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Dew [1] proposed a method for computing the numerical solution to quasi-linear parabolic
p.des using a Chebyshev method. The purpose of this note is to extend the method to
problems with mixed boundary conditions. An error analysis for the linear problem is given
and a global element Chebyshev method is described.
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1. INTRODUCTION

In a recent paper, Dew [1], one of the authors described an algorithm
based on Chebyshev polynomials to compute the numerical solution to
parabolic p.d.e.s of the type

Sixbzt:a(u, X, t)%-l—f(u, x,t), (x,t)e[—1,1]x(0, T] (1.1)
subject to
u(—1,t)=g_,(t), u(l,t)=g,(), te(0,T] (1.2)
and
u(x,0)=K(x), xe[—1,1]. (1.3)

The purpose of this paper is to extend the method and error analysis to
249



250 M. BERZINS AND P. M. DEW

problems with mixed boundary conditions of the type

(1, 0)+ o~ 1,0) =g, (1)
and

yu(l,t)-l—é%u(l,t):gl(t). ' (1.4)

Following the standard Chebyshev method, the u(x,t) is approximated by
a polynomial of degree N written in the form

N
Un(x,t)= Y, a,(t)Ti(x) (1.5)
i=0
where T;(x) is the Chebyshev polynomial of degree i, and the function
oUy
Q(x7t):=o-(UN,x’t)_at—_i_f(UN,x, t) (16)

is approximated by a polynomial of degree N that interpolates Q(x,t) at
the Chebyshev points

XN:={XI-=COS(E), l=05 1',--'5N}'
N

We write this polynomial as

On(xi1)= Y. a:(O)T;(x) (17)

The coefficients a;(¢t) are then chosen so that the following equations are
satisfied

it=

(=1 (@—i*B)a(t) =g, (t)

i

N
'_ZO (v +0i%)a;(t) =g, (t) : (1.8)
and
N
a;(t)= ), A; @), i=23,..,N

s=0

where the coefficients 4; ; are defined in Dew [1].
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For sufficiently simple problems it is possible to eliminate g,(¢) and
q,(t). When

D=y(a—p)+aly+6)#0 (19)

it is then possible to use an obvious extension of the method described in
Dew [1].

Alternatively we can consider (1.8) as a system of algebraic and
ordinary differential equations and compute the numerical solution di-
rectly using an o.d.e. solver adapted to solve equations of the
form ¢(t,y,y)=0 (in standard notation). Gear’s method, for example, can
readily be implemented in this form. Equation (1.8) can conveniently be
mapped into the solution values at the Chebyshev points by using the
mapping matrix Q whose (i,j)th element is defined as

The inverse of Q can be determined analytically and is therefore more
satisfactory than the mapping matrix proposed in Dew [1]. Implementing
(1.8) in this form has the advantage that the problem specification can be
generalized. (For example, the method can be extended to boundary
conditions of the form

g,.<u(—1,r),u(1,r), 0“(a_xl’t), auéi’t_), t>=0 i=1,2))

Numerical experiments indicate however that it is more satisfactory to
solve, where possible, an explicit system of ordinary differential equations.
In the next section we shall consider a new algorithm which reduces the
differential equation to an explicit system of ordinary differential equations
when there are derivative boundary conditions. An error analysis for the
linear problem shows that the new algorithm is likely to lead, for
sufficiently large N, to a more accurate solution than the solution obtained
using (1.8).

The algorithm is then extended to a global element method which can
be used when the solution u(x,t) cannot be adequately represented by a
polynomial defined on [ —1,1] for each te (0, T]. g

2. AN IMPROVED ALGORITHM

Define
ou
R(u, x,t):=a(u,x,t)5+f(u, x,t) (2.1

JICM—C
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then an improved algorithm can be derived by noting that the derivative
Ou/0x can be estimated from the formula

2—z=fR(u,x,t)dx+A (2.2)
where
A=3u,t)—u(—=1,t)— (H(L,t)—H(—-1,1))) (2.3)
and
H(x,t)=]] R(u, x, t)dx dx. 2.4)

