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The derivation and implementation of a generalized Chebyshev method is described
for the numerical solution of non-linear parabolic equations in one space dimension.
The solution is obtained by using the method of lines and is approximated in the
space variable by piecewise Chebyshev polynomial expansions. These expansions are
normally few in number and of high order. It is shown that the method can be derived
from a perturbed form of the original equation. A numerical example is given to
illustrate its performance compared with the finite element and finite difference
method.

A comparison of various Chebyshev methods is made by applying them to two-
point eigenproblems. It is shown by analysis and numerical examples that the
approach used to derive the generalized Chebyshev method is comparable, in terms of
the accuracy obtained, with existing Chebyshev methods.

1. Introduction

ONE OF THE AUTHORS, Dew (1978), described a method for computing the numerical
solution of quasi-linear parabolic partial differential equations in one space variable
based on approximating the solution by a Chebyshev polynomial series expansion. It
is well known that the solution to many parabolic problems cannot be adequately
represented by a single polynomial and hence piecewise polynomials are used in
practice, e.g. the finite element method and the collocation method (Madsen &
Sincovec, 1978). Recently the authors (Berzins & Dew, 1980) extended and improved
the Dew (1978) method and introduced a Chebyshev method based on piecewise
Chebyshev series expansions. The purpose of this paper is to generalize the
Chebyshev method so that it can be used to solve a wide class of non-linear parabolic
equations in one space variable.

The generalized Chebyshev method is similar to the “global element”” method
described in Delves & Hall (1979) for elliptic PDEs, in the sense that we wish to split
the spatial interval into a number of subintervals and within each subinterval
construct a rapidly convergent global polynomial expansion. However, Delves &
Hall derive their method from a functional embodying the boundary conditions
whereas we derive our method directly from Chebyshev series expansions.
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For the sake of definiteness we shall consider equations of the type

0
c(x, t, u) ab; - {X’"qﬁ(,x, t, u)Z—Z} +f<x, t, u, Z—Z)

a  x™ Ox
(x,t)efa, bl x(t,t,] (1.1)
where
m=20,1,2,3, t,<t,
and
a<b, a=>0 when m>0.

We assume the stability condition
0<p<olx,t,u) <P, p<elx,t,u)<P
Y (x,t) € [a, b] x(t,t,.].

The functions ¢, ¢ and f may be discontinuous at a number of known points in (a, b)
providing that these points are independent of ¢ and the continuity of u and ¢ du/dx is
preserved.

The boundary conditions are taken to be

a(t)u+[3(t)2—i =g,(t,u) atx=a

te(t,t,] (1.2)
y(t)u+(5(t)§—?c =g,(t,u) atx=>»
together with an initial condition
u(x,t)=K(x) att=t,, xe€la,b]. (1.3)

When a = 0 and m > 0 we restrict the left-hand boundary condition to the symmetry
condition

a_u=0 atx=a=0, m>0. (14)
0x

2. Derivation of the Generalized Chebyshev Method
Let
a=Xxo<x;<...<x;=5b
and partition the interval [a, b] into the elements
I [xj-,x, j=1,2,...,J}.

We can write the solution to (1.1), (1.2), (1.3) as
J

u(x,t)= Y, uix,t) (2.1)

ji=1
where

ufx, t): = u(x,t), xel;and zero elsewhere.
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Define the linear mapping W;: I, »[—1, 1]. The basic idea of the method is to
construct an approximate solution to u(x, t) of the form

J
Ulx,t)= Z Uix, t) (2.2)
where =

Ujx,t) = Z a;; T(W(x)), x e l;and zero elsewhere
and T;(.) is a Chebyshev polynomial of degree i. The function U is chosen so that the
continuity across each element is preserved and such that the boundary conditions
(1.2), the initial condition and the interface condition

0 .
d(x; tU) U= 003, U ) 2= Upprs j=1,2,..,J~1 (2.3)

are all approximately satisfied.
To derive the method we approximate the differential equation (1.1) in the form

a .
aRj(x, 1)~ Qi(x,t), xe€ I, j=1,2,...,J (2.4)
where
Rj(x,t):=¢(x t, U) {U
and
3 m 6U

