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A C’ INTERPOLANT FOR CODES BASED ON BACKWARD DIFFERENTIATION 
FORMULAE 

M. BERZINS 
Department of Computer Studies, University of Leeds, Leeds LS2 9Jr U.K. 

This note is concerned with the provision of an interpolant for o.d.e. initial value codes based upon backward 
differentiation formulae (b.d.f.) in which both the solution and its first time derivative are continuous over the 
range of integration- a C’ interpolant. The construction and implementation of the interpolant is described 
and the continuity achieved in practice is illustrated by two exampfec. 

1. Introduction 

At present many of the most popular library programs for the solution of the stiff initial value 
problem 

y’W =f(t, y(t)). y(a) given, a<t<b 

are based on the b.d.f. integration method of Gear [7]. In this paper we shall consider the fixed 
step form of the b.d.f. methods with interpolatory stap changing as implemented in codes such as 
LSODE and LSODI [8]. Codes for initial value problems generally produce solution values, yj, in 
a stepwise fashion at a set of points 

a = to < t, c t2 < l . - < t,,, = b 

where Yj denotes the computed approximation to the solution y( tj>. Although, in general, each 
individual step-size is chosen so as to satisfy a local error criterion we shall assume for the 
moment that the points tj are equally spaced in time. In the case when the method of order k is 
used to integrate from tj_ 1 to tj the a.ssumption used by the b.d.f. method is that the solution 
between the points tj_k and tj can be approximated by a polynomial of degree k. This 
polynomial interpolates these k + 1 solution values as well as the derivative yj and so forms the 
natural interpolant for the method. The values of the solution and its derivatives at a point t 

where tj_ 1 < t < tj are found by interpolation using this polynomial. It should be noted that the 
polynomial calculated at the end of the step to tj passes through the previous k solution values 
and yi but does not pass through yJL i. This interpolant is continuous over the interval of 
integration [a,b] but has a discontinuity in the first derivative at each of the points ti, i = 1, 
2 ) . . . ) n1 - 1. In the case when the mesh is not evenly spaced the earlier data is that given by the 
interpolation polynomials from previous time steps. The polynomial is stored in the Nordsieck 
vector form given by 

where each of the derivatives y;‘) is an approximation to the ith derivative of the solution at t,. 
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In many applications the solution to the initial value problem is continuous and so is the 
function f( t, p)-thus implying continuity of the first derivative. In this case it is possible to 
generate a continuous interpolant of the derivative by using the continuous interpolant in 
evaluating the function f(t, y). However, since the b.d.f. code does not solve the differential 
equation exactly, the derivative values thus generated at the mesh points differ from the mesh 
point derivative values used by the code by an amount which is proportional to the iteration 
error, see [l2]. This inconsistency makes it desirable to interpolate the derivative directly from the 
approximating polynomial. 

The situation is more difficult when b.d.f. codes are applied to implicit differential-algebraic 
equations e.g. LSODI, see [8]. In this case it will, in general, not be possible to compute y’ 
directly from the differential equation using y if there are algebraic equations present. 

The problem of providing a sufficiently continuous interpolant also occurs in the Adams 
method implemented in the DE/STEP code of Shampine and Gordon [lo]. In this case, however, 
it is the interpolant of the computed solution which is discontinuous at the mesh points and the 
first derivative which is continuous. Recent work by Shampine and Watts [13], Watts [14] and by 
Watts and Shampine [15] has described how the interpolation routine inside DE/STEP can be 
modified so as to produce a C’ interpolant. The aim of this note is to provide a similar 
interpolant for the fixed step b.d.f. method with interpolatory step changing. Although the ideas 
used here could probably be extended to the variable step b.d.f. formulas implemented in codes 
such as EPISODE, Byrne and Hindmarsh (1975) the motivation behind this work is to provide a 
satisfactory interpolant for the new b.d.f. integrator (based on LSODI), in the SPRINT code of 
Berzins and Furzeland (1984) and the related code that is to be released in the N.A.G. Library. 
Although these codes solve differential algebraic equations rather than the explicit o.d.e. problem 
described above. the interpolant that we describe can be applied without modification to them. 

The practical importance of this interpolant lies in applications such as finding the root of a 
function. 

J&V, y” t) = 0 

by using interpolation to calculate values of y and y’ or in graphical output, see 1131. In both 
cases discontinuous values of the derivative may produce unexpected or incorrect results. 

2. Outline of integration algorithm 

For ease of notation we shall consider only a single equation of the form of (1) and only 
describe briefly those parts of the integration algorithm that are relevant to this discussion. A 
complete description of the b.d.f. algorithm is given in the report of Dew and West [5]. We shall 
assume that the solution has been computed as far as the point zj using a the fixed step form of 
the b.d.f. with interpolatory step changing, and that the last step was taken with a step size hj 
using a method of order k. Suppose that the step-size for the next step is predicted to be hj+l 
and the order for the next step is q where q is k - 1, k or k + 1 depending on the order selected 
by the algorithm. Once the order is selected, the algorithm generates the Nordsieck vector given 

bY 
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This vector is used in truncated Taylor’s series expansions to predict the solution and its first q 

derivatives at Sj+i by the calculation 

where ~j +r is the predicted solution at tj+, and its derivatives are defined analogously. The 
predicted form of the vector is then denoted by 

(3) 

As the q th derivative is approximated by a constant, i.e. _j$!\ = yj4), we can reverse the Taylor’s 
series mapping on the vector given by (3) to recover all the components of (2), i.e. 

(I jjj$( -hj+l)i-’ 
y:” = c 

(i - I)! 
, /=o ,..., q. 

i=l 
(4) 

The predicted values ~j+ I and j$!+l are used in a Newton type nonlinear equations solver to 
solve the single equation (more generally a system of equations) 

Yj+l =f( zj+l* Yj+l) 

where y;+, is approximated by the backward differentiation replacement 

CT 
L;I+ 1 = 

i 
Yj + 1 - C Yj+l-iai /hj+*eO~ 

i=l I 

the constant e, is defined below and the coefficients ai are defined by Gear [7]. We shall assume 
that the iteration is successful and that the new solution and derivative values are accepted. 
(Should be step fail the. variable step/variable order algorithm will at worst only change the 
values of q or hj+ 1 in (3) and retry the step.) A discussion of how this system of equations should 
be solved is included in [ 121. 

Denote the sum of the corrections to the predicted value jjj+ 1 by 5, i.e. 

y;+, =$+r + E. 

The corrections to the other components of the Nordsieck vector are also defined in terms of Cr 
(see [5]), i.e. 

h; + , y;$ hj + , J$), 
i! = i! 

+ e,hj+lZ, i = 0,. . ., q 

where 

ei = Cl/C, 

and ci is the coefficient of x’ in the polynomial p(x) which is defined by 

p(x)=(x+l)(x+2)*-(x+q). 

It follows directly from this definition that 

(5) 

(6) 

(7 ) i ei(-l)i=P(-l)/c, =O 
r=O 
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as the polynomial p(x) is zero at x = - 1. The form of p(x) ensures that interpolation using the 
new Nordsieck vector is consistent with the old solution values at d = z~+, - ihj+l, i = 1,. . . , q 

and also with the new solution and derivative values at tj+t. For example, let Wj and wJ! be the 
values of the solution and its first derivative at time C, obtained by interpolation, then 

’ _Y;i’l( -hj+*)l 
w = 

J c 
;=o i! ’ 

Substitution using (5) gives 

4 $:‘,( -h,+* )I 
M’ = 

J c i! 
-+h,,,,&,(-1)‘. 

r=O i=o 

From (4) and (7) it follows that 

NJ = ,; . 

Using (4) with / = 1 and with v/+i replaced by yj+1 gives 

i $‘,( +J+l)'- 

r=l (i-l)! . 

Substitution for I;‘:‘, using (5) gives 

.f = 
MJ 

y j$y,( -hJ+Ji-l 
c + Ziie,i( -I)‘-’ , 

r=l ( (i- l)! 
1 

and so, using (4) with / = 1, we get 

12;’ =_L;‘+ ii 5 e,i(-I)‘-‘. 

1=l 

The value of the derivative of p(x) at x = - 1 allows this to be written as 

w ’ =y; + cy(q - l)!/C, 
J 

where ct may be calculated from (6) to be 

i 

1 1 ‘\ C, =q! 1 i-3+3+ l .* +--,. 

This shows the magnitude of the discontinuity in the first derivative at the previous time level 
when the normal interpolation procedure is used. 

3. A modified interpolation procedure 

In this section we show now the interpolation procedure based on the Nordsieck vector can be 
modified so as to produce an interpolant which is continuous and has a continuous derivative at 
the time integration points lJ as well as elsewhere. The discontinuity in the first derivative may be 
thought of as occurring because the polynomial p(x) has a non-zero derivative at the point 
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x = - 1. We shall now construct a modified polynomial that corrects this deficiency. Consider a 
polynomial r(x) which satisfies 

r(-l)= - 1, r(0) = r’(0) = 0. 

The simplest (and lowest-order) form for r(x) is 

r(x) = -x2. (9) 

The modified interpolation procedure is based on incrementing the Nordsieck vector using the 
polynomial (1 + r( x))p( x) rather than just p(x) as in (5). Define the coefficients di by 

d,=O, d,=O, di= -ei_,, i=2 ,..., q+2. (IO) 

In other words di is the coefficient of xi in the polynomial 

-X2P(XVC,* 

Now define an augmented Nordsieck uector that represents the new interpolating polynomial 
z(x) for the interval [ tj_ 1, tj] in Nordsieck form by 

hi. z!i) 
J+l J+l h;+ ,y,$), 

i! = i! 
+ eihj+lE +dihj+lE, 

and 
h;+,z;‘,‘, 

i! 
= dihj+,Z, 

k (11) 

We can show that interpolation on this augmented vector provides values of the solution and its 
time derivative that are consistent with the actual solution values at ti and ti+l. Let Uj and oj’ be 
the interpolated solution and first derivative values at time tj that are obtained by using the 
augmented Nordsieck vector defined by (11) at time tj+ 1. Using (10) and (11) it follows that 

u. = 
J 

5 JjT,(’ hi,,)’ 

i! 
+ hj+l~ i ei(( -l)i -(-l)‘+*), 

i=O i=O 

and so, using (4) with I = 0, 

Vj =Yj* 

In the same way 

Uj=v;+Zi ei(i(-l)i-1-(i+2)(-l)i+‘)+2Eeo, 
i=l 

and so, by cancelling and re-arranging, 

“~=y;+2a~ei(-*)i, 
i=O 

and using (7) gives 

v; =rj’. 

It is equally straight-forward to show that the correct values of the solution and its time 
derivative are generated at tj+ 1. 
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4. Implementation details 

In practice there is no need to directly form the augmented Nordsieck vector as the correction 
to the existing vector can be easily calculated in the interpolation routine. The extra information 
needed is the constant i5 (which is a vector when systems 01’ initial value problems are solved) 
and the coefficients e,. The local error estimate produced by the code at time ti+r, E, has the 
form 

E,=hj+,Ey wherey=e,/(q+l), 02) 

and as the constants y and e, are available via COMMON blocks in most codes of interest, the 
only other information needed by the interpolation routine, via its parameter list, is the local 
error estimate E, (which, again, is normally a vector). 

There are three minor difficulties to overcome in implementing interpolation using the 
sugmented form of the Nordsieck vector inside the SPRINT b.d.f. code. The first of these is that 
in codes such as LSODE the Nordsieck vector saved at the end of a step is scaled by the 
proposed step-size for the next step. The form of the augmented vector used in interpolation thus 
has the form 

h;+&:)I (1) h; + 2 _“, + 1 $2 = 
i! i! 

+(ei + di)hj+,z- 
h>+, ’ 

hi+ -(I’ zLJ+2 = d,h,, 
hi+2 

i! 
_,iF-T-- 

hi+, ’ 

(13) 

where k J + Z is the proposed step-size for the next step. This may increase the possible rounding 
errors if hJ + Z is larger than h,+l- 

The second difficulty occurs at time c, if the order is to be increased for the proposed step to 
t /, ,. An extra column is computed for the Nordsieck vector and the order is incremented by one. 
This results in the interpolant based on this new vector being discontinuous at time lj-1, see [3] 
and [4]. The obvious solution is to use only those parts of the vector that correspond to the 
previous order in the interpolation routine. 

The third difficulty occurs on a proposed order decrease on the next step to tj+ 1. In this case 
only those parts of the Nordsieck vector which correspond to the new order are re-scaled by the 
new step size. As the interpolation routine assumes that all components of the vector at the old 
order are so scaled, it is necessary to extend the scaling loop to scale what are otherwise 
superfluous components for the next step. 

The SPRINT b.d.f. module that implements these changes differs from LSODE in a number of 
other respects. In particular the stepsize/order strategy follows the ideas of Shampine [ll] and 
Petzold [9] in that a potential order decrease to a formula with better stability properties is 
considered on every step. One result of this approach is greater efficiency than is usual for some 
b.d.f. codes on the B5 test problem of Enright et al. [6] used as an example below. 

5. Evaluating the new interpolant 

There are two features of the new interpolant that must be investigated. The first of these is the 
difference between the old and new interpolants while the second is the effect of rounding error 
on the continuity achieved in practice. 
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Suppose that the augmented vector is being used to interpolate the solution at a point t in the 
interval [fi, f,.+J where 

t=tj+r -h and lhlGlhj+rl, 

then the difference between the two interpolants can be seen by comparing (5) and (11) to be 

q+2 

S= C dihj+lZ 
i=o 

i 

which can be written as 

6 = - hj+ IcIIX2p ( -x)/'cI 

where x = h/h,+ I and 0 6 x < 1. Now, as the step has been accepted, it follows from (12) that 

]hj+rGl <r/y 

where r is the local error tolerance and y is defined above. Consequently, 

(616(~/ycr)m where m=maxI-x2&x)1, Ogx~l. 

The polynomial p(x) depends on the order of the backward differentiation formula being used; 
in most applications the order is less than 6. From(12) and (6) we see that 

YC, = #A4 + 1). 

It follows that 

6<M where M=m(q+l)/q!. 

The values of the two constants m and M were computed numerically and are tabulated below 
for orders 1 to 5 in Table 1. The table shows that the maximum difference between the solution 
values produced by the two interpolants is bounded above by the local error. 

The continuity achieved in practice with the new scheme is subject to the rounding error that 
occurs in summing Nordsieck vector components which may themselves contain rounding errors. 
Suppose that the rounding error in component h ‘z(‘)/i! of the augmented Nordsieck vector is 
denoted by ri. The rounding error in the interpolated solution at the end of the previous 
time-step, u( $_ r ) is given by r,, where 

q+2 
UC,= C (-l)‘ri 

i=O 

The component h’i(‘)/i! is multiplied by i and divided by h when the derivative is interpolated. 
The rounding errors already present are similarly multiplied giving the total rounding error as 

r,,f =tyi2(-lJiiri, 
r=O 

and so the derivative will normally exhibit a larger discontinuity, particular if 11 is ‘small’. 

Table 1 

Order 1 2 3 4 5 

m 0.14815 0.20176 0.48557 1.66841 7.43606 
M 0.29630 0.30264 0.32371 0.34758 0.37180 
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In order to illustrate the continuity of the new interpolant the test problem B5 of the test set of 
Enright et al. [6] was used. The problem is defined by 

Y; = -lOy, + lOOy,, y; = -lOOy, - lOy,, y; = -4y3, 

y;= -y,,J, y;= -0.5y9 y; = -O.ly,. 

The initial conditions are given by 

y,(O)=l, i=l,..., 6. 

The problem was integrated from t = 0 to t = 20 using the b.d.f. integrator of the SPRINT 
package (see [2]) with an absolute error test. At each time level, zj reached by the integrator the 
errors incurred in interpolating back to ths previous time level tj_ 1 were measured and used in 
the following overall error measures. 

EO=maxIlo(~,-,)-Y(t,_,)ll,, 
J 

El =maxIIu’(t,_,)-_~‘(~J_,)ll, 
J 

and 

E2=maxI)H,‘(tj_,)-y’(ti-,)ll,, j=2,...,m 
j 

where u( t, _ i) and u’( t,_ 1) are the solution and its time derivative vectors that were computed 
using the augmented Nordsieck vector- at time tj: y( tj_,) and y’( tj_ ,) are the solution and 
derivative values which were directly calculated by the b.d.f. code in the integration step to time 
l,_ 1 and w’( t,_ , ) is the vector of derivative values computed using the original Nordsieck vector 
(with the correct order) at time t,. The computer used was an Amdahl 5850 and the code was a 
double precision version. Table 2 shows that the maximum continuity error in the solution is of 
the order of the unit round-off error (2.2 E - 16) while the continuity error in the derivative is 
larger. 

Similar results were obtained on a number of other test problems but rather less satisfactory 
numerical results were obtained on the Van der Pol Equation which is defined by 

_v; =y2, ?G = lOO(1 - y:)yz -y, 

where 

y,(O) = 2.0, y2(0) = 0.0 and t E (0, 165). 

