev C° collocation method

The generalized Chebyshev method of Berzins & Dew (1981) was derived by
using a series-expansion method that exploited the properties of Chebyshev
polynomials. This section shows that the same method can also be derived by
applying a Galerkin-type method to the original p.d.e. This allows the relation-
ship between the generalized method and the C’-collocation method discussed by
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Diaz (1977) and Wheeler (1977) to be established, and a new discretization
method to be devised. This new method, referred to as the Chebyshev C°
collocation method, retains the advantages of the generalized method but is
simpler and more efficient to implement in a computer program.

The general idea of the generalized method is first to approximate the solution
u(,t) of equations (2.1)-(2.3) by a piecewise polynomial approximation
U(s,t) e M(N, 8), where N is the degree of the polynomial used in each
subinterval. The approximate solution may then be written as

Uf(x: t) . i ai.i(t)Ti(‘Vi(x)) (x € Ija] = 1’ MR ])’ (31)

for te(0,¢t], where Uj(e,t) is the restriction of U(e,t)\to I, with T, the
Chebyshev polynomial of the first kind of degree i and w; as defined above.

To derive the generalized method we introduce the piecewise polynomial
approximations Q(¢, t) and R(e, t) which interpolate the functions g(e, £) and
7(e, t) respectively (see equations (2.5)) at the transformed Chebyshev points x; ;
defined by

(N—=i)n
N

Wi(x;,;) = cos G=1,...,J;i=0,...,N). (3.2)

The reader should note that the transformed Chebyshev points x; 5 and x;,; o are
both equal to the break point X for j=1,...,J —1. The functions Q(*, t) and
R(*, t) can both be written as Chebyshev polynomial expansions of the form
given by equation (3.1); the polynomial coefficients are respectively denoted by
gi:(t) and r;;(¢1) G=1,...,7;i=0,...,N). The function (e, ¢) is assumed to
be piecewise continuous (in the x variable) with any discontinuities at the break
points X; and hence the approximating piecewise polynomial Q(e, #) may also be
discontinuous at these points. The discretization methods described here require
the values of Q(x, ¢) as x tends to the break point from above and below. To
handle this situation we use the following convention:

Q(xj+1,0) t) = el_ilgl_’_ Q(XI + £, t):. Q(xj,N) T) . el—igl-#‘ Q(X] —-E, t) (33)

The same convention is also used for the piecewise polynomials dU/dx, R, and
dR/dx, which may also be discontinuous at the break points.

Having defined the polynomials Q and R, the discretization method can be
derived from the approximate identity

R
Pt

The details of the discretization formulation are fully given in Berzins & Dew
(1981). It is sufficient for our purposes to remark that the generalized method can



¢” CHEBYSHEV METHODS FOR PARABOLIC P.D.E.s 19

also be derived from the following pair of orthogonality conditions:

(%—Q, w);=0 Y w(e, t) e M**(N, 8) (t=0), (.4
(Z-0,v) =0 ¥ u(,neM1,8), ¢=0) (3.5)

We shall assume that the inner products are continuous in the parameter ¢. By
using the basis

w;(x) = T"(Wf(x))zi_ '_T;‘Z(m(x)) (i=2,...,N;j=1,...,J)

for the space M**(N, ), and integrating (3.4) by parts, it is possible to derive the
simple relation given by equation (2.8) in Berzins & Dew (19813. Full details of
the derivation of these conditions can be found in Berzins 1982. Both the
conditions (3.4) and (3.5) are evaluated in their weak forms; for example,
condition (3.5) becomes

t
(» %’) +(Q, v) —g(t, U, )u(b)=0 (t=0). (3.6)
The generalized method was derived by using the properties of Chebyshev
polynomials to evaluate the inner products analytically. The formulation above
shows that the terminology of Wheeler (1977) may be used to refer more
accurately to the generalized method as a C° Chebyshev—Galerkin Method.

In the next part of the paper, sub-optimal quadrature rules (lumping) are used
to approximate the inner products, since this leads to a simpler and more efficient
method. This is the Chebyshev C° collocation method. We shall consider each of
the orthogonality conditions (3.4) and (3.5) separately by applying different
quadrature rules to take account of the different weight functions in each of the
inner products.

3.1 Orthogonality Condition (3.4)

Following a similar approach to that of Diaz (1977) we can apply the
(N + 1)-point Gauss—-Lobatto quadrature rule with the Chebyshev weight func-
tion to the inner product in equation (3.4) to obtain the equations

3R . .
—a;(x]',i,t)_Q(xj',',t)=0 (]=1,...,J;l=1,...,N_1), (3.7)

where the points x;; are defined by equation (3.2). In the case when
oR or
a_x (xj,i: t) - a_x (xj,i’ t);

equations (3.7) are identical to those obtained by collocating at the transformed
Chebyshev points x; ;. This condition holds when 7(x, t) is a polynomial of degree
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N or less on each subinterval, e.g. when
oU
F(x, t)=(ax + b) —+
F(x, t) = (ax + b) o cU

for real constants a, b, and c. For this reason, we refer to (3.7) as collocation-like
equations and to the method as a Chebyshev C° collocation method to distinguish

it from classical Galerkin methods.
Equation (3.7) can be written as an explicit equation for U/t at the point x; ;:

dy; ,-)
dx

dU;; OR
c(xj,t: t) (]j,i) d;, =a (xj,i) t) +f(xj,i: t; l]j,iy

where U;=U(x;;,t) (j=1,...,J;i=1,...,N-1). The \right-hand side of
this equation is much simpler than the expression we obtained using the method
of Berzins & Dew (1981). Any loss of accuracy due to the use of the quadrature
rule is unlikely to be significant, since we can show that the approximate solution
UeM(N, 8) that satisfies equations (3.7) is also the exact solution of the
perturbed differential equation

dR QP _ _
T-21=0@w 1 (60X, X)X O, T j=1....7), (8
where
hTa: v Ty
P(x, )= —Z’ [q’NTl(t) Tv(py) + q]',N(t)(;:,—_:_(i}) + <P)] + 1,8 Tn(y),
in which