The functions ¢;, ¢; and f; are defined in the same way as the function u(x, t).
In the case when a = 0 and m > 0, the function Q, requires modification to handle
the term

% |3

aU
ox *

correctly. It is easily shown at x = a = 0 that

1o (. o\ _ o (, ou
i {x—a(" "55)}— ""*”a(%)

and hence at this point

x=0

Q1:={c1(x, t, Ul)iUl—fl(x, t, Ul)}/(m+l). (2.5)

ot

We write 0U,/0x in the Chebyshev series expansion

2 Z S TW(x)
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and approximate the functions R; and Q; by

N; '
Rj . Z ’”J;Tz(VV,(x))

i=0
and
_ N
Q;= Z q_ll’]—;(VI/](x))
i=0
where the polynomials le and Q; interpolate the functions R; and Q;, respectively, at
the transformed Chebyshev points

N;—i

X;: = {I/Ig(yi): V= cos( IJV : n), i=0,1, ..., Nj}. (2.6)
J

In the following derivation we shall make the approximation that dR;/0x = Q; for

each j; an analysis of the method is given in Section 4. We have the following well-

known relationships between

) (1)
(1) the coefficients a; ; and ai}

1y _ ny
&GN, = 0, Ay, = 2Njaj| N}/uj

il
aj},)=—{2(i+1)aj,l+1}+a5’13+2, l=NJ_2,NJ_3,...,O (2.7)

J

and

(2) the coefficients r; ; and g; ;

HU; , }
2_;(qj,i—1_qj,i+1)=rj,ia l=1,2,---,N,-—1 (2.8)

where
,uJI=%(XJ—xJ_1), j=1,2,...,-]

and the coefficient of g; , should be doubled. These results can be found in Fox &
Parker (1968).

Having computed the coefficients af!) using (2.7) we can then compute the
coefficients r; ; as shown in the next section.

To satisfy the boundary conditions (1.2) and the interface conditions (2.3) we
extend the approach described in Berzins & Dew (1980). The main advantage
compared with the Knibb & Scraton (1971, 1979) method is that it avoids the need to
differentiate explicitly the boundary conditions w.r.t. t. From Equation (2.4) and the
Chebyshev expansion for Q; we have that

X

Rix.0)= Y. 4, f TW0)) dy+C (1) (2.9)

i=0

where the constant of integration is given by

1 1 _ N;
Ci(1) = Ef 1 {R,-(x, -3 q,-,iei(W,-(x))} dx (2.10)
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and
ei(X)=f T(y)dy, xe[—1,1].
Define
1 1 l 1
&=>| T)dy and E=- | e(y)dy (2.11)
then on substituting (2.10), (2.11) into (2.9) we have that
: N; N;
Rix,t)= Z r i€ + Z q;,:1;Le(Wi(x))—E]. (2.12)
i=0 i=0

Finally, replacing R; by ¢; 0U;/0x and evaluating (2.12) at x = x;~1 and x = x; we
can estimate the derivative at each end of an element. An alternative expression for
the boundary conditions (1.2) is then given by

Nj
B(t) 'Zo q1.it1(e(—1)—E))
i= Ny

= [ga(t, Ul)_a(t)Ul(aa t)]¢(a’ £ Ul)_ﬂ(t) 'ZO rl,iéi

- (2.13)
o(t) Z, 4,1 1y(e(1) = Ey)

i=0
Ny
= [g,(t, Uy)—y(t)U (b, 1)]¢(b, t, U;)—6(t) Z ry,i€
i=0

and similarly at the interface of each element we have that
Nj—l Nj
= 2 G-riti-e)—E) + ) g mfe(—1)—E)
i=0 i=0
Ni_y N;
= Yi-1,1€i — Z rii€, j=2,3,....J. (2.14)
0 i=0

.

The use of these formulas means that the function U satisfies an approximate form of
the derivative boundary condition and derivative interface condition. However, in
order that the method is stable, we must preserve the continuity of U across each
element interface and satisfy exactly any Dirichlet boundary conditions.
When the function ¢ is identically equal to unity we can rewrite (2.12)
ou Ny 1 1 i
Tx - & '_:ZO [q;, e (W (xi))— E)+3a; (1 — (= 1))/u;]

where k = j—1 orj. This is the expression for the derivative used in Berzins & Dew
(1980).

3. Implementation Details

We shall describe the implementation of the method assuming that we have an
ordinary differential equation solver which will compute the numerical solution to a
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general system of implicit ordinary differential equations of the form
F(t, U(t), dU/dt) = 0. (3.1

Any ODE solver based on an implicit method can be extended to solve implicit ODEs
of this form. For example Dew & Walsh (1981) describe how to extend Gear’s
method. In our case the vector U is ordered as

U, (1) U .o Uso

U,(t U, U
U@) = :2() . Y= | =201, U=

U, () Uj,NH Uj.n,

where (see (2.6))

Uiii=UX; 00, X,o=W), i=0,1,.
i=12,. J

From the continuity condition (2.3) it follows that U; y =U10j=12,..,J-1
The vector F is ordered in an equivalent manner.

Initially we must compute and save three sets of matrices. The matrix Q; defined by
(see Fox & Parker, 1968)

j

[Q]:= N Ti(y,) (the first and last rows and columns

J should be halved)

is used to map the solution vector into its Chebyshev coefficients, e.g.

a0 Uj,O

a1 U;
q = {' = QJ _j'

aj.Nj UJ.N

(The reader should note that €Q; is the inverse of the mapping matrix used in earlier

papers.)
The second matrix, D;, is used to estimate the values of dU/dx at the integration
points X; ;. We first define

_ d _
[D;]; «: =E T(X; ), L,k=0,1,...,N;

J

then B

The matrix D; can readily be constructed using (2.7). Finally, we define a matrix
C; = C;Q; where

[éjjo.k=ek(_1)_Eka [Cj]Nj,k=—ek(1)+Eka k=0,1,-~-,Nj,
[Cj]i+1,i=0'5/(i+l)7 [Cj]i+1,i+2=’0'5/(i+1); i=1s---,Nj_29
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where the top and bottom rows of C; arise from the left-hand side of (2.13) and the
middle rows from the left-hand side of (2.8).

The matrices Q;, D; and C; depend only on N; and not on the size or position of the
element. Therefore we need only save one copy of each matrix when N/ is constant for
each element. The following implementation details illustrate how straightforward it
is to program the method. Although, for simplicity, we have only considered one
parabolic equation the method extends naturally to systems.

Evaluation of the Function F(t, U, dU/dt)

Given the values of t, U, dU/dt we require to evaluate the vector F. This can be
formed element by element and we therefore describe the implementation details for
the jth element where j=1,2,...,J.

To form the part of the vector F corresponding to the points
{Xj' ;0i=0,1,..., Nj} in the jth element, we first copy the solution values U at these
points into a temporary vector U™+ and use it to estimate the derivative, du/0x at the
points using the relationship
U, = 4 'DUD,

J

From the definition of the PDE functions, ¢, ¢, f we can form the vector Q; whose
components are given by

dU-i m . .
dtj' - j,i—rUj,iqu,ia i=0,1,...,N;

Js

Qj,i = Cj i
where
d)j.i: = ¢(tv Xj,ia UE'T))

and c; ;, f; ; are defined in the same way. When X ; = 0 and m > 0 we must use the
modification (2.5). To compute the coefficients r; we use the mapping matrix Q;,

We can now form the components of F corresponding to the internal points of the jth
element, i.e.
Fj'i=QET)—rj,i, i=1,2,...,Nj_1

where the temporary vector Q" is defined by

Q" = 1,C,Q;

Finally, we need to compute the components of F that correspond to the left- and
right-hand end points of the jth element. We first form the sum

N;
(s). —
=3 r;.e
i=o

where e; is defined by (2.11).

T We have introduced the vector U™ to simplify the description, in a computer program it is only
necessary to reference the required elements of U.
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For the first element, j = 1, the component of F corresponding to the Ieft hand
boundary condition (at x = a) is given by

Fi o= BE)NQY +r)+ (gL, Ui, 0)—o(t)U; o)1 o

Otherwise we form the component corresponding to the derivative interface
condition

F o= 0P +r9)+rd,
where the estimate of —¢; n(0U;/0x) at the point X; \ is given by
= Q}\‘E’ + 79,

For the last element, j = J, we must form the component of F which corresponds to
the right-hand boundary condition (at x = b). This component is given by

F;n, = —r{D5(1) + (g,(z, Uy n)=vOU; 5 )5 N,

This completes the implementation details for forming the vector F.
To compute a numerical solution to the system of ODEs, F = 0, we must supply to
the ODE solver:

(i) a routine to evaluate the vector F (as above),
(1) a routine to evaluate the Jacobian matrix for F and
(ii1) the initial values of U(t,) and dU(t,)/dt.

The Jacobian matrix of F has the form
N 1
J:=—A(U, t)+0F/0U
g

where ¢ is a parameter which involves the timestep and is supplied by the ODE
solver. The matrix dF/0U can be computed by numerical differencing. Providing that
the function dU/0t is continuous for x € (a, b) at each ¢ € (t,, t,] the matrix 4 is given
by:

Let
K;=0 forj=1
j—1
=Y N, forj#1
s=1
then
Ak vik+k: = HiCikCi  k,i=0,1,2,.. ,N;

J
unless j # 1, i = k = 0 in which case
Ak, = Ak, k, T 14;Co.0C),0

forj=1,2,....J.
All other elements of A are zero and the first and last rows must be modified to
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correspond to the boundary conditions
A(ll‘)k = BA(II,)", k = 0, 1, e ey Nl
and 3.2)
J — —
A;V’)KJ+I\,—-_5AN‘KJ+A,, k—o, ].,-..,NJ

where

N =

o

N;+1.

j=1

The general structure of the Jacobian matrix J is best illustrated by an example. In the
case when J = 3 (three elements) and N; = 2

[ X X X "
X X X
X X X X X
j= X X X
X X X X X
X X X
L X X X

where the crosses denote the non-zero elements.
The initial values U(t,) can be determined from the initial condition (1.3). To
compute the values of dU/dt at t = t, we write the vector F in the form

au
dt
and put ¢ = t,. We can then solve for the values of dU/dt providing that the matrix A
is non-singular. Clearly from (3.2) when either § = 0 or § = 0 the matrix A is singular.

To avoid this difficulty we modify the equation at the boundary. For example,
suppose that f = 0 and 6 # 0 then at x = a

A— =F(@, U@)

a(t)Uy(a, £)—ga(t, Us(a, t)) =0 3.3)
From equation (2.12) we have that
Ny i Ny Ny
Z r—1)= Z qy, it (e(—1)—E;) — Z r1,i€; (3.4)
i=0 i=0 i=0

and on multiplying (3.3) by ¢; at x = a and adding (3.4) we get the condition

Ny

Z q1,i#1(e(—1)—E) = (g,(t, Uy)~a(t)U (a, t)d(a, t, U;)—
i=0

Ny

Z rl,i(ei_(_l)i)' (3.5)

i=0
The first row of 4 and the first element of F can be modified in an obvious manner
and since the modified 4 is now non-singular we can compute an estimate of
17
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dU(t,)/dt. Use of (3.5) however means that
OC(I)UI(CZ, t) ~ ga(ta Ul(a’ t))

and we cannot use (3.5) in the time integration as the method would be unstable.

4. The Perturbed Differential Equation

A feature of all Chebyshev methods is that it is easy to determine the perturbed
differential equation which the method exactly satisfies. We are only concerned here
with the approximation in the spatial variable x. Knowing the perturbed differential
equation enables us to compare the method with existing Chebyshev methods.

From the derivation of the global elements method given in Section 2 we have that
the functions Q; and R; are evaluated at the points x € X;forj=1,2,...,J and then
mapped into their Chebyshev coefficients using the mapping matrix Q; defined in
Section 3. Thus we have replaced the functions Q; and R, by the polynomlals 0, and
R; which interpolate the functions at the points x € X and are zero outside the
mterval I;. We define the interpolation errors as

J ou, _
B e= I° E50 ER: = ¢13x_1 —R;

ji=1

and 4.1)
J
EQ:= % (Q;—0).
=1

LeMMA 1. If the coefficients r; ; and q; ; satisfy the relationships (2.8) then

U,

h;— E — E{® — POW(x), t)—j Q; dx+C,(1) 4.2)

where

Ci(t) is a constant of integration and

PE'G)()% 1) = i.N, N ) — ITN}.(.V)_

2N -

’L[.
2(N—-if'1_) qj,NjTNj+1(y)’ yel[-1,1]1 4.3)
J

=0 elsewhere.

Proof. The proof follows by expressing the polynomials Q; and R; in their Chebyshev
series expansions (2.5), integrating and equating the coefficients of the Chebyshev
polynomials for each element.

From equation (4.2) we can deduce that

’(%c J Q(ztdz+—J‘ (Ri(x, t) — JQ(Z t)dz) dx +

1

1
E+PEOW(x), 1) ~ 5 J Py, t)dy, xel; (4.4)
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and hence in (2.13) and (2.14) we have used a perturbed form of the derivative given
by

oU, . .
FX‘J‘ — Y (Wi(xy), t)/d)j, xi? k=j—1,j
where
1 1
l//j(y’ t):=P§G)(y’ t)_EJ‘ PE'G)(,V, t)dy
=
and

¢j.xk: =¢ix, t, U;), x,el,. B
We can summarize these results in the following theorem:

THEOREM 1. Let the function U(x, t) defined by (2.2) satisfy the system of ODEs

du
<t’ ’ dt)

where the vector ¥ is defined by the algorithm given in Section 3. Then U(x, t) is the
exact solution of the differential equation

1 0 oU 0 ou
S m . (R) __ p(G)
x™ Ox {x $(x,t, U) ax} Ox (E P) +f<x, LU, 6x>
ou J
= C(X, L, U) ot - E(Q), (x’ t) € U (xj—l’ xj)x(tss te),
=1

subject to the conditions

oU
al, +ﬁTXI =g,t, U)+y(—1,8)B/b1., atx=a

U, oU; ., )
(z)j,xja—xj = ¢j+1,x,‘3§c“ + ‘//j(la t) - l.[/j+1(—1, t), J= 1, .. -,J—l
and
oU,
VUJ+5W = gy(t, Uy)+(,(1,8)8)/b;, at x=0Db
where

PO(x, t) = Z POW(x), t)

j=1

is the perturbation term.

5. Comparison with Existing Chebyshev Methods

In this section we compare the approach used to derive the generalized Chebyshev
method with existing Chebyshev methods. For the non-polar problem, m = 0, with
¢ = 1 we can compare the method with the Berzins & Dew (1980) method. The main
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difference is that in the Berzins & Dew method we apply prior integration twice (see
Fox & Parker (1968)) to obtain an extension of the Knibb & Scraton (1971) method.
Whereas in the present algorithm we apply prior integration once and obtain the
derivative of the solution directly from the Chebyshev series expansion of the
solution.

We can easily modify the generalized Chebyshev method so that it is equivalent to
the Berzins & Dew (1980) method by perturbing the relationship between the
Chebyshev coefficients of U and 0U/0x. That is we replace in Equation (2.7)

a,N; by aj,Nj—qj,N/[4(Nj+1)Nj] }

Gn-1 DY & N1 =GN 1/[4N(N;—1)].

and (5.1)

The Simple Eigenvalue Problem

To illustrate the effect of applying prior integration once or twice we consider the
simple eigenvalue problem

d*>v
d—xz+Av=0, x e [0,1]
subject to
ow+[>’g£=0 atx=0
X
and } (5.2)
dv
yw+d—=0 atx=1
dx

where

a(y+d)—y(B—a) # 0.

We approximate v(x) by a polynomial of degree N, written as

™=

vy(x) = a;Ti(2x—1), xe[0,1]

i

0

and obtain an estimate of the eigenvalues of (5.2) from the eigenvalues of the
generalized matrix eigenvalue problem

Aa+Ai*Ba =0 (5.3)
where
a= [ao al az ol aN]T.

The (N +1)x (N +1) matrices 4 and B are formed using prior integration either once
or twice and by adding two extra equations which arise from the boundary
conditions. We have two alternatives, either
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(a) we make vy exactly satisfy the boundary conditions, e.g.
N s N .
a Y a(—1Y=p > i*(—1Ya,;=0,
i=0 i=0

as suggested in Knibb & Scraton (1971) or

(b) we can use an approximate formula for the derivative of vy, so that vy satisfies a
perturbed form of the boundary conditions, as suggested in Berzins & Dew and
used in this paper.

The following theorem compares the different methods. We shall use the L,[0, 1]
norm defined by '

1
[|ul]? =J frdx, feL,[0,1].
0
THEOREM 2. Let (A*, a*) denote an eigenpair of (4.7) and define

v¥(x): = i afT,(2x—1)

i=1

where a* is normalized such that ||v¥|| = 1. Further let (A*, v*) be the closest eigenpair
to the kth eigenpair of (4.6) in the sense that |A,— A*|/|A,| is a minimum, then

Apg—A*
|4k |<

A*| max (lay 4}, |aN|)O(N_P),

Ayl
where

P = 2 for prior integration once or twice using alternative (b) for the boundary
conditions,

P =1 for prior integration once using alternative (a) for the boundary conditions,

P = 0 for prior integration twice using alternative (a) for the boundary conditions.

Proof. The results for prior integration twice is obtained from the perturbation
equation (see Berzins & Dew, 1980, and from the result of Theorem 2 in Basford &
Dew, 1980). For prior integration once we have from the result of Theorem 1 that

2 —
UL O

where

gk )9N-1 TN+1(Y)_TN—1()’) an TN+2(J’)_TN(Y)
aG=" {4N ((N+1) (N—1)>+4(N+1)<(N+2) N >+C1x+62}’

y=2x—1,

and C,, C, are chosen so that P(x) satisfies the boundary conditions (5.2). The result
then follows as for prior integration twice.

We might expect that there is little to choose between prior integration once or



482 M. BERZINS AND P. M. DEW

twice providing that we handle the boundary conditions as suggested in Berzins &
Dew (1980). We see from the results in Table 1(i) that this is indeed the case for o = 0,
B=1,y=1,56=0 where

E(Gi) = 12— Ad, i=1,2,3 (5.4)

and 4,, 4,, 45 are the leading eigenvalues of (5.2).

TasLE 1
Errors in the eigenvalues for the polar operator

& d
YU =0, xe[0,1, -0 atx=0andv=0arx=1

dx* dx
Exact boundary conditions (a) Approx. boundary conditions (b)
Errors
(N=28) (i) (i) (i) (ii)
E()y) 0-105E-6 0-239E-7 0-263E-9 0-861E-10
E(4,) 0-245E-3 0-495E—4 0-809E-5 0-246E-5
E(43) 0-369E-2 0-985E-3 0-232E-3 0-124E-3

(1) Prior integration twice, (ii) prior integration once.

The Polar Eigenvalue Problem

In deriving a generalized Chebyshev method for an equation with a polar operator
we could incorporate the method suggested in Dew & Scraton (1972). To evaluate
whether this would be worthwhile we compare the method given in this paper with
the Dew & Scraton method applied to the polar eigenvalue problem

1 d [/ d
= e ) L ap=0, xe[0,1]
x™ dx dx

subject to (5.5)

d d
—U=O at x =0 and yu+5—v=0 atx=1
dx dx

where y and é cannot both be zero.

In the Dew & Scraton (1972) method the interval of integration was extended to
[—1, 1] and v(x) was restricted to being an even function. To extend the method to
piecewise Chebyshev expansions we must be able to map the interval [0, 1] onto
[—1,1].

We rewrite the differential equation into the form

2
iﬁ+<ﬂd—”+zu>=o (5.6)
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and again approximate v(x) by vy(x). On applying prior integration once or twice we
obtain

Aa+B(g+4ia)=0 (5.7)

where the matrices 4 and B are the same as the matrices occurring in (5.3) with
x=0,p=1,

Glx): =" 0 i 6 T2x—1) (5.8)

X i=0
and
g=1[90 91 --- gnl'.

The boundary conditions can be handled using alternative (a) or (b).

In the method given in Section 2 we estimate the coefficients g; directly from (5.8)
whereas in the Dew & Scraton method we integrate (5.6) and replace v(x) by vy(x)
to give

G(x) = — % [ j (G + My (x) dx+C} (5.9)
where
_ 1y
C= M - %J f {G(y)+ Avy(y)} dy.
0

On writing (5.9) in the form
xG(x) = —mJ‘ {G(y)+ toy(x)} dx+C

and on equating the coefficients of T;(2x—1), T,(2x—1), ..., Ty, (2x—1) we find
that

2igi+ (i+m)g;— 1 +(—m)giry = 44a;_1—ai41), i=12,.. ,N+1. (5.10)

By ignoring the coefficients gy, (, gy+ 2, the first N+1 equations of (5.10) can be
written in the matrix form

where M, and M, are upper tridiagonal matrices. The elements of the matrix R are
independent of the parameter N. Equation (5.10) also ensures that the equation
obtained by equating the coefficient of T; is satisfied. For a general region [a, b] this is
not the case and we must include the equation arising from the term T, and ignore the
final equation at i = N +1.

We can substitute (5.11) into (5.7) to give

Aa+AB(I+mR)a =0 (5.12)
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from which we estimate the eigenvalues of (5.5). By ignoring the two equations that

arise from the boundary conditions and using prior integrations twice we can write
(5.11)

a4+ AB(I+mR)a =0

where
ﬁ == [(12 a3 PR aN]T.
Define
1 d d
L i=——x"—
mox™dx T dx

and the Chebyshev coefficients of the operator L,, as
LNT(2x—-1)} = ) BI{T(2x-1)—1;,x—1,0}, x€[0,1]
s=0

where 1; 4, 1; o are chosen so that the boundary conditions in (5.5) are satisfied. The
matrix

B(I+mR)

defines the leading Chebyshev coefficients of the operator L,. In this case the
perturbed equation is given by

1 d m q ;
_md— dx {UN+P}+/L*UN=0
where
N+2
P(x) = Z Z Bgml)as[’l;(zx_l)_li,lx_1i,0]'
i=N+1 s=

To compare the two approaches numerically we have considered the polar
eigenvalue problem with m = 2, y = 1 and é = 0. The relative error in the first three
eigenvalues is given in Table 2 for N = 8 and N = 16. We see from the table that
the generalized Chebyshev method and the extended Dew & Scraton method are
comparable when the perturbed form of the derivative is used in the boundary
conditions. There is no advantage in applying the modification (5.1) to the
generalized Chebyshev method. For completeness we have included the numerical
results obtained using the Dew & Scraton method directly (i.e. extending the interval
of integration to [ —1, 1] and taking v as an even function). Although there is an
improvement in the numerical results obtained the method cannot be easily
generalized to a method based on piecewise Chebyshev expansions. We can conclude
from these experiments that the approach used to derive the generalized Chebyshev
method is competitive with existing Chebyshev methods. We have also confirmed this
conclusion by comparing the numerical performance of these methods on several test
parabolic equations.
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TABLE 2