The integrals appearing in the above expression are indefinite integrals.
The solution u(x,t) is again approximated by a polynomial of degree N
written as

Uﬁ(x,t)éi a (t)T;(x) (2.5)
and
O(x,t):=R(UL, x,1t). (2.6)

The coefficients {a] (t)} are chosen so that they satisfy the equations

N
al(t)=Y 4,.4,, i=23,...N N

s=0

Y (- e+ 31— (~1Y)af )+ Bl D~ E)g ) =20 o @)
i=0

2, +30(1—(=1))af (¢)+ (e — E;)gi(t) = ZV J

1

M=

where the coefficients {g;} are the Chebyshev coefficients for 0 (x,t)
interpolated at the Chebyshev points, x;€ X, and

e — [T Ti(x)dx}

The parameter Z is defined as

, Ei=%(1_(_1)i)|:]£f7/;(x)dx:|

x=y =1

N
Z¥= ) Ap,G(0)2P +g,(t), y=+1 (2.8)

s=N-1

where z® is given in Section 3.
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The coefficients {a,q;} can then be mapped into the solution values
evaluated at the Chebyshev points using the mapping matrix Q defined by
Eq. (1.11). Equations (2.7) define a system of first order o.d.e.s when B
and/or 6 #0, which can be written (if desired) in normal form.

A feature of Chebyshev methods is that it is easy to obtain the perturbed
form of the differential equation that Uy(x,t) exactly satisfies. A similar
result can be shown for the improved algorithm. Define the perturbation

function as
N+2

Py(x,0):= Y 4y rAy, T(x). (2.10)

s=N+1
We can then prove the following lemma:

LEMMA 1 The approximate solution Uj(x,t) whose coefficients {al} are
defined by Eq. (2.7) is an exact solution of the perturbed equation

2 2

0 ~ 0
w {U;{;(X, t)} = QN(X, l') _—ajci {PN()C, t)}, (X‘, t) E[— 1, IJX(O, T:l
subject to

ocU{,(—l,t)Jrﬂ;; Ub(—1,t)= —=Bp(—1, )+ Z" D(t)+g_,()te (0, T]

yUR(1, t)+5a—a£ Ur(L,t)=—30¢(1,t)+ZP(t)+ g, (t)

and
Uk(x,0)=Ky(x), xe[—1,1]
where
Py(L,t)—Py(=1,1)
2

0
¢N(x7 t)=5;{PN(x’ t)}_

and Qy(x,t), Ky(x) interpolate the functions Q(x,t), K(x) respectively at the
Chebyshev points, x,€ X y.

Proof The proof follows on substitution of the series expansion for
_ U{,(x, t), On(x,t) and then on integrating in the standard manner.
This Lemma is the starting point for the error analysis. By choosing

ZED(8)=Bd(—1,t) and ZD(6)=5¢(1, 1) (2.11)

it is easily seen that U§(x,t)=Uy(x,t).
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It is helpful to introduce operator notation. Following Dew [1] we
define F as the space of function defined on [ —1,1] x [0, T] such that -

f,(.,t)e L,[ —1,1] for each fixed te[0, T]

and consider the norm

J‘;(.,t)=\/jl [f,(x,8)]* dx.

Define H<F such that all functions belonging to H satisfy the homo-
geneous boundary conditions (1.4) and have at least piecewise continuous
second derivatives in the first variable x. The differential equation can
then be written in the operator notation: L: H—F

Lu,=R for each te (0, T] (2.12)

where u(x, t)=u,(x,t)+ G(x,t), and G(x,t) is chosen so that u(x, t) satisfies
the boundary conditions (1.4). For D+0 the inverse operator L™ !:F—H
exists for each te (0, T].

