
Applied Numerical Mathematics 2 (1986) 109-l 18
North-Holland

109

A C’ INTERPOLANT FOR CODES BASED ON BACKWARD DIFFERENTIATION
FORMULAE

M. BERZINS
Department of Computer Studies, University of Leeds, Leeds LS2 9Jr U.K.

This note is concerned with the provision of an interpolant for o.d.e. initial value codes based upon backward
differentiation formulae (b.d.f.) in which both the solution and its first time derivative are continuous over the
range of integration- a C’ interpolant. The construction and implementation of the interpolant is described
and the continuity achieved in practice is illustrated by two exampfec.

1. Introduction

At present many of the most popular library programs for the solution of the stiff initial value
problem

y’W =f(t, y(t)). y(a) given, a<t<b

are based on the b.d.f. integration method of Gear [7]. In this paper we shall consider the fixed
step form of the b.d.f. methods with interpolatory stap changing as implemented in codes such as
LSODE and LSODI [8]. Codes for initial value problems generally produce solution values, yj, in
a stepwise fashion at a set of points

a = to < t, c t2 < l . - < t,,, = b

where Yj denotes the computed approximation to the solution y(tj>. Although, in general, each
individual step-size is chosen so as to satisfy a local error criterion we shall assume for the
moment that the points tj are equally spaced in time. In the case when the method of order k is
used to integrate from tj_ 1 to tj the a.ssumption used by the b.d.f. method is that the solution
between the points tj_k and tj can be approximated by a polynomial of degree k. This
polynomial interpolates these k + 1 solution values as well as the derivative yj and so forms the
natural interpolant for the method. The values of the solution and its derivatives at a point t

where tj_ 1 < t < tj are found by interpolation using this polynomial. It should be noted that the
polynomial calculated at the end of the step to tj passes through the previous k solution values
and yi but does not pass through yJL i. This interpolant is continuous over the interval of
integration [a,b] but has a discontinuity in the first derivative at each of the points ti, i = 1,
2) . . .) n1 - 1. In the case when the mesh is not evenly spaced the earlier data is that given by the
interpolation polynomials from previous time steps. The polynomial is stored in the Nordsieck
vector form given by

where each of the derivatives y;‘) is an approximation to the ith derivative of the solution at t,.

0168-9274/86/$3.50 0 1986, Elsevier Science Publishers B.V. (North-Holland)

110 M. Berzins / C’ interpolant for Codes

In many applications the solution to the initial value problem is continuous and so is the
function f(t, p)-thus implying continuity of the first derivative. In this case it is possible to
generate a continuous interpolant of the derivative by using the continuous interpolant in
evaluating the function f(t, y). However, since the b.d.f. code does not solve the differential
equation exactly, the derivative values thus generated at the mesh points differ from the mesh
point derivative values used by the code by an amount which is proportional to the iteration
error, see [l2]. This inconsistency makes it desirable to interpolate the derivative directly from the
approximating polynomial.

The situation is more difficult when b.d.f. codes are applied to implicit differential-algebraic
equations e.g. LSODI, see [8]. In this case it will, in general, not be possible to compute y’
directly from the differential equation using y if there are algebraic equations present.

The problem of providing a sufficiently continuous interpolant also occurs in the Adams
method implemented in the DE/STEP code of Shampine and Gordon [lo]. In this case, however,
it is the interpolant of the computed solution which is discontinuous at the mesh points and the
first derivative which is continuous. Recent work by Shampine and Watts [13], Watts [14] and by
Watts and Shampine [15] has described how the interpolation routine inside DE/STEP can be
modified so as to produce a C’ interpolant. The aim of this note is to provide a similar
interpolant for the fixed step b.d.f. method with interpolatory step changing. Although the ideas
used here could probably be extended to the variable step b.d.f. formulas implemented in codes
such as EPISODE, Byrne and Hindmarsh (1975) the motivation behind this work is to provide a
satisfactory interpolant for the new b.d.f. integrator (based on LSODI), in the SPRINT code of
Berzins and Furzeland (1984) and the related code that is to be released in the N.A.G. Library.
Although these codes solve differential algebraic equations rather than the explicit o.d.e. problem
described above. the interpolant that we describe can be applied without modification to them.