¢=Ty1(y)/(N-1), y=Wix) xel), ye[-1,1]

In the case of the generalized method, the parameter ¢ is zero. Both of these
results depend on the elementary properties of Chebyshev polynomials; see
Berzins (1982).

3.2. Orthogonality Condition (3.5)

By the application of a quadrature rule to equation (3.4) we were able to
approximate this orthogonality condition by a set of equations, each one of which
explicitly defines the time derivative at a single collocation point. In this section
we similarly use the Clenshaw—Curtis quadrature rule to approximate the
orthogonality condition (3.5) by a set of equations, each of which explicitly
defines the time derivative at a break point. Let {v;}{=1 denote the set of linear
basis (hat) functions that span the space M(1, ) where

v(X)=1 (i=)), v;(X;) =0 otherwise. 3.9
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Using these basis functions, equation (3.5) can be written as

( d")+(Q, u) =0 (j=1,...,0—1), (3.10)

(8 52) + (@ vy =50, UG, ). (3.11)

For j=1,...,J—1, the integrand Qu; in the inner product (Q,v;)" is a
polynomial of degree N +1 defined on the intervals I, and I;,, and is zero
elsewhere. The function v,, and hence the integrand, is only nonzero on the final
interval I,, We approximate the integrand by an interpolating polynomial (of
degree N) at the transformed Chebyshev points x;; and integrate the resulting
inner product exactly. Equivalently, we can use an (N + 1)-ppint Clenshaw—
Curtis quadrature rule. For simplicity, we shall consider the interior intervals (i.e.
j#J). In this case,

N

(Q, Uj)’ 2 Py [h Ox X i> t)Uj(xj,i) + hj+1Q(xj+1,i: t)vj(xj+1,i)]J (3.12)

where {4;}}L, denote the weights of the (N + 1)-point Clenshaw—Curtis quadra-
ture rule. The values of the weights may be found, for example, in Imhof (1963).
Using equation (3.7) we can rewrite equation (3.12) as

(Q, v)) = 3mAnQ (x; v, ) + 3 +1}~0Q( 41,00 £) +

1A IR
1231 2 ( — (x5, D(x;;) + hj+1a (X115 t)Uj(xj+1,i))

where the evaluation of the functions at x; 5 and x;,,, is defined by equation
(3.3). Similarly we can apply the (N + 1)-point Clenshaw—Curtis quadrature rule

dv;\*
to evaluate exactly the inner product (R, a”’) . Thus, on noting that Ay = Ay, we

obtain from equation (3.10), for j=1,...,J —1, the expression
h Q( i, N> t) + +1Q( j+1,0» t)
N-1

. R(xj+1,0) t) + R(xj+1,N) t) —R( j,05 t) R(x] N> t) + A'N 2 A’ (R( j+1,i» )

IR 8R
- R(xj,ix t) - hj+1 a (xj+1,i: t)vj( i+1,0) — 8 (xj,i) t)vj(xj,i))- (3.13)

A similar expression for the case when j =J can be easily found by using equation
(3.11).
In the case when N > 1, equation (3.13) can be simplified further at the interior

. . . dR :
break points, by using integration by parts on (a ; v,-) and noting that v;(x) is

zero at x =aq and x = b, to give:

SR d dv;
(a—x,vj) +<R’dx> =0 (j=1,...,J-1).
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Applying the Clenshaw—Curtis rule to evaluate exactly these inner products gives

N
2% AI(R(xj+1,i, t) — R(xj,i: 1)

JR oR
—hg (jrn,ir DU (Xj,0) — hi o (%55 t)v,-(x,-,,-)) =0 (3.14)

(j=1,...,J—1); and on substitution into equation (3.13) we obtain the simpler
expression

IR oR
hiQ(x;n, t) + R 1 Q(Xje1,0, £) = Bty O (xj+1,0, )+ hjgx‘ (xjn> 1) (3.15)

(j=1,...,J—1). In the case when N =1, the function R may depend only on
dU/38x and so be piecewise constant. The identity (3.14) then only holds trivially,
and so cannot be used to simplify equation (3.13).

Assuming that dU/dt is continuous in x for all £e(0,¢], we can use the
definition of Q(x, t) to write the left-hand side of equation (3.13) as

hiQ(x;ns £) + B 1Q(Xjr1,0, £) = (3.16)

[hjc(xj,N’ t: U]) + hj+lc( j+1,0> t U)] ( )

oU
—h f( Xjn t, U, 5; (xj,N: t)) - hj+1f<xj+l,0: t, U, _9; (%j+1,0 t))

where U; = U(X;, t). This gives an explicit formula for U/t at the break point
X,. ThlS break-pomt condition is also s1mpler than the one that is used in the
generahzed Chebyshev method. The expression derived from equation (3.11) can
be treated in the same way and the Dirichlet boundary condition is handled
directly by enforcing the condition U(a, t) =0. Finally on combining equations
(3.7), the interface conditions (3.13), and the boundary conditions, we can define
the Chebyshev C° collocation method. An algorithmic description of the method
is given in Appendix I.

TueorReM 1. The function U(s, t) e M(N, 8), that satisfies equations (3.7) and
(3.13) and the boundary conditions, also satisfies the orthogonality conditions

(% -0, w)t = (§_(_;, w)‘ Y weM**(N, ) (N>1), (3.17)

ox
(a—Q, u,.)t=z,.(t) G=1,...,7-1), (3.18)
where
O 6@ 0=-2gn0 0, yowew) wehN>D,

(i) v;(x) is defined by equatton (3.9),
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(i) Z@)=\N (Nz— 4) [Aiq;.n(8) = &j41hy4195+1,8()] (N odd),

0 (N even),
with ;=1 (i#J)and =0 (i=J).

Remark. Equation (3.18) may be written as an equation for the continuity of the
flux R at the break point X; by integrating it by parts. This is the approach applied
by Berzins & Dew (1981) to equation (3.5) to arrive at the flux continuity
condition in Theorem 1 of that paper.

Proof. Equation (3.17) follows directly from equation (3.8) by using the
perturbed equations satisfied by the Chebyshev C° collocation method and by
using the orthogonality of the Chebyshev polynomials with respect to the inner
product (e, *);. In applying quadrature to equation (3.5) we have interpolated the
function —Quv; by a polynomial of degree N on the intervals J; and 1,,, and then
integrated this polynomial exactly. In other words, the function

Gr () (—1)7
'k/)j’N(x, t) = 4h;¢
0 elsewhere,

[TN+1(W;¢(I)) - TN—](Wk(x))] (xel;k=j,j+1),

has been added to —Qu; and the resulting polynomial has been exactly
integrated. Note that, from the properties of Chebyshev polynomials,

Yin(xei t)=0 (k=j,j+1;i=0,...,N). O

This theorem shows that the effect of applying the quadrature rules (lumping)
to the generalized Chebyshev method is to perturb the inner product in equations
(3.5) and (3.6) by a function that depends on the least significant polynomial
coefficient of Q(x, t), namely g; ~(t). Indeed, from page 61 of Fox & Parker
(1968), we can show that g, x(¢) is O(h)'/N!), and we would therefore expect that
this perturbation has relatively little effect on the accuracy of the solution.

Numerical Example. From Theorem 1 we would expect no significant difference
between the solutions obtained by using the two methods. To show that this is
indeed the case, consider the following example in spherical polar coordinates-

ou 19/, au) B du

—=——(xPu—)+5u>+dxu—

“at xPox (x “ox W o

for (x,t)e[0,1]x(0,1]; the left-hand boundary condition is the symmetry
condition

ou
—(0,6)=0
5 00
and the right-hand Dirichlet condition and the initial condition are consistent with

the analytic solution of u(x, t) = '~*".
Three codes were applied to this problem: the generalized method of Berzins &
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TasLE 1
Estimates L? error norm

Time

N CODE 0-01 0-25 0-50 0-75 1-00

GENERL 7-89E -5 3-43E-4 478 E -5 5-46E -4 5-61E -4
5 SGENCO 1-07E -5 3-53E-4 4.84E -4 5-57E-4 573E -4
PDECOL 7-57TE -5 6-31E 4 1-09E-3 1-41E-3 1-65E -3

GENERL 2-31E-6 3-55E-6 4-27E -6 4-66 E -6 4-71E -6
7 SGENCO 2-47E -6 3-60E -6 425E-6 4-60E -6 4-64E -6
PDECOL 2-51E-6 1-47E-5 2-51E-5 3-55E-5 4-00E -5

GENERL 5-23E-8 5-49E -8 6-13E-8 6-44E-8 6-39E -8
9 SGENCO 5-90E -8 5-96E -8 6-43E-8 6-§4 E -8 6-55E-8
PDECOL 3-91E-8 2:63E-7 4-51E-7 6-00 E-7 T17E-7

N is the degree of the polynomial used to spatially discretize the p.d.e.

Dew (1981)—GENERL; the Chebshev C° collocation method—GENCOL and
the PDECOL code of Madsen and Sincovec (1978). In each code, a single
polynomial expansion of degree 5, 7, and 9 was used to represent the solution.
The o.d.e. integration was sufficiently accurate in each case to ensure that the
spatial discretization error dominated. Estimates of the polar—weighted L? error
norm, formed by using the trapezoidal rule with 100 equally spaced spatial mesh
points are given in Table 1.

Similar results were obtained by Berzins (1982) on a range of other parabolic
p.d.e.s; coupled with the relative simplicity of the new method, they lead us to
recommend it over the generalized method. SGENCO can also be used to solve
problems for which the C' continuity of PDECOL is unsuitable.

3.3 Linear Basis Functions

For many of the parabolic equations that arise in practice, low-order
finite-difference methods are often acceptable. The Chebyshev C° collocation
method described above defines a family of formulas, starting with linear basis
functions. It is therefore of interest to compare the Chebyshev C° collocation
method with one of the more-commonly used finite-difference formulas: the box
scheme of Keller (1970). The Chebyshev C° collocation method with linear basis
function can be written as

ou . - - N

where R;” and R;” denote the function R evaluated at the break point X; above
and below with

U*_Un-U U~ _U-U,

ox;  hiq o, b

J ]
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and U;=U(X;, t). The quantities ¢;’, ¢;°, f;/, and f; are defined similarly and
U =U(X, t). Equation (3.19) was obtained in Section (3.2) by applying the
trapezoidal rule to the weak form of the inner product in equation (3.5).
Theorem 1 shows that the effect of using the trapezoidal rule is that a perturbed
form of the inner product is exactly satisfied, namely

(mz qu =Z@® (=1,...,7-1).