1 d d
) )c2£ +20=0, xe[0,1], D0 atx=0andv=0at x=1
x* dx dx dx

Exact boundary conditions (a) Approx. boundary conditions (b)

N Errors Q) (iii) (iv) Q) (i) (iii)

E(4y) 0331E-7 0-734E-5 (0-943E-13 0-353E-7 0122E-6  0-230E-7
8 E(4,) 0448E-5 0-696E-5 O-172E-7 0-432E-5 0437E-5 0-699E-5

E(43) 0-301E-3  0-555E-2 0-129E-4 0-359E-3 (-145E-2 0-120E-2

E(4y) 0-652E-13 0-312E-10 0-569E-14 0401E-13 0-620E-13 0-724E-14

16 E(4,) 0-358E-13 0-288E-14 0-198E-14 0-809E-14 0-142E-12 0-927E-13
E(43) 0-108E€-9 0218E-7 0-113E-13 0-114E-9 0923E-9 (0-858E-9

(i) Generalized Chebyshev method, (ii) generalized Chebyshev method with modification (5.1),
(iii) extended Dew & Scraton method and (iv) Dew & Scraton method on [ —1, 1].

6. Numerical Example

To illustrate the numerical performance of the global element method we have
considered the following problem taken from Bakker (1977);

Ju _, 0 , Ou
o R N 1 u 1
o S5x o {x ax} 000e*, x e [0,%)
g i (6.1)
-2 2 u o 1

subject to the boundary conditions

0
M_0 atx=0, wl,f)=1, fort>0
0x

and initial condition

u(x,0)=0.
We assume the internal boundary condition
u
5 lim — = lim —.
xi-}‘ O0x x—'n;+ Ox

There is a discontinuity between the boundary condition and the initial condition at
x=1.
We have compared the numerical solution obtained by the

(i) finite difference code given in Sincovec & Madsen (1975),
(ii) finite element code written by Bakker using linear basis functions.

In each case the time integration is performed using Gear’s method with a local error
tolerance equal to 107 using a mixed error test.
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To measure the error we first compute the solution using a high precision run. The
error can then be measured using the norm

E(t) = JJI x*[U(x, t)—u(x, t)]*dx for t € (0, 03]

where U(x,t) is the computed solution at the point (x,t) and the integral was
evaluated using the trapezium rule with 100 points.

Figure 1 shows how E(t) varies with t. We have chosen 41 and 81 equally spaced
mesh points for the finite difference and finite element codes. For the generalized
Chebyshev method we have used two elements [0, 4] and [4, 1] with N, =N, =7
(15 mesh points) and four equally spaced elements with N; = 9 on each element (37
mesh points). We can see from the graphs given in Fig. 1 that very satisfactory results
are obtained using the Chebyshev method. As we expect the discontinuity in the
boundary and initial condition causes a large error initially which rapidly dies away.

10!
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FiG. 1. Graph of E(z) for the test problem (6.1). (a) Finite differences (N = 41); (b) finite elements
(N = 41); (c) finite differences (N = 81); (d) finite elements (N = 81); (e) Chebyshev method (N =
2 elements); (f) Chebyshev method (N = 37, 4 elements), N denotes the number of mesh points (i.e. number
of ODE:s to solve).

7. Conclusion

We have shown in this paper that the Chebyshev methods can be extended to
handle general parabolic equations and that the generalized Chebyshev method
compares very favourably with the finite element (linear basis function) method and
the finite difference method. An advantage of the Chebyshev approach is that it is
easy to vary the size of an element and the degree of the polynomial used on each
element. It remains an interesting problem to see if the perturbation term can be used
to select the size of each element and the degree of the polynomial automatically in
some optimum manner.

One of us (M.B.) is grateful for the aid of an S.R.C. studentship during the tenure of
which this work was carried out.
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