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Abstract

We utilize molecular dynamics simulations to investigate the implications of micelle formation on structural relaxation and polymer bead

displacement dynamics in a model telechelic polymer solution. The transient structural heterogeneity associated with incipient micelle

formation is found to lead to a ‘caging’ of the telechelic chain end-groups within dynamic clusters on times shorter than the structural

relaxation time governing the cluster (micelle) lifetime. This dynamical regime is followed by ordinary diffusion on spatial scales larger than

the inter-micelle separation at long times. As with associating polymers, glass-forming liquids and other complex heterogeneous fluids, the

structural ts relaxation time increases sharply upon a lowering temperature T ; but the usual measures of dynamic heterogeneity in glass-

forming liquids (non-Gaussian parameter a2ðtÞ; product of diffusion coefficient D and shear viscosity h; non-Arrhenius T-dependence of tsÞ

all indicate a return to homogeneity at low T that is not normally observed in simulations of these other complex fluids. The greatest increase

in dynamic heterogeneity is found on a length scale that lies intermediate to the micellar radius of gyration and intermicellar spacing. We

suggest that the limited size of the clusters that form in our (low concentration) system limit the relaxation time growth and thus allows the

fluid to remain in equilibrium at low T :

q 2004 Published by Elsevier Ltd.
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1. Introduction

There have been many recent experimental and compu-

tational studies indicating the existence of ‘dynamic

heterogeneity’ in polymeric and other glass-forming liquids

[1]. Recent molecular dynamics (MD) simulation studies

[2–5] have further expounded upon the important role of

dynamic heterogeneity (defined below) in governing

relaxation behavior in polymer melts as the temperature is

reduced toward Tg: Experimental and MD simulations

studies of polymer dynamics at attractive interfaces [6–9]

have shown that the dynamics of polymers new interfaces

can be significantly slowed down and that this slowing down

of polymer dynamics is accompanied by an increasing

dynamic heterogeneity even at temperatures ðTÞ much

higher than Tg [6]. Dynamic heterogeneity has been also

reported in associating polymer solutions that form

thermoreversible gels [10]. Evidently, dynamic hetero-

geneity is not restricted to glass-forming liquids and it is

interesting to inquire if, how and why it is exhibited in other

‘complex’ fluids.

Dynamic heterogeneity is a phenomenon that can arise in

both the spatial and time domains and is recognizable by

deviations from the properties of ‘homogeneous’ solutions

and fluids. In idealized homogeneous fluids, the distribu-

tion of dynamical events approach simple limiting forms

governed by the independence of successive dynamical

events and by the finiteness of the averages and variances

of the times separating these events. For example, the

distribution of waiting times between conformational

transitions in a polymer at high temperatures is expected

to be Poissonian [11–14] because the transition events are

described by an independent random process with finite

variance and mean time. Upon lowering T towards the glass

transition of the polymer melt, the conformational tran-

sitions become increasingly intermittent and conformational

transition distribution become distinctly non-Poissonian.

[11,12,15] Similarly, the deviation of the distribution of

atom displacements from a Gaussian distribution (or
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equivalently Brownian motion) is another indication of

‘dynamic heterogeneity’ that has been recognized in recent

molecular dynamics simulations of glass-forming liquids

upon cooling [16,17]. (The Gaussian distribution describes

the limit distribution for a sum of a large number of

independent random displacements whose variance and

mean are finite). These deviations from ‘homogeniety’ in

the liquid dynamics are often accompanied by spatial

dynamic heterogeneity associated with spatial correlation of

particles in a state of enhanced or diminished mobility

relative to that expected from the distributions governing

the homogeneous fluid state. Specifically, simulations on

glass-forming liquids at low T have indicated the existence

of particles that are relatively ‘mobile’ and ‘immobile’ with

respect to Brownian motion and that these particles form

increasingly large scale clusters upon cooling [18,19,20].

Evidence points to these clusters being the physical origin of

the various measures of dynamic heterogeneity seen in

experiments on glass-forming liquids. Notably, these

structures are characterized by both structural heterogeneity

and temporal intermittency in atomic displacements and

have many impacts on fluid properties. One of the most

symptomatic properties of this fluid condition is that the

product of fluid shear viscosity ðhÞ and translational

diffusion coefficient ðDÞ increases in the region where the

heterogeneity becomes pronounced. The dynamically

heterogeneous state is also characterized by the non-

Gaussian parameter ða2Þ involving 4th and 2nd moments

of the particle displacement distribution function, defined

such that a2 ¼ 0:0 for Brownian motion. We consider these

quantities below in characterizing dynamic heterogeneity in

micelle-forming fluid.