If, on the other hand, we apply the mid-point rule to the inner product in
equation (3.5) and note that the functions R and Q are piecewise linear, we
obtain the set of equations

ou; _ay; + U aU;
1y et | Z=i T+l
zh’( 15 T€ 8t> s ( 3t TG T ) \

= (Rj_+1 + RJT'- - Ri_ . R]tl) i %hj(fj- +f;-—1) + %hj+1(f;- +fj_+1) (3-20)

which satisfies exactly the perturbed inner product

(E-0v)=-120) G=1...,7-1.

This result follows immediately from Theorem 1 and the property of the
mid-point rule that it is twice as accurate as the trapezoidal rule when both are
applied to the same piecewise-quadratic integrand.

Equation (3.20) is an intermediate form which can easily be used to derive
Keller’s box scheme. It is easily shown from Taylor’s series expansions that

Rj:1+ R} =2R;,+ O(h2,,

where

] 2 ) 2 ) h]+l
The functions R;_, ¢j+y, €j—y, fj-3, fj+4 are defined analogously. We can also

show that
aU: 8U aU;_, , 9y,

+ 9Yi ., -
G173 TG 3 c5_%( ot | ot

)+0m6
Hence, ignoring terms of O(h?), we can apply Taylor’s series to each of the terms
in equation (3.20) to obtain the box scheme (Keller, 1970):

h, (3(4_1 an) Byt (aU U1 )
25N\ e ) T2 e T
= 2(R]+& - ]_i) + h].+1fl.+i + h]f]_i (] = 2, e eey J - 1).

The box scheme is second-order (Keller, 1970), and from the analysis we see
that it satisfies the perturbed orthogonality condition

SR , -
(5.;_Q, Uj) 2Z(t)+0(h2+h!+1) (]—1,...,.,_1)
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Noting that Q(x, t) is piecewise linear in x and consequently
30 :
qi,l(t) = Q(xj.N’ t) - Q(xf,o’ t) = hf(_a; (¢3%)) (5 € Ii; i=1....J0),

we see that Z(t) is O(h}) + O(hZ,,). Since both the Galerkin method with linear
basis functions and the perturbation Z;(¢) introduced by quadrature are second-
order, it follows that the Chebyshev C° collocation method with linear basis
functions is also second-order. ;

A possible difficulty with the Chebyshev C° collocation method is that the user
has to supply both the left and right limit values of any function that is
discontinuous at the break points. In practice this is often not a problem; the user
interface described by Berzins, Dew, & Furzeland (1983) provides a solution to
this problem.

3.4. Open Quadrature Rules

The slightly improved accuracy when using the mid-point rule and the possible
problem of evaluating left and right limit values of functions at break points
suggest that it may be worth considering open quadrature rules for lumping,
instead of the closed quadrature rules used here. The difficulty is caused by the
inner product in equation (3.5); applying open quadrature rules, and using the
approach described above, results in implicit ordinary differential equations in
time such as equation (3.20).

Recently, Skeel (1981) derived a modified form of the box scheme that
overcomes this problem. (In the case of nonpolar parabolic equations the Skeel
scheme is identical to the lumped finite-element scheme of Bakker (1977),
providing that the function ¢ in equation (2.2) is constant.) At present it is not
clear if this approach can be extended to the discretization formulas described
here that are based on polynomials of degree =2 and give rise to a system in
normal form.

4. Error indicators for the Chebyshev C° collocation method

In the first part of this paper we showed how the use of quadrature rules
(lumping) simplified the generalized Chebyshev method to give the Chebyshev C°
collocation method. We now consider the problem of providing some indication
of the error in the numerical solution. Two approaches are considered. The
first—introduced by Delves (1976)—only estimates the spatial discretization
error, while in the second approach we devise a new technique for estimating the
combined error that is introduced by the spatial and temporal discretizations.
This is achieved by combining the general approach of Delves with a global error
indicator for Gear’s method.

For notational convenience, now denoting u =u(*, *), equations (2.1) and
(2.2) will be written in the form

% —Su ((x,H)eQ) 4.1)
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where S is a nonlinear differential operator defined by

Su(x, ) = a% r(x, b, u(x, 0, % & t)) + f(x,  u(x, ), % x, t)) 42)

For simplicity of derivation, and without loss of generality, we have restricted
equation (2.1) to the case when
c(x, t,ux, ))=1 ((x,)eQ)

and we assume that: (i) the function

(x, t)— r(x, t, u(x,t), g% (x, t))

is differentiable at the break points, (ii) the degree N of the approximating
polynomial is greater than 1, and (iii) the boundary conditions are of Dirichlet
type. The first and second assumptions allow the simplified form of the
break-point condition, equation (3.15), to be used.

4.1 Delves’ Error Indicator for the Spatial Discretization Error
The spatial discretization error, e(x, t), is defined by
e(x, )=ux, )-U(x, 1) ((x,1)eR).

Suppose that the exact solution of the p.d.e. defined by equations (2.1), (2.3),
and (2.4) on the interval [ is given by the uniformly convergent Chebyshev series

u(x, t) = 26 b ()T:(W(x)) (xel) (4.3)
and that the truncated form is given by
N
uj(x, 1)= 26 b ()T Wj(x)) (xel). (4.4)

Delves (1976) made two assumptions. The first assumption is that the polynomial
coefficients b;; converge at some power rate:
b, (D =B(t)i”", r>3

so that (Delves, 1976)
llu; — 3, = (NRb} )

and the second assumption is that
U=u} (j=0,...,J).
It follows from these two assumptions that
llw = Gll, = Nhai ), (4.5)

J p
lexe, = (3 3 () @6)
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Although there are no proofs that we are aware of to justify these assumptions
for the Chebyshev C° collocation method, the Delves indicator appears to work
well in practice.

In the estimation of the combined error due to the spatial and temporal
approximations, it is necessary to estimate the error at the individual mesh points.
A simple pointwise error estimate that satisfied equation (4.6) may be derived by
assuming that the error in any interval may be approximated by a spatially
constant function, i.e. for the jth interval:

ex, )=ki(t) (xel;j=1,...,J). 4.7)

On substituting the right-hand side of equation (4.7) into equation (4.5) we see
that a suitable value for k;(¢) is given by

|k;(t)| = Ni |a;, N ()]

and hence an estimate of the spatial discretization error at the collocation points
is given by

es(x;; )=Nla; () (=1,...,N=-L;j=1,...,)). (4.8)

The estimate used at the break point is the weighted average of the values in the
adjoining two intervals:

N? :
e AXj, t) = [hj+1aj+1,N(t) + hjaj’N(t)] (] = 1, - ey J— 1) (49)
hj + hj+1

4.2 Integration in Time

The system of ordinary differential equations in time defined by the Chebyshev
CP° collocation method (e.g. equations (3.7), (3.13), and (3.16)) can equivalently
be written as

a(t) = fulu(0)). (4.10)
where (JN + 1)-dimensional vectors are defined by
u; Uo Uro
u(t) = 'fz ,  u= U” G=1,...,7-1), w= U:“ ;
uy Ui n-1 Ui~

and U;; = U(x;, t). The initial condition for u(¢) is found by evaluating k(x) at
the transformed Chebyshev points in each element.

We now define a restriction operator r, that maps from a C° continuous
function defined on the interval [a,b] to a (NJ + 1)-dimensional vector of the
function values at the transformed Chebyshev points in each interval, including
the break points. For f € C°(£2), we similarly define r,f by:

(mf)O) =nf(e, 1) (e(0,L]
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Associated with the restriction operator is a prolongation operator
p, : RN 71 MW, 8),

which defines a piecewise Chebyshev polynomial of degree N on each interval I,
by using polynomial interpolation between the function values at the transformed
Chebyshev points in I,. Thus, in the case of the function U, we have

U(e, )= pu(t),  u()=nU(, 1) (4.11)

In practice, equation (4.10) is a stiff or mildly stiff system of ordinary

differential equations in time that is usually solved by Gear’s method. The o.d.e.
global error is defined by

e()=u()-v() (1e(0,z])

where v(t) is the approximation to u() that is computed by Gear’s method. It is
well known that (Shampine, 1979) e,(t) satisfies:

Fe@(tns0) + €(tns2)) = o0 (tsr)) + ex(ter) %
1

o [i %egltnr1—i) ~ eg(tn+1)] -0 «0=0 @412

where h=t,,,—t, and e(t,,,) is the truncation error associated with the
backward-difference formula of order p, defined by the coefficients «; (i =
1,...,p) and B (Gear, 1971). One of the simplest methods of estimating the
global error using (4.12) is that of Dew & West (1979). This method calculates
e,(t,+1) from the equations

(I — hBG)ey(ty+1) = eelty+1) + ey(t,)

where e,(t,.1) is the local error estimate that is used to approximate e(t,,,) at
time ¢,,, and the matrix G is the approximation to the Jacobian matrix dfy/du, of
the right-hand side of equations (4.10) that is used by Gear’s method.

4.3 A Combined O.D.E.—P.D.E. Error Indicator

We shall now consider an error indicator that also takes the propagation of the
error in time into consideration. Qur aim is to estimate the overall error in the
numerical solution due to spatial discretization and to temporal integration. The
combined p.d.e. spatial discretization error and o.d.e. global error is defined by

e(t) = nu(e, ) —v(r) = es(t) + ey(t)

where eg(t) = e (*,t). The function eg(t) represents the accumulation of the
spatial discretization error at the mesh points, and is termed by Cullen & Morton
(1980) the evolutionary error. It is convenient to introduce the polynomial function
i(*, t) which is defined by

a(e, t) = punu(e, t),

since this allows us to obtain a more suitable expression for the error at the mesh
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points. From equation (4.1) and from the initial condition (2.4) it follows that, on
applying the restriction operator r,,

oe, - N
n, E =fN(rhu) —fN(rh U) + rhSu —fN(rhu), l',,es(° N 0) =0.
This can be written in vector notation, by using equation (4.11), as

The vector er(t) is defined by applying the restriction operator r, to the p.d.e.
truncation error

eT(x: t) = (Su)(.’ t) - pth(rhﬁ(°: t))
The vectors ég(¢) and @(¢) are similarly defined by

. des _ .
és(t) = Orvs (e, 1), a(t) = n,u(e, t).
We now apply the same backward difference formula to equation (4.13) as in

equation (4.12) to give

fN(ﬁ(th)) _fN(_u(tn+1)) +ep(ty+1) + (21 (Xies(tr;+1—i —es(thr1) + e;k(tn+1)> # =0

where e{(f,41) is the truncation error from using the backward-difference formula
in this calculation. Using equation (4.12) to eliminate the term fv(u(t,+1)) gives

fN(v (ti+1) + e(tn+1)) _fN(” (tn+1)) + eT(tn+l) + [ex(tur1) + € (b +1)] %

+ (é:l ae(tni1-;) — e(tn+l)) % =0, e(0)=0. (4.14)

The only differences between equations (4.14) and (4.12) are that in (4.14) we
have e(t), not e,(t), and we have added two extra terms, ex(t,.1) and ei(t,41), to
the o.d.e. truncation-error term. Consequently the same techniques can be
applied to both equations. For simplicity, we shall use the Dew—West method,
although any of the methods described by Shampine (1979) could be used; it is
not clear at the moment which is the most suitable. Applying the Dew—West
method gives

(I — hBG)e(trs1) = €e(tns1) + € (trs1) + hBer(tnsr) + €(t)- (4.15)

The weakness of this approach is that it is a zero-order approximation to the
linearized form of equation (4.13). Better approximations are possible using
methods described by Shampine (1979) and these will be part of our future
investigations.

4.4 Implementation of the Error Indicator

Equation (4.15) can be used to estimate the components of the error vector
e(t,.,), providing that we can estimate the vectors e’ (t) and e(t). The vector
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ef(t) is the o.d.e. truncation error that arises integrating numerically the spatial
discretization-error equation (4.13). At present, it is not clear how the term e (¢)
can be estimated and whether or not it needs to be included to provide a reliable
error indicator. In the numerical experiments described below, we have not
attempted to estimate this term. The p.d.e. truncation error er(t) can be
estimated at the collocation point x;; by using the pointwise error indicator
derived in Section (4.1). The component of the vector ey(¢) corresponding to the
collocation point x;; is then given, fori=1,...,N—-1landj=1,...,J, by

[ex(D)] = Ex(x;:, ) =N i(Sj,zv(t)) (4.16)

where I=Nx(j—1)+i and the coefficient s;,(t) is the Nth Chebyshev
coefficient of S;(u(e, t)) at time, ¢, with Sj(u(e, t)) denoting the restriction of
S(u(e, 1)) to the interval I. The coefficient s;  is used in this estimate because, at
any given time ¢, the p.d.e. truncation error defined by equation (4.13) depends
on the exact solution to the p.d.e. (u(x,?)) and its polynomial interpolant
(a(x, t)), and not directly on the computed solution at that time. The truncation
error at the break-point X, for j=1,...,J—1, is estimated by (see equation

4.9))
N?

lex(#)]x = Ex(X;, t)zh-+h- )
7 j+

(7418741, n(8) + Bys; N (2)], (4.17)

where k=jN. This estimate is consistent with the form of the collocation
equations in the break-point equation (4.4).
The coefficients s; ;(t) may be estimated by noting that, from (4.1),

n[Su)(s, ] = v(2) + é(t), (4.18)

where ©(¢) is the time derivative produced by Gear’s method but é(¢) is the time
derivative of the error at time ¢. The coefficient s; 5 is approximated by the Nth
Chebyshev coefficient of the function

Puru[(Su)(*, 1)]

which is .a polynomial of degree N on each interval. The implementation
algorithm for this error indicator is described in Appendix II.

5. Numerical examples

The following two examples illustrate some of the properties of the error
indicator derived above. The first example is the p.d.e. used in example (3.2.1)
and the second example is defined by:

1 %u _ w
%_ aﬁ-i'cle e 1fxe[—1,0),
o |1 6%

a§+ Ce > +e™ ifxe(0,1],
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subject to the boundary conditions
u(—1,t)=log. (—C, +t+P),

u(l, 0+(CZH+P)%(1’ t)=log. (C,+t+ P)+1-0,

for t = 0. The initial condition is consistent with the analytic solution

u(x t)_{loge(C1x+t+P) if x=<0,
’ log. (C;x +t+P) if x>0,

and P =1-0, C;=0-1, C,=1-0. The problem was integrated from ¢ =0 to r = 1-0.

The Chebyshev C° collocation method was applied with two equally spaced
elements, using an approximating polynomial of degree 7 in each element for
Problem 1 and a polynomial of degree 9 in each element for Problem 2. The
interior break point for each problem was situated at 0-5 and 0-0 respectively.
Each problem was integrated in time with three different absolute local error
tolerances: 1073, 1077, and 10~°. The L, error norm was measured at ten time
levels during the integration (the weighted norm was not used for Problem 1,
since the Delves indicator defined by equation (4.6) does not estimate this norm
directly).

In the case when the local error tolerance is 1072, the time integration error
dominates and the error is estimated with the same accuracy as in the examples of
Dew & West (1979). The Delves indicator is not appropriate in this case. At a
local error tolerance of 1077, each indicator provides acceptable estimates of the
error norm; the Delves indicator is preferred for Problem 1 and the new indicator
for Problem 2, see Figs 1 and 3. At a tolerance of 107'° the new indicator proves
to be slightly superior to the Delves indicator.

An additional advantage of the new error indicator is that it is also possible to
estimate the maximum error at the solution mesh points.

6. Summary

The Chebyshev C° collocation method allows a wide range of Chebyshev
polynomial approximations to be applied to many p.d.e. problems in one space
dimension. Two advantages of the method over that of Berzins & Dew (1981) are
that an explicit o.d.e. system is solved and that, for linear basis functions, the
method reduces to one based upon a second-order difference approximation.