Table 2 

TOL STEPS FCN DECOMP EO El h E2 

0.1 E-2 143 305 21 6.8 E- 16 8.1 E-14 4.8 E-3 8.89 
0.1 E-3 233 418 23 4.8 E- 16 5.6 E- 14 7.2 E-4 1.20 
0.1 E-4 363 611 32 5.9 E- 16 6.0 E- 14 5.3 E-4 1.19 
0.1 E-5 545 849 39 7.9 E- 16 9.9 E- 14 1.4 E-3 1.4 E-2 
0.1 E-6 911 1342 55 9.0 E- 16 9.2 E- 14 9.4 E-4 3.0 E-3 
0.1 E-7 1279 1896 77 4.4 E- 16 7.1 E-14 4.7 E-4 6.5 E-4 
0.1 E-8 1912 2733 105 6.2 E- 16 6.5 E- 14 4.9 E-4 5.9 E- 5 

TOL is the local error tolerance, STEPS is the number of integration time-steps taken, FCN is the number of O.D.E. 
function calls. DECOMP is the number of L-U decompositions of the Jacobian matrix and h is the step-size taken at 
the given value of El. 
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Table 3 

TOL STEPS FCN DECOMP EO El h E2 

- 0.1 E-2 278 734 92 9.2 E- 13 5.4 E- 12 9.9 E-4 2.2 E-l 
0.1 E-3 410 882 87 9.1 E-13 8.2 E- 12 5.9 E-4 7.4 E-2 
0.1 E-4 562 1071 94 8.8 E- 13 4.3 E- 11 3.4 E-4 2.3 E-2 
0.1 E-5 773 1299 100 9.9 E- 13 3.6 E - 11 2.1 E-4 1.1 E-2 
0.1 E -6 1131 1867 142 1.0 E- 12 3.2 E- 11 3.2 E-4 3.8 E-4 
0.1 E-7 1518 2264 149 1.0 E- 12 2.9 E- 11 1.6 E-4 8.0 E-5 
0.1 E-8 2086 2943 180 9.2 E- 13 3.6 E - 11 1.1 E-4 6.4 E-6 

Table 4 

TOL EO El k El.1 

0.1 E-2 6.7 E- 16 4.6 E- 12 7.5 
0.1 E-3 6.6 E- 16 1.1 E-11 1.4 
0.1 E-4 7.0 E- 16 3.0 E- 11 8.1 
0.1 E-5 7.0 E- 16 1.4 E-11 2.0 
0.1 E-6 6.6 E- 16 2.5 E- 11 1.2 
0.1 E-7 7.7 E- 16 3.9 E- 11 8.2 
0.1 E-8 7.3 E- 16 4.1 E-11 8.4 

E-4 3.5 E- 15 
E-4 3.5 E- 15 
E-5 3.4 E- 15 
E-4 3.5 E- 15 
E-4 3.5 E- 15 
E-5 3.5 E- 15 
E-5 3.5 E- 15 

In this case the size of the solution components varies widely and so the ith component in the L, 
norms used in EO, El and E2 is weighted, when assessing the interpolated values at t,__ 1, by 

[max(l, l~+(r,_,) I)]-’ and [ma+, lu,(ti_1) I)]-~ respectively. 

The cor.tinuity measures EO, El and E2 are shown in Table 3. 
The relatively poor continuity as shown by this table is partly caused by the scaling performed 

by the code as described in Section 4, (13). This was verified by using a version of the integrator 
in which the Nordsieck vector was not resealed by the new step-size until the beginning of the 
next step. Table 4 shows the new values of EO and El. 

The continuity in the solution is much improved but the derivative continuity is still poor. 
Column El.1 of the table provides the value of El calculated using /zy’ and ho’ instead of y’ and 
1;‘. A comparison of El and El.l. shows that most of the increase in the discontinuity from EO to 
El is due to division by h. 

6. Adams methods 

The same interpolation procedure can also be ayyJ ‘ied to the Adams Method in codes such as 
LSODE. This method and its implementation is clery different to that in the DE/STEP code, see 
Shampine (1978). The Adams methods used in LSODE make use of the Nordsieck vector to store 
information from previous timesteps and differ from the b.d.f. algorithms only in the values of 
the constants ei, where i = 1,. . . , q, and y. The corresponding polynomial for the Adams 
methods to that in (5) for the backward differentiation formulas is defined by 

p(-l)=p’(-j)=O, j=l,..., q. 
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unless the order ~7 is one in which case 

p(x) = (1 +x). 

Consequently the Adams formulae implemented in LSODE already have a C’ interpolant if the 
order is two or greater. In order to cater for the order 1 case and to provide a consistent 
interpolant the scheme above can be applied. The only difference lies in the values of the 
constants n2, M, c2 and y that appear in Section 5 above. The degree of numerical continuity 
obtained is almost identical to that obtained with the backward differentiation methods. 
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