While experiment and simulation have revealed increas-

ing dynamic heterogeneity on cooling of polymer melts,

dynamic heterogeneity in self-associating polymer solutions

has been much less studied. In the present paper, we

consider the nature of dynamic heterogeneity in a model

self-associating polymer solution that cannot be classified

either as a first order or second order phase transition, but

where a well-defined thermodynamic [21] ‘clustering

transition’ exists. Our molecular dynamics simulations of

micelle-forming telechelic solution also exhibit dynamic

heterogeneity, similar in many characteristics to previous

simulations of glass-forming liquids [22] and the thermally

reversible gelation of associating polymers [10]. However,

we observe that once the micelles become well formed at

low temperatures, the heterogeneity effects diminish. The

limited spatial extent of the micelles apparently leads to

limited change in the viscosity and structural relaxation time

of the fluid in comparison with thermally reversible gelation

and glass-formation. The aim of the present paper is to

examine the relation between dynamic and spatial hetero-

geneity in a micelle-forming telechelic solution upon

lowering temperature through the micellization transition

and to relate this phenomena to previous observations of

dynamic heterogeneity in other systems.

2. Simulation methodology

2.1. Molecular dynamics simulations

MD simulations were performed on an ensemble of bead-

necklace telechelic polymers consisting of eight beads. All

beads experience excluded volume interactions modeled

by a shifted and truncated Lennard–Jones potential of the

form,

UðrÞ ¼ 41
s

r

� �12

2
s

r

� �6
" #

þ UðrcÞ r , rc; rc ¼ 21=6s ð1Þ

UðrÞ ¼ 0 r $ rc

with an (unshifted) Lennard–Jones well depth ð1Þ of 1/7.

The bead diameter s ¼ 1 defines the unit length scale. End

groups of each chain also had an additional attractive end-

group/end-group interaction of unit magnitude 1 ¼ 1

(truncated at 2.5 s). MD simulations were performed on

an ensemble of 1000 chains at number bead density r ¼ 0:3

in an NVT ensemble using the simulation package Lucretius

[23]. No solvent molecules were explicitly present in the

system. Simulations were performed over a range of

temperatures 0:70 . T . 0:13 (in reduced units) which

spans the micellization temperature (see below). All

properties reported below are expressed in terms of the

energy and length scales, 1 and s; respectively [24].

2.2. Calculation of the dynamic structure factor

Structural relaxation in the model telechelic solution was

monitored via the incoherent dynamic structure factor

defined as,

Iðq0; tÞ ¼
1

N

XN
i¼1

sin q0RiðtÞ

q0RiðtÞ
ð2Þ

where N is the number of end beads, q0 is the magnitude of

the scattering vector corresponding to the length scale on

which motion of chain end-groups is maximum non-

Gaussian (see discussion in Section 2) and RiðtÞ is the

displacement of end-bead i after time t: The non-Gaussian

character of bead displacements, can be quantified by the

first non-Gaussian correction to Iðq0; tÞ and is given by [25],

Iðq0; tÞ ¼ IGaussðq0; tÞ 1 þ
1

2
q2

0kRðtÞ
2l=6

� �2
a2ðtÞ þ · · ·

� 	
ð3Þ

where

IGaussðq0; tÞ ¼ expð2q2
0kRðtÞ

2l=6Þ ¼ expð2q2
0DðtÞtÞ ð4Þ

and

a2ðtÞ ¼
3kRðtÞ4l
5kRðtÞ2l2

2 1 ð5Þ

Here, kRðtÞ2l is the mean-square displacement of end beads

after time t and DðtÞ ¼ kRðtÞ2l=6t is the apparent diffusion
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coefficient. Strongly non-Gaussian displacements can result

in much slower structural relaxation [rate of decay of

Iðq0; tÞ] compared to a material with the same intrinsic

dynamics [i.e. the same DðtÞ] and Brownian particle

displacements. The deviation of a2ðtÞ from zero is often

taken as a measure of dynamic heterogeneity in glass-

forming liquids and we consider this same quantity in the

context of our telechelic solutions. By itself, a2ðtÞ – 0 does

not imply that the system is heterogeneous, but a non-zero

a2ðtÞ is symptomatic at this condition. Further information

(discussed below) is required to establish the correct

interpretation of non-zero a2ðtÞ and identify the dynamic

heterogeneity in any given system.

3. Results and discussion

3.1. Structure characterization

Fig. 1 shows the probability PðmÞ of finding an end-group

in a cluster of size m: We define an end-group to belong to a

cluster if it is within a distance of 2.0 from any other end-

group in the cluster. At all T investigated, we found

extensive end-group clustering as well as geometric

percolation as a consequence of polymer chains spanning

the space between clusters [26]. For T . 0:37; PðmÞ

decreases monotonically with increasing cluster size. At

these temperatures, while the majority of end-groups

participate in relatively small clusters ðm , 20Þ; there is a

significant probability for having relatively large clusters

ðm . 50Þ which are spatially diffuse and dynamically

unstable. The weight averaged cluster radius of gyration

ðRgÞ at these temperatures is about 3.4. Near T ¼ 0:37; we

observe the emergence of a shoulder in PðmÞ; which we take

as Tx the onset temperature of micelle formation [26].

Below this T ; the shoulder transforms into a pronounced

peak. For T , 0:37; we find that the intermediate size ðm ,
25–35Þ clusters are spatially compact ðRg ¼ 1:6Þ and

dynamically stable. In Fig. 2, we show T-dependence of

the averaged cluster radius of gyration. After the onset of

micellization, we do not observe additional qualitative

changes in PðmