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Mathematical modelling within the oil and gas industries
frequently involves the solution of complex systems of time-
dependent ordinary and partial differential equations. The
development of suitable mathematical models can be facilitated
by the provision of a wide range of numerical methods to allow
easy experimentation in the model development. The most
suitable numerical methods can then be used in production runs
involving the finished model. This paper is concerned with the
SPRINT software of Berzins, Dew and Furzeland (1986) which has
been designed to allow complex mathematical models to be
integrated numerically in an efficient manner by allowing the
user to choose the numerical methods to fit the characteristics
of the underlying problem. The software is based on the well-
known method of lines as this allows the sophisticated
integrators that have been developed for initial value
differential-algebraic equations to be applied to coupled
systems of time dependent o.d.e.s. and p.d.e.s..

1. INTRODUCTION

The SPRINT package (Software for PRoblems IN Time), is a
general-purpose computer program for the numerical solution of
mathematical models that involve mixed systems of time-
dependent algebraic, ordinary and partial differential
equations (o.d.e.s. and p.-d.e.s.). The software is the result
of research between Shell Research Limited and the Department
of Computer Studies at Leeds University. The aim of the
research is to provide a flexible and open-ended software
package to enable a user to solve a wide range of problems
within a single framework. The software, as summarised by
Berzins, Dew and Furzeland (1986), is based on the design
philosophy that there should be a set of well-defined and
independent modules that together from a "tool kit" for solving
time dependent ordinary and partial differential equations.
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2. SOLVING DIFFERENTIAL-ALGEBRAIC EQUATIONS USING SPRINT
PROBLEM CLASS

2.1 Differential-algebraic eguations problem class

The core of the software package is a versatile set of four
differential-algebraic integrators, see Berzins, Dew and
Furzeland (1986), with the flexibility to deal with stiff or
non-stiff d.a.e.s. coupled with algebraic equations and full/
banded/sparse Jacobian matrices computed analytically or
numerically. Each integrator is designed to solve the class of
o.d.e. initial value problems defined by

£(Y, ¥, 8 =g, ) - A(Y, ©) ¥ = o, (2.1.1)

with the initial condition

Y(0) = K, (2.1.2)

The sparse matrix A may be singular indicating a
differential~algebraic system of equations. In the case when
the matrix A is the identity matrix the system is said to be in
normal form.

The advantage of the problem class defined by equation
(2.1.1) over fully implicit o.d.e. problems is that equation
(2.1.1) is linear with respect to the time derivative, i.e.

2 £/ 3 Y =~y b. (2.1.3)

All the time integration methods in SPRINT require the
frequent calculation of the matrix-vector product

3 £/ 3 Y z(t)

where z(t) is a vector generated by the time integrator. The
only exception is when the SPGEAR module, see Section 2.2, does
not use the error estimator of Petzold (1982). The problem
definition interface in the software requires, see equation
(2.1.5) the definition of the matrix-vector product

-A(Y, T) i_and so, given equation (2.1.3), can be used to
economically calculate the required matrix vector product by

substituting z(t) for Y in the call to the problem definition
routine. As this matrix vector product is the only substantial
algorithmic difference from solving normal form problems in
which A = 1 it is then possible to provide codes which are
almost as efficient as those for normal form problems.
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It is also required that the parts of the residual that have

a § dependence can be computed by a call to RESID and also
returned to SPRINT via the vector r, i.e.

r=-Aly, t) v (2.1.5)

One of the parameters that SPRINT passes into the RESID
routine is the integer IRES; if this is set to 1 then the user
must supply the form of the residual defined by equation
(2.1.4), and ifit isset to -1 equation (2.1.5) must be used.
The integration may be. interrupted by the user changing the
value of IRES in RESID to force the integrator to either stop
the integration, reduce the time-step to avoid a physically
impossible solution value or to terminate the current step and
enter the MONITR routine.

2.2 Tank level control problem

The following test problem illustrates some of the
difficulties in solving differential algebraic equations. The
following system of 8 algebraic-differential equations
represents the control problem of keeping the level of fluid
in a tank constant when a fluid flows into it. The problem
arises as part of a much larger simulation of a chemical plant.

yl = y8 - y4, yl(O) = 50.0

y2 B O.ly6, y2(O) = 0.5

Y, =  0.05 (y5 - y3) ' y3(O) = 0.5
O = y4 o 20.0 (l - Y3)f

O = ¥gT Yy T ¥

@] = Y7 - 0.01 yll'

O = y8 5 f(t)’

The initial values of the algebraic variables Yyr y4, Yor

Y and y, are consistent with the initial values of the
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past the discontinuities in the first derivative of the input
flow on runs 3, 4 and 5. The STHETB code also competes at low
to medium accuracy requirements with the more widely used
SPGEAR backward differentiation code.

2.3 Solution of more general D.A.E.s using SPRINT

The difficulty of solving general d.a.e. systems depends
critically on the index of the system. The index is defined
by Petzold and Lostedt (1983) as the number of times the
algebraic constraints must be differentiated in order to
obtain an o.d.e. system in normal form. Thus the simplest
index i problem is defined by

=g(t), v. =vy. ., 3 =2,...,1 .3.
yl(t) g (t) Yy = Yy ] 2 i (2.3.1)

which has the solution
dj_lg
I gedt

j=2,...,1. (2.3.2)

The index is a measure of the singularity of the system. A
standard o.d.e. problem in normal form has index O while the
tank level control problem above has index 1.

Petzold and Gear (1984) have investigated applying backward
differentiation formulae such as those used in SPRINT, to
d.a.e.s. and have shown that they can only be reliably applied
to systems of index 2or less or toindex 3 problems of a special
form.

The only applied technique for problems of index 3 and
above is to use the backward Euler method and extrapolation,
as in the POST code of Schryer (1984), but there are still
formidable practical difficulties to be overcome, particularly
in solving the ill-conditioned non-linear equations that may
arise, see Petzold and Gear (1984). Problems of arbitrarily
high index can arise for instance, in electronic circuit
modelling which is one of the applications POST was designed
for. )

3. SOLVING PARTIAL DIFFERENTIAL EQUATIONS USING SPRINT

In the Method of Lines the partial differential equations
are spatially discretised over NPTS points using finite-
difference, finite element or collocation methods. This
discretisation results in a system of NPTS non-linear, coupled
d.a.e.s. for each given p.d.e. and provides a unified approach
to solving mixed systems of d.a.e.s. and p.d.e.s..
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3.1 The SPRINT spatial discretisation routines

There are currently two discretisation modules in SPRINT:
SPDIFF a lumped finite element method developed by Skeel and

Berzins (1987) and SGENCO, the CO collocation discretisation
discussed by Berzins, Dew and Furzeland (1986). Each of these
modules has a setup routine which performs the initialisation
tasks and which must be called before the main part of SPRINT
is entered. The three other main components are the RESID
routine discussed above, the MONITR routine that is called by
SPRINT at the end of every time-step and an interpolation
routine that can be used to generate extra solution values
after SPRINT has integrated to the required time.

In this paper we shall only use the SPDIFF discretisation
method which is analogous to the usual central, three-point
finite-difference formula for problems in Cartesian co-
ordinates. However for problems in polar and spherical co-
ordinates the three-point formula is suitably modified to
maintain second-order accuracy. An option is provided within
this module to allow the user to adaptively vary the space
mesh in time, see Berzins, Dew and Furzeland (1986).

3.2 Pool evaporation problem

This section provides an example of a non-standard problem
that has been solved very effectively using the SPDIFF
discretisation and the SPGEAR integrator from the SPRINT
software. The problem concerns the rate of evaporation of
vapour from a pool of liquid of length one metre. Above the
pool a constant (i.e. non-time varying) wind blows. There is

a viscous sub-layer above the pool of height x and above this
is a 'windy' region in which the concentration of vapour

diminishes until it is negligible at a height of about 103 X.
In order to apply the method of lines to this problem we take
the spatial variable as being the height above the pool and
integrate across the length of the pool.

The governing p.d.e. for the vapour concentration C(x, t)
in the viscous sub-layer is

6.8x10° x S —3—-(8.65xlo'6 e
X o0xX

St ), x e [0, %] (3.2.1)

and in the turbulent region above the viscous sub-layer

3C 3 aC =
(0.7717 log(x) + 9.313) £ = o= (0.1297 x t9x ¢ [X, 1.9].

(3.2.2)
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The problem has the following non-standard feature. As a
check on the accuracy of the numerical solution it is
important to compare the rate of evaporation Ql at the surface

of the pool with the quantity of vapour which passes above a
given point in the pool, Q2 where Ql and Q2 are defined by

t
0.(t) = -7.934x10" " f Eg‘(o, t) at (3.2.5)
1 o aX
and
_21
Q,(t) = 9.4175x10 © S u(x) C (x, t) dx (3.2.6)
(0]

where the function u(x) is defined by
3 -
u(x) = 6.81x10" x, x ¢ [0, x] (3.2.7)

= (0.7717 log(x) + 9.313), x ¢ [x, 1.0] (3.2.8)

This comparison is achieved by defining an extra coupled
o.d.e. for the rate of evaporation

dQ, _q 9C
Ti—'E_ = —7.934xlO a_x (O, t) . (3.2.9)

Similarly we approximate equation (3.2.6) by using
trapezoidal quadrature in space to get

-7 NPTS
Q.(t) = 9.4175x10 I ou(x,) C (x,, t) W, (3.2.10)
2 . i 1 i
i=l1
where wi are the trapezoidal quadrature weights for the
unequally spaced data and NPTS is the number of spatial mesh

points. The vapour discrepancy in the calculation can then
be monitored continuously by defining a new variable Q3(t) by

Q3(t) =9, (t) - 9 (¥) (3.2.11)

Equations (3.2.9), (3.2.10) and (3.2.11) are then
integrated with the p.d.e. as a mixed p.d.e./o.d.e. system.
The initial conditions for the new variables are
Qi(o) = 0 for i = 1,2,3. An inspection of the values of Q3(t)
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4. CONCLUSIONS

Our experience of using SPRINT in an industrial
environment has led to the following obsexvations on its

advantages
(1) Ability to handle a general problem formulation
(a) mixed o.d.e.s. plus algebraic equations, as in
Section 2.2 above
(b) mixed o.d.e.s. plus p.d.e.s., as in Section 3
above
(c) general non-linear form of governing equations,
e.g. the bubble collapse problem in Berzins,
Dew and Furzeland (1986).
(2) Fast software development times - coding times for

development models are greatly reduced and allow the
scientist to concentrate more on the physics of the
1 problem.

(3) Flexibility in software building - the software can
be readily adapted to other solution methods by
interchanging the time integrator, the spatial
discretisation method or the MONITR routine. This is
especially helpful in research and development work.

(4) Allows the user easy access to advanced numerical
techniques

(a) stiff, non-stiff and type insensitive time
integrators

(b) efficient time stepping, especially for d.a.e.s.

(c) capability to handle discontinuities in the
time integration

(d) full, banded or sparse linear algebra

(e) adaptive space remeshing with finite difference
formulae

(£) high order collocation approximation in space.

The software needs to be extended to automatically
discretise problems in two and three space dimensions. This
raises the question of how the very large systems of non-
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