From our practical experience, the error indicator derived above seems to be a
promising means of estimating the total error in the numerical solution. Over a
limited range of simple parabolic equations, we have found it to be more reliable
than either of the two error indicators of Delves (1976) and Dew (1978), with the
additional advantage that the o.d.e. local error tolerance no longer has to be
restricted so that the time integration error is of a smaller magnitude than the
spatial discretization error. This is particularly important when high-order
Chebyshev polynomials are used in the spatial discretization of problems with
smooth solutions.
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There are two outstanding problems with this indicator: (i) it is necessary to
determine the best o.d.e. global error formula for equation (4.13) and (ii) a
suitable method of estimating the p.d.e. truncation error for a wide range of
problems and for different choices of spatial basis functions is required.
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Appendix I: Implementation details

This appendix provides a concise description of the spatial discretization
method which is derived in the first part of the paper. The method requires that a
set of break points Xy, ..., X; are provided by the user and that these break
points include any discontinuities in the p.d.e. functions c and f in equation (2.2).
The spatial discretization method has been designed to reduce the p.d.e. to an
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implicit system of ordinary differential equations of the form
F(t, u(®), u(t)) =Au—G(t, u(t))=0, u(0)=k, (A1)

where the matrix A may be singular. The vectors f, u(¢), and & are ordered as in
equation (4.9). Several o.d.e. solvers for problems of this type have recently been
developed, e.g. Petzold (1982). These solvers automatically calculate an estimate
of #(0) thus removing the need for a special starting procedure when the matrix
A is singular; see Berzins & Dew (1981).

Al.1 Preliminaries

Before defining precisely the vector f, it is helpful to introduce two square
matrices and three vectors of dimension N + 1.

The matrix 2 The square matrix £2, of dimension N + 1, is defined by (Berzins
& Dew, 1981):

(@)= 2T, (%) (A2)

where

(N —k)n _{2 if k)e{l,...,N—1}?}
N 5711 otherwise

({=0,...,N; k=0,...,N).

Yi = COS

The matrix D The second matrix is used to estimate the values of dU/dx at the
break-points and collocation points in each element. We first define a matrix D
by

[D).x =Ti(ye),

the derivative of T; at y,. The elements of this matrix are then given by (Fox &
Parker, 1968),

[D]i,0= [D]E.N =0 (i =1,...,N-1),
[Dly,: =i [D);=i%(-1)D (i=0,...,N),

[l_)],-,k=(sin££(i1—v:l))/sinﬂi;—1v) (=1,...,N-1;k=1,...,N-1).

The matrix D is then defined by D = D.

Temporary vectors Consider the jth element (j=1,...,J). The derivative
8U/dx at the collocation points x;; (i =0, .. ., N) in the jth element is then given
by

uf = Du; (1)

Xir1— X;
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where

u3n={[ 1N—1’ Ul (G=1),
[ e ]N 1,U]+1,0] (j=1,...,J_].).

J
From the definition of the p.d.e. functions 7, ¢, and f we can then define the
vectors ¢; and r; whose components are given by

Q=6 Ui ~f  Ryi=r(t x5 U, UR)

@i= , N), where ¢;; and f;; are defined in the same way as R; ;. The space
derlvatlve - of the flux R at the collocation points is then given by
2
t,=———=Dr,
J X] = X] J

The components of 7, are denoted by R, ;.

Al.2 Definition of the Vector f

Given the values of ¢, u(¢), and &, we shall construct the vector fin equation
(A1) by using the vectors and matrices defined above.

Collocation points The component of the vector f corresponding to the
collocation equation at the point x;; is given by (see equation (3.7))

F},i=Rj,i_Qj,i (i=1,...,N=-1;j=1,...,J).

Break points The contribution of the (j+ 1)th element to the break-point
condition at X}, is given by

A |
Fii,t=hQin+R i~ T Z l R, +3(1+y) . R; ;h;. (A3)
N N

The constants y; are defined by equation (A2) and A; by equation (3.12). The
contribution of the (j +2)th element to the same break-point condition is given
by

F j+LR= 5
hj+1Qj+1,0 - Rj+1,0 ;+1 N+ 2 ;+1 i %(1 - y.)A—' Rj+1,ihj+1; (A4)
N
so that, for internal break points,
Fii10=(Fjs1,0hi+ Fiigr +1)h T h (Gg=2,...,7-1). (A5)

j+1

This equation (AS) may be seen to correspond to the interface condition (3.13).

Dirichlet boundary condition at x =a The value of F, , is given by (see equation
(2.3)) F,,0= Uyo. Other Dirichlet conditions at x = a are treated by defining F,, as
the residual of an equation involving U, . The same approach can be applied to
Dirichlet conditions at x = b.
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Neumann boundary condition at x =b In this case F; v has the value of F;,, ; in
equation (A3) and the boundary condition (see equation (2.3)) is treated by -
replacing R; y in the equation

FEn=hO;n+Rj o+ R;n+ 2 —R,;+ 3(1+y)— Ry hy.
=1 An An

by using R,y =g(t, Usn). A Neumann boundary condition at x=a could be
treated in exactly the same way except that, in equation (A4) with j =0, the flux
Ry o would be replaced by its value according to the boundary condition, and F o
would be given the value of F,  from equation (A4).

Appendix II: Implementation algorithm for the error indicator

The estimation of e(t,.,) involves the vector e(f, 1) (see equation (4.18)) and
so equation (4.15) cannot be used directly. Assume that the combined error e(t,)
at time ¢, is known, and that the Gear’s method has calculated v(t,4;) and
¥(¢,+1). The following algorithm can then be used to calculate e(t,+1).