3. AN ERROR ANALYSIS FOR THE LINEAR BOUNDARY
VALUE PROBLEM

The nature of the approximation can most clearly be seen by considering
the differential equation

2

2—);=f(x,t), xe[—1,1] for each te (0, T] (3.1)

subject to the boundary conditions (1.4). In this case

Qx,0)=0(x,t)=f(x,t)= Y, fi(t)T(x)
and e

N
On(x, 1) =Qn(x, 1) =fy(x, t)= 3, fV ()T (x).
i=0
The following theorem enables us to compare the accuracy of the two
methods defined by Eq. (1.8) and (2.7) respectively. Define
N+2

Pq(xat): Z As,s—qu—Z{T;(x)_ll,sx_10,s} (32)

s=N+1
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where the coefficients 1, | and 1, ; are given by

[fx ﬁ—a][lo,sJ_[(a-ﬁsz)(—1)5}
y S+y |l 1| |y+os?

and

N+2

Pixt)= Y Ags-2de2{Ti(x)—Lyx—Lo,} (3.3)

s=N+1

where the coefficients L, ; and L, ; are given by

(1—(-1))

[a(ﬂ—wﬂ?ﬂﬂ:: A S
v O+ JLLy $7 +5(1_(2_1_)s.).+2§1)

+2z{V

THEOREM 1  Suppose that the function u(x,t) satisfies (3.1) subject to the
boundary conditions (1.4) for each t(0,T], feF and that D+0. Then the
Sfollowing statements are true:
i) If Un(x,t) is the function whose coefficients {a;(t)} satisfy (1.8) with g,
=™ then
u(x,t)—Up(x,t)=P o0 (x, 1)+ L { f—fy} (3.4)
i) If U%(x,t) is the function whose coefficients {al} satisfy (2.7) with g,
=™ then

u(x,t)—U{,(x,t)=}3f(N>(x,t)+L_1{f—fN}. (3.5)
Proof The result for (i) follows directly from the perturbed equation
for Uy(x,t). For (i) write
UY=UY+L,x+L,, UkeH,

and use the result of Lemma 1.

From the result of the Theorem the parameter z{*

N

(1-(=1))
2

) can be chosen as

A0 =a(—~1y—f

and

0= (=1p)

7 W
s =) 3

providing that § and/or § are nonzero. If f=J=0 then it is necessary to
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ensure that the boundary conditions are exactly satisfied and hence
ZV=z"1=0.

The main advantage of introducing z{*? is that it simplifies the expression
for the perturbation term which makes it easier to compute error
estimates.

The advantage of the improved algorithm can be seen from the result of
the theorem, since the coefficients {1, ,} are of O(s*) whereas the coef-
ficients {L; ,} are of O(1). Of course for the simple linear problem we can
further improve the solution by adding the perturbation term to the
computed solution with an error

L=/}

for both methods. We now show that the perturbation term is the
dominant part of the error when the coefficients { f;} converge rapidly.

LEMMA 2 Suppose that D+0 and w(t) is a continuous function then

L™ tw() Ty (x)|. =|w(®)|0(1/N?), N>2. (3.7)
Proof Is is easily shown that
N+2
L 'w@)Ty(x)=w(t) ¥ A n{Tx)—1,x—1.4. (3.8)
s=N—-2
Let
N+2 N+2
L(f‘,l}v: Z As,Nll,s= Lgﬂv: Z As,Nlo,s
s=N-2 s=N-—-2 _
then
N+2
A _ 2 _ls
[OH-ﬂ _OCJI:LS‘?;V]_ s=§_2 s,N(a ﬁs )( )
+0 + LA || N2
AR e I Y N R
s=N—-2
But
Niz 5 1 N+2 3
A NS =, Ay =
e e )) s=§_z TN —1)(N?—4)

and since D +#0 it follows immediately that for N >2
L{¥%=0(1/N?), L{=0(1/N?)

The result (3.7) then follows directly from (3.8).
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If we assume that the Chebyshev coefficients { f;} for the function f(x,t)
converge sufficiently rapidly that fy,,,fy4+3,... can be ignored then the
error

E (x,t)=f(x,t)—fy (e, t) Rfy+ 1 { Ty 1 () — Ty 1 (x)}

(see Fox and Parker (1968)) and therefore from the result of Lemma 2 the
perturbation term will dominate and hence E, is a good estimate of the
error |[u(.,t)—Uy(.,t)|x. If we assume that the exact Chebyshev coef-
ficients of f'(x,t) are used (i.e. g;=q;=f;) then

Wy J4N"2 S 1]

i=N+1

||“(-= t)—Un(., t)”xé C, {max |fN—1

L

lu(..)-URC OLSCN2 Y |,

i=N—1

, N>2.

where C, and C, are constants.

4. AN ERROR ANALYSIS FOR THE LINEAR PARABOLIC P.D.E.

The error analysis can be ef(tended to the linear parabolic p.d.e. of the
form

*u  Ou

5x_2:66—t+f(x’t)’ >0, (x,t)e[—1,1]x(0,T] 4.1)

where ¢ is a constaﬂt, subject to the mixed boundary conditions (1.4). In
the following analysis we shall assume that

a#0, y#0, p/a<0, 6/y>0 4.2)

which ensures that D#0 and the operator L (see (2.11)) is negative
definite. In addition we shall assume that the error, e(x,t), in the
numerical solution (using either (1.8) or (2.7)) satisfies the inequality

fi Je :

| eé?dt<0 for all te (0, T] (4.3)
1

so that
Oe

ot

d
= _W)E”e(.,r) le(., 1) #0 (4.3)

X

X

where y(t)=1 1s assumed to be a bounded function (y(t)<7). Under these
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assumptions the analysis of Dew [1] follows directly and

— A,
..t zexp( 2K (-~
+ max {||P(., o) +||L (F=fw)ll<} (4.4)
te(0,T] .

where
P(x,t)=P,(x,t) for the method given by Egs. (1.8)
=P(x,t) for the method given by Egs. (2.7)

and A, is the fundamental eigenvalue of the restricted operator L™ ':
H-H.
From the results of the previous section, we have that

afv—1l+ |fN—1 > °'|a;v| +|fN|) 0(1)

||Pq(.,t)||x=rﬁax(a

and
, olay |+ /D) - O(N~?)

where the dash denotes differentiation w.r.t. t. This algorithm is likely to
be more satisfactory providing that the initial error |[K(.)—Ky(.)||, does
not dominate the solution. It should be noted that Dew and Scraton [2]
obtained a similar improvement for the heat equation as shown in Scraton
[4]. However, it is more satisfactory to compute a numerical solution
using Egs. (2.7) than the Dew and Scraton method and also the new
method can be used even if D (1.9) is zero.

Hpq(.,t)Hx:max (olar 1| +]/n-1

5. GLOBAL ELEMENT CHEBYSHEV METHOD

For a number of parabolic p.d.e.s arising in practice it is not sufficient to
approximate the solution by a polynomial defined on the interval [ —1,1]
for each t. In such cases a global element Chebyshev method can be used.
That is we partition the interval [ —1,1] into elements {I,,:=[Vm, Vm+1]> M

=1,2,...M,y,=—1, yyy=1, ¥, <Vm+:) and write the solution as
M
ux,t)= ) u™(x,1) (5.1)
m=1
where y

u™(x,t):=u(x,t), xel, and zero elsewhere.
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Define W,,:1,,—[ —1,1] and approximate the solution by

M
US(x,t)= (zjl Um(x,1) (5.2)

where
Nm
x(xat): Z am,ile(Wm(x))’ xEIma
i=0

=0 elsewhere.
At the internal nodes we impose the boundary conditions

UR (s ) =UR" ! (X )

and
n aUm aUm+1 m=2,3,...,M
S (o 1) = s 1)
ox 0x

We assume that the function R (defined in Eq. (2.1)) is a continuous
function in its arguments u and ¢ for all te (0, T] and ueF and that it is a
piecewise continuous function for the x variable, xe[—1,1]. Any discon-
tinuities in R must be at the internal nodes. We further assume that

Q°(x,t)=R(UR,x,1t)
can be adequately represented by a piecewise polynomial

M
0f(x. )= U QRex1)

where
Nm
not)= Y dm T(W,(x)), xel,
i=0
=0 elsewhere .