The practical importance of this interpolant lies in applications such as finding the root of a
function.

J&V, y” t) = 0

by using interpolation to calculate values of y and y’ or in graphical output, see 1131. In both
cases discontinuous values of the derivative may produce unexpected or incorrect results.

2. Outline of integration algorithm

For ease of notation we shall consider only a single equation of the form of (1) and only
describe briefly those parts of the integration algorithm that are relevant to this discussion. A
complete description of the b.d.f. algorithm is given in the report of Dew and West [5]. We shall
assume that the solution has been computed as far as the point zj using a the fixed step form of
the b.d.f. with interpolatory step changing, and that the last step was taken with a step size hj
using a method of order k. Suppose that the step-size for the next step is predicted to be hj+l
and the order for the next step is q where q is k - 1, k or k + 1 depending on the order selected
by the algorithm. Once the order is selected, the algorithm generates the Nordsieck vector given

bY

M. Berzins / C’ interpolant for Codes 111

This vector is used in truncated Taylor’s series expansions to predict the solution and its first q

derivatives at Sj+i by the calculation

where ~j +r is the predicted solution at tj+, and its derivatives are defined analogously. The
predicted form of the vector is then denoted by

(3)

As the q th derivative is approximated by a constant, i.e. _j$!\ = yj4), we can reverse the Taylor’s
series mapping on the vector given by (3) to recover all the components of (2), i.e.

(I jjj$(-hj+l)i-’
y:” = c

(i - I)!
, /=o ,..., q.

i=l
(4)

The predicted values ~j+ I and j$!+l are used in a Newton type nonlinear equations solver to
solve the single equation (more generally a system of equations)

Yj+l =f(zj+l* Yj+l)

where y;+, is approximated by the backward differentiation replacement

CT
L;I+ 1 =

i
Yj + 1 - C Yj+l-iai /hj+*eO~

i=l I

the constant e, is defined below and the coefficients ai are defined by Gear [7]. We shall assume
that the iteration is successful and that the new solution and derivative values are accepted.
(Should be step fail the. variable step/variable order algorithm will at worst only change the
values of q or hj+ 1 in (3) and retry the step.) A discussion of how this system of equations should
be solved is included in [121.

Denote the sum of the corrections to the predicted value jjj+ 1 by 5, i.e.

y;+, =$+r + E.

The corrections to the other components of the Nordsieck vector are also defined in terms of Cr
(see [5]), i.e.

h; + , y;$ hj + , J$),
i! = i!

+ e,hj+lZ, i = 0,. . ., q

where

ei = Cl/C,

and ci is the coefficient of x’ in the polynomial p(x) which is defined by

p(x)=(x+l)(x+2)*-(x+q).

It follows directly from this definition that

(5)

(6)

(7) i ei(-l)i=P(-l)/c, =O
r=O

112 M. Berzins / C’ interpolant fir Codes

as the polynomial p(x) is zero at x = - 1. The form of p(x) ensures that interpolation using the
new Nordsieck vector is consistent with the old solution values at d = z~+, - ihj+l, i = 1,. . . , q

and also with the new solution and derivative values at tj+t. For example, let Wj and wJ! be the
values of the solution and its first derivative at time C, obtained by interpolation, then

’ _Y;i’l(-hj+*)l
w =

J c
;=o i! ’

Substitution using (5) gives

4 $:‘,(-h,+*)I
M’ =

J c i!
-+h,,,,&,(-1)‘.

r=O i=o

From (4) and (7) it follows that

NJ = ,; .

Using (4) with / = 1 and with v/+i replaced by yj+1 gives

i $‘,(+J+l)'-

r=l (i-l)! .

Substitution for I;‘:‘, using (5) gives

.f =
MJ

y j$y,(-hJ+Ji-l
c + Ziie,i(-I)‘-’ ,

r=l ((i- l)!
1

and so, using (4) with / = 1, we get

12;’ =_L;‘+ ii 5 e,i(-I)‘-‘.

1=l

The value of the derivative of p(x) at x = - 1 allows this to be written as

w ’ =y; + cy(q - l)!/C,
J

where ct may be calculated from (6) to be

i

1 1 ‘\ C, =q! 1 i-3+3+ l .* +--,.

This shows the magnitude of the discontinuity in the first derivative at the previous time level
when the normal interpolation procedure is used.

3. A modified interpolation procedure

In this section we show now the interpolation procedure based on the Nordsieck vector can be
modified so as to produce an interpolant which is continuous and has a continuous derivative at
the time integration points lJ as well as elsewhere. The discontinuity in the first derivative may be
thought of as occurring because the polynomial p(x) has a non-zero derivative at the point

M. Berzins / C’ interpolant for Codes 113

x = - 1. We shall now construct a modified polynomial that corrects this deficiency. Consider a
polynomial r(x) which satisfies

r(-l)= - 1, r(0) = r’(0) = 0.

The simplest (and lowest-order) form for r(x) is

r(x) = -x2. (9)

The modified interpolation procedure is based on incrementing the Nordsieck vector using the
polynomial (1 + r(x))p(x) rather than just p(x) as in (5). Define the coefficients di by

d,=O, d,=O, di= -ei_,, i=2 ,..., q+2. (IO)

In other words di is the coefficient of xi in the polynomial

-X2P(XVC,*

Now define an augmented Nordsieck uector that represents the new interpolating polynomial
z(x) for the interval [tj_ 1, tj] in Nordsieck form by

hi. z!i)
J+l J+l h;+ ,y,$),

i! = i!
+ eihj+lE +dihj+lE,

and
h;+,z;‘,‘,

i!
= dihj+,Z,

k (11)

We can show that interpolation on this augmented vector provides values of the solution and its
time derivative that are consistent with the actual solution values at ti and ti+l. Let Uj and oj’ be
the interpolated solution and first derivative values at time tj that are obtained by using the
augmented Nordsieck vector defined by (11) at time tj+ 1. Using (10) and (11) it follows that

u. =
J

5 JjT,(’ hi,,)’

i!
+ hj+l~ i ei((-l)i -(-l)‘+*),

i=O i=O

and so, using (4) with I = 0,

Vj =Yj*

In the same way

Uj=v;+Zi ei(i(-l)i-1-(i+2)(-l)i+‘)+2Eeo,
i=l

and so, by cancelling and re-arranging,

“~=y;+2a~ei(-*)i,
i=O

and using (7) gives

v; =rj’.

It is equally straight-forward to show that the correct values of the solution and its time
derivative are generated at tj+ 1.

114 M. Berzins / C’ interpolant for Codes

4. Implementation details

In practice there is no need to directly form the augmented Nordsieck vector as the correction
to the existing vector can be easily calculated in the interpolation routine. The extra information
needed is the constant i5 (which is a vector when systems 01’ initial value problems are solved)
and the coefficients e,. The local error estimate produced by the code at time ti+r, E, has the
form

E,=hj+,Ey wherey=e,/(q+l), 02)

and as the constants y and e, are available via COMMON blocks in most codes of interest, the
only other information needed by the interpolation routine, via its parameter list, is the local
error estimate E, (which, again, is normally a vector).

There are three minor difficulties to overcome in implementing interpolation using the
sugmented form of the Nordsieck vector inside the SPRINT b.d.f. code. The first of these is that
in codes such as LSODE the Nordsieck vector saved at the end of a step is scaled by the
proposed step-size for the next step. The form of the augmented vector used in interpolation thus
has the form

h;+&:)I (1) h; + 2 _“, + 1 $2 =
i! i!

+(ei + di)hj+,z-
h>+, ’

hi+ -(I’ zLJ+2 = d,h,,
hi+2

i!
_,iF-T--

hi+, ’

(13)

where k J + Z is the proposed step-size for the next step. This may increase the possible rounding
errors if hJ + Z is larger than h,+l-

The second difficulty occurs at time c, if the order is to be increased for the proposed step to
t /, ,. An extra column is computed for the Nordsieck vector and the order is incremented by one.
This results in the interpolant based on this new vector being discontinuous at time lj-1, see [3]
and [4]. The obvious solution is to use only those parts of the vector that correspond to the
previous order in the interpolation routine.

The third difficulty occurs on a proposed order decrease on the next step to tj+ 1. In this case
only those parts of the Nordsieck vector which correspond to the new order are re-scaled by the
new step size. As the interpolation routine assumes that all components of the vector at the old
order are so scaled, it is necessary to extend the scaling loop to scale what are otherwise
superfluous components for the next step.

The SPRINT b.d.f. module that implements these changes differs from LSODE in a number of
other respects. In particular the stepsize/order strategy follows the ideas of Shampine [ll] and
Petzold [9] in that a potential order decrease to a formula with better stability properties is
considered on every step. One result of this approach is greater efficiency than is usual for some
b.d.f. codes on the B5 test problem of Enright et al. [6] used as an example below.

5. Evaluating the new interpolant

There are two features of the new interpolant that must be investigated. The first of these is the
difference between the old and new interpolants while the second is the effect of rounding error
on the continuity achieved in practice.

M. Berzirts / C’ interpolant for Codes 115

Suppose that the augmented vector is being used to interpolate the solution at a point t in the
interval [fi, f,.+J where

t=tj+r -h and lhlGlhj+rl,

then the difference between the two interpolants can be seen by comparing (5) and (11) to be

q+2

S= C dihj+lZ
i=o

i

which can be written as

6 = - hj+ IcIIX2p (-x)/'cI

where x = h/h,+ I and 0 6 x < 1. Now, as the step has been accepted, it follows from (12) that

]hj+rGl <r/y

where r is the local error tolerance and y is defined above. Consequently,

(616(~/ycr)m where m=maxI-x2&x)1, Ogx~l.

The polynomial p(x) depends on the order of the backward differentiation formula being used;
in most applications the order is less than 6. From(12) and (6) we see that

YC, = #A4 + 1).

It follows that

6<M where M=m(q+l)/q!.

The values of the two constants m and M were computed numerically and are tabulated below
for orders 1 to 5 in Table 1. The table shows that the maximum difference between the solution
values produced by the two interpolants is bounded above by the local error.

The continuity achieved in practice with the new scheme is subject to the rounding error that
occurs in summing Nordsieck vector components which may themselves contain rounding errors.
Suppose that the rounding error in component h ‘z(‘)/i! of the augmented Nordsieck vector is
denoted by ri. The rounding error in the interpolated solution at the end of the previous
time-step, u($_ r) is given by r,, where

q+2
UC,= C (-l)‘ri

i=O

The component h’i(‘)/i! is multiplied by i and divided by h when the derivative is interpolated.
The rounding errors already present are similarly multiplied giving the total rounding error as

r,,f =tyi2(-lJiiri,
r=O

and so the derivative will normally exhibit a larger discontinuity, particular if 11 is ‘small’.

Table 1

Order 1 2 3 4 5

m 0.14815 0.20176 0.48557 1.66841 7.43606
M 0.29630 0.30264 0.32371 0.34758 0.37180

116 M. Berzins / C’ interpolant for Codes

In order to illustrate the continuity of the new interpolant the test problem B5 of the test set of
Enright et al. [6] was used. The problem is defined by

Y; = -lOy, + lOOy,, y; = -lOOy, - lOy,, y; = -4y3,

y;= -y,,J, y;= -0.5y9 y; = -O.ly,.

The initial conditions are given by

y,(O)=l, i=l,..., 6.

The problem was integrated from t = 0 to t = 20 using the b.d.f. integrator of the SPRINT
package (see [2]) with an absolute error test. At each time level, zj reached by the integrator the
errors incurred in interpolating back to ths previous time level tj_ 1 were measured and used in
the following overall error measures.

EO=maxIlo(~,-,)-Y(t,_,)ll,,
J

El =maxIIu’(t,_,)-_~‘(~J_,)ll,
J

and

E2=maxI)H,‘(tj_,)-y’(ti-,)ll,, j=2,...,m
j

where u(t, _ i) and u’(t,_ 1) are the solution and its time derivative vectors that were computed
using the augmented Nordsieck vector- at time tj: y(tj_,) and y’(tj_ ,) are the solution and
derivative values which were directly calculated by the b.d.f. code in the integration step to time
l,_ 1 and w’(t,_ ,) is the vector of derivative values computed using the original Nordsieck vector
(with the correct order) at time t,. The computer used was an Amdahl 5850 and the code was a
double precision version. Table 2 shows that the maximum continuity error in the solution is of
the order of the unit round-off error (2.2 E - 16) while the continuity error in the derivative is
larger.

Similar results were obtained on a number of other test problems but rather less satisfactory
numerical results were obtained on the Van der Pol Equation which is defined by

_v; =y2, ?G = lOO(1 - y:)yz -y,

where

y,(O) = 2.0, y2(0) = 0.0 and t E (0, 165).

Table 2

TOL STEPS FCN DECOMP EO El h E2

0.1 E-2 143 305 21 6.8 E- 16 8.1 E-14 4.8 E-3 8.89
0.1 E-3 233 418 23 4.8 E- 16 5.6 E- 14 7.2 E-4 1.20
0.1 E-4 363 611 32 5.9 E- 16 6.0 E- 14 5.3 E-4 1.19
0.1 E-5 545 849 39 7.9 E- 16 9.9 E- 14 1.4 E-3 1.4 E-2
0.1 E-6 911 1342 55 9.0 E- 16 9.2 E- 14 9.4 E-4 3.0 E-3
0.1 E-7 1279 1896 77 4.4 E- 16 7.1 E-14 4.7 E-4 6.5 E-4
0.1 E-8 1912 2733 105 6.2 E- 16 6.5 E- 14 4.9 E-4 5.9 E- 5

TOL is the local error tolerance, STEPS is the number of integration time-steps taken, FCN is the number of O.D.E.
function calls. DECOMP is the number of L-U decompositions of the Jacobian matrix and h is the step-size taken at
the given value of El.

M. Berzins / C’ interpolunt ior Codes 117

Table 3

TOL STEPS FCN DECOMP EO El h E2

- 0.1 E-2 278 734 92 9.2 E- 13 5.4 E- 12 9.9 E-4 2.2 E-l
0.1 E-3 410 882 87 9.1 E-13 8.2 E- 12 5.9 E-4 7.4 E-2
0.1 E-4 562 1071 94 8.8 E- 13 4.3 E- 11 3.4 E-4 2.3 E-2
0.1 E-5 773 1299 100 9.9 E- 13 3.6 E - 11 2.1 E-4 1.1 E-2
0.1 E -6 1131 1867 142 1.0 E- 12 3.2 E- 11 3.2 E-4 3.8 E-4
0.1 E-7 1518 2264 149 1.0 E- 12 2.9 E- 11 1.6 E-4 8.0 E-5
0.1 E-8 2086 2943 180 9.2 E- 13 3.6 E - 11 1.1 E-4 6.4 E-6

Table 4

TOL EO El k El.1

0.1 E-2 6.7 E- 16 4.6 E- 12 7.5
0.1 E-3 6.6 E- 16 1.1 E-11 1.4
0.1 E-4 7.0 E- 16 3.0 E- 11 8.1
0.1 E-5 7.0 E- 16 1.4 E-11 2.0
0.1 E-6 6.6 E- 16 2.5 E- 11 1.2
0.1 E-7 7.7 E- 16 3.9 E- 11 8.2
0.1 E-8 7.3 E- 16 4.1 E-11 8.4

E-4 3.5 E- 15
E-4 3.5 E- 15
E-5 3.4 E- 15
E-4 3.5 E- 15
E-4 3.5 E- 15
E-5 3.5 E- 15
E-5 3.5 E- 15

In this case the size of the solution components varies widely and so the ith component in the L,
norms used in EO, El and E2 is weighted, when assessing the interpolated values at t,__ 1, by

[max(l, l~+(r,_,) I)]-’ and [ma+, lu,(ti_1) I)]-~ respectively.

The cor.tinuity measures EO, El and E2 are shown in Table 3.
The relatively poor continuity as shown by this table is partly caused by the scaling performed

by the code as described in Section 4, (13). This was verified by using a version of the integrator
in which the Nordsieck vector was not resealed by the new step-size until the beginning of the
next step. Table 4 shows the new values of EO and El.