Algorithm—Error Indicator
(i) Estimate é(t,+1) by
é(tyr1) = [e(t,) — €(ta-))/ (fn — tn-1)-
(i) Calculate the Chebyshev coefficients s; (f,+1) from the polynomial

Puli[(Su)(®, tas1)] = pu[0(tas1) + é(t, 1)l

(iii) Use the coefficients s; x(¢) to provide an estimate of the p.d.e. truncation
error er(t,.;) by using the estimates of equations (4.16) and (4.17).

(iv) Use equation (4.15) to calculate e(t,.;) by a back-substitution using the
factored form of the matrix I — hBG that is stored by Gear’s method.

(I — hBG)e(t,+1) = €e(tnr1) + hBer(ty+1) + e(tn).
(v) Estimate the time derivative of the error at time ¢, by

é(tys1) = [e(t.s1) — e(t,)])/(tnsr1— ts)-

(vi) Repeat steps (i) to (v) until the iteration for e(t,.1) hds converged. Two
iterations have proved to be sufficient in the experiments that we have
conducted. *

End of Algorithm



Correction for A Note on C° - Chebyshev Methods for Parabolic P.D.E.s .

There is an error in this paper concerning the simplified form of equation
(3.13). Although the actual flux r(z,t) is continuous at the break-points the
numerically computed flux B(z , £) need not be so . The paragraph below equa-
tion (3.13) must be changed as follows to allow for the possible jump in the flux

at the break-point.
" In the case when N>1 equation (3.13) can be further simplified at the inte-
. - L . or .
rior breakpoints by using integration by parts on ( oz ' Y ) and noting that

vj(x)is zeroatz =@ andz = b to give:

R dv; .
(55 )+ (R, Tx’— ) = R(zjnt)- R(zjae. t) j=1,...,N-1,

Applying the Clenshaw-Curtis rule to exactly evaluate these inner products gives

igo %E(‘"’J'H,i-t) - R(xj4.t)

ok oK
- hjyy 3;‘("5;41,1:’5) Ui (Zj414) - By a_z(xj,i-t) viz; )] = R(zyp0t) - R(zjn . t)
j=12 ... ,J-1 (3.14)

and on substitution into equation (3.13) we obtain the simpler expression

oK OR
hy @z v t) + Ry @(Zjp10.t) = hiy '5‘;:'(-‘7941,0-” + hy Er_(xj,Nlt>‘
+ B[ R(Zjr0t) - Rlzjn ) 1A G =12 ..., J-1, (3.15)

In the case when N = 1 the function £ may depend only on %r:q and so be piece-

wise constant . The identity (3.14) then only holds trivially and so cannot be
used to simplify equation (3.13). The method is then defined by the interface

equations above and the collocation equations.

The boundary condition in Berzins and Dew can be treated in much the

same way to get

hoB [ Q0 1) - ae(v.)] = R[g(b.t)-8.0) BB . OO ()

A flux boundary condition at x = @ would similarly give;
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hyf(a , t)[ @a . t) - %;:}i(a.t)] = 2[g(a.t)- fla.t) R(a , t) ] (A)™! (a)

The method is then defined by the collocation equations

_gg(xj,i-t) - @z t) =0

j=12...,J:;i=12 ..., N-1 (3.7)

where the points z; ; are defined by equation (3.2) of Berzins and Dew, the inter-

face conditions (3.15) and the boundary conditions (a) and (b).

The following theorem is a simple consequence of the fact that both Q(z,t)
and R(z , t) are polynomials of degree N on each sub-interval which satisfy the

boundary , interface and collocation equations given above.

Theorem

The function U(z,t) & M(N , §) which satisfies the collocation boundary and

,

interface conditions above also satisfies the peturbed differential equation

BB | p o= og@. 1),

oz
(., tYe (X, X)x(0, 7], i=12 ....J

where from Berzins (1982)

dTy(y) ( g5 nft) a q; n{t)
dy eN N

Pz , t) = y - 7yt fj—)

y=WJ-(z), ZE_G', ys[—l'l]:

and from the simplified form of the interface conditions we see that

hi Pi(zjn . t) + Rjn Pja(Zino, t) = 2 [ B(zji10t) - Rz, t) 1 ()t
j=12 ... ,J-1 .

while from the boundary conditions (a) and (b) we see that

hy B ) P, t) = —2[g{b.t)-p(0.£) B(b . 1) ] ()7
h‘l ﬁ(!l ’ t)Pl(a' ' t) = 2 [g(a"t> - ﬁ(fl.t) R(G ' t) ] (AN)_I




Similar Numerical Methods

The simplified description given above shows that the Chebyshev C? colloca-
tion method of Berzins and Dew (1987) , as outlined as the generalized colloca-
tion method by Berzins (1982), is related to the collocation-like method intro-
duced by Leyk(1988). The main difference is that Leyk uses the transformed

Legendre points given by

d Ly(y)
T_ , YE (—1 , 1) )
where W;(z) is the linear map defined by Berzins and Dew (1987) and Ly(y) is the

W;(x;.) = ith zero of

Legendre polynomial of degree N on (-1, 1).

The quadrature rule used by Leyk instead of the Curtis Clenshaw rule is the
Gauss Lobatto formula for the Legendre weight w{x) = 1. Leyk proves optimal

~

rates of convergence for his method and superconvergence at the break‘points .

—
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