where Q7 (x,t) interpolates Qf(x,t) at the points X, :={W,(x;),x;e Xy, }.
The algorithm given in Section 2 can then be extended. That is the
coefficients {a,, ;} are chosen to satisfy the equations

Nm m=1,2,...M
L= p2 A , P
am,; .urm sgo l,sqm,s i 2, e Nm

N1
Z (“"’%ﬂ(l —(— 1)i)a1,i+.“1ﬁ(e§—1)—Ei)41,i)=g—1(t)

i=0

Num
Z 0% +%5(1 - (—i)i)aM,i+uM6(e§1)_Ei)qM,i): g1 ()
i=0
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together with the condition for continuity of the derivative at the internal
" node

Nm
%(1_(_l)i)am,i—i—um(eg—1)_Ei)qm,i
i:0  commn—
'”;{lim Nm+1 .
- Z %(1—(_1)l)am+1,i+:u‘m+1(egl)_Ei)qm+1:0
i=0 e :
AA ) ’
SN 25 M.
where

Ky = (ym+1 _ym)/z

The coefficients {a,, ;,q,, ;} can be mapped into the solution values at the
points X, using the mapping matrix Q (1.11) defined on each element
such that the continuity of U%(x,t) and Q%(x,t) is preserved at the
internal nodes. The algorithm requires a slight modification in the case
when R is only piecewise continuous at the internal nodes. If f and/or
0#0 then (5.3), (5.4) mapped into the solution values defines a system of
ordinary differential equation which can be solved by Gear’s method. The
Jacobian matrix arising in Gear’s method is banded with a maximum
bandwidth of max, (N, +N,, ., +1). In the case when f=5=0 (5.3), (5.4)
can be reduced to a system of ordinary differential equations and two
algebraic equations.

It is easily shown that the function U§(x,t) satisfies a perturbed form of
the original differential equation. The error analysis given in this paper
and the techniques for estimating the error described in Dew [1] can
be extended to the global element method. In particular it is possible to
estimate the error in the solution across each element.

6. NUMERICAL EXAMPLE

To compare the relative accuracy of the solution Uy(x,t) and Ux(x,t)
whose coefficients {q;} satisfy Eqgs. (1.8) and (2.7) respectively we have
considered the parabolic p.d.e.

ou 0°
a_zt:a—;ﬂze”, (x, )€ [0,1]x(0,.8]
subject to
ou(0,t)

=0, te(0,.8], u(x,0)=log, (:x*+0.1)

Ox
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TABLE 1
The error curves for problems A and B

WO W™

e R o Rl o]

10—1@: el L N=9
1011 y :

t
PROBLEM B - Neumann boundary conditions

A
The solid line denotes the error ||[Uy(.,t)—u(.,t)|;

. N
The dotted line ----- denotes the error ||Ux(.,t)—u(.,t)|.-

261
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and either
PROBLEM A—mixed boundary conditions
ou(l,t .
u(l,¢)+ (0.6 +1) u(gx’ )=loge (t+0.6)+1,t€(0,.8]
or

PROBLEM B—Neumann boundary conditions

ou(l,t) 1

x 6ty ‘€O

The exact solution is u(x,t)
u(x,t)=log, 3x*+t+0.1).

It was not practical to compute a numerical solution directly from
Eq. (1.8) because the iterative procedure in Gear’s method failed to

converge. Hence to compare the relative accuracy of the two solutions we
used Eq.(2.7)

Z'*Yasgivenin Eq.(2.11) (coefficients define Uy(x,t))

ZEV =0 (coefficients define UR(x,t))

Graphs of the error norms ||Uy(.,t)—u(.,t)||, and |JUR(.,,t)—u(., 1)
against t for N=35, 7 and 9 and for problems 4 and B are given in Table 1.
The numerical solution of Eq. (2.7) was computed using Gear’s methods
with a local error tolerance 0.5,,—8. The improvement in accuracy
obtained using the new algorithm can be seen for N >5.
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