The continuity in the solution is much improved but the derivative continuity is still poor.
Column El.1 of the table provides the value of El calculated using /zy’ and ho’ instead of y’ and
1;‘. A comparison of El and El.l. shows that most of the increase in the discontinuity from EO to
El is due to division by h.

6. Adams methods

The same interpolation procedure can also be ayyJ ‘ied to the Adams Method in codes such as
LSODE. This method and its implementation is clery different to that in the DE/STEP code, see
Shampine (1978). The Adams methods used in LSODE make use of the Nordsieck vector to store
information from previous timesteps and differ from the b.d.f. algorithms only in the values of
the constants ei, where i = 1,. . . , q, and y. The corresponding polynomial for the Adams
methods to that in (5) for the backward differentiation formulas is defined by

p(-l)=p’(-j)=O, j=l,..., q.

118 M. Berzins / C’ interpolant for Codes

unless the order ~7 is one in which case

p(x) = (1 +x).

Consequently the Adams formulae implemented in LSODE already have a C’ interpolant if the
order is two or greater. In order to cater for the order 1 case and to provide a consistent
interpolant the scheme above can be applied. The only difference lies in the values of the
constants n2, M, c2 and y that appear in Section 5 above. The degree of numerical continuity
obtained is almost identical to that obtained with the backward differentiation methods.

Acknowledgement

Thanks are due to Ian Gladwell for motivating this work and to both Ian and to Peter Dew
and to the referees for their helpful comments on earlier versions of this note.

References

VI

(21

131
VI

151

161

VI

Bl

VI

WI
1111
WI

(131

WI

WI

M. Berzins, P.M. Dew and R.M. Furzeland, Software for time-dependent problems, Report 180, Department of
Computer Studies, University of Leeds, 1983; a shortened version appeared in B. Engquist and T. Smedsaas, Eds.,
PDE Software, Modules, Interfaces and System (North-Holland, Amsterdam, 1984).
M. Berzins and R.M. Furzeland, A users manual for SPRINT. Part 1. Algebraic and ordinary differential
equations, Report 199, Department of Computer Studies, University of Leeds, 1984.
R.L. Brown, Recursive calculation of corrector coefficients, ACM SIGNUM Newsletter 8 (1973) 12-13.
G.D. Byrne and A.C. Hindmarsh, A polyalgorithm for the numerical solution of ordinary differential equations,
A.C. M. Trans Math. Software I (1975) 71-96.
P.M. Dew and M. West, A package for integrating stiff systems of differential equations based on Gear’s Method:
Part 1. Department of Computer Studies, Report 111, The University of Leeds, 1978.
W.H. Enright, T.E. Hull and B. Lindberg, Comparing numerical methods for stiff systems of 0.D.E.s. BIT 15
(1975) 10-48.
C.W. Gear, Numerical initial Value Problems in Ordinary DifJerential Equations (Prentice Hall, Englewood Cliffs,
NJ. 1971).
A.C. Hindmarsh. ODE Solvers for use with the Method of Lines, in: R. Vichnevetsky and R.S. Stepleman, Eds.
Advances in Computer Methods for Partial Dil/erential Equations IV (IMACS. 1981).
L. Petzold, A description of dassl, Report SAND82-8367. Applied Math. Division, Sandia National Laboratories,
Livermore. CA, 1982.
L.F. Shampine and M.K. Gordon, Computer Solution of 0.D.E.s (Freeman, San Francisco, CA, 1975).
L.F. Shampine. Stability properties of adams methods codes, ACM Truns. Math. Software 4 (4) (1978).
L.F. Shampine. Implementation of Implicit O.D.E. Formulas for the solution of 0.D.E.s. SIAM J. Sci. Statist.
Comput. I (1) (1980).
L.F. Shampine and H.A. Watts, A smoother interpolant of DE/STEP; INTRP and DEABM. Sandia Report
SAND83-1226. SANDIA National Labs., Albuquerque, NM, 1983.
H.A. Watts. A smoother interpolant of DE/STEP; INSTRP and DEABM (11). Sandia Report SAND64-293,
SANDIA National Labs. Albuquerque, NM, 1984.
H.A. Watts and L.F. Shampine. Smoother interpolants for Adams Codes, S/AM J. Sci. Statist. Comput., to
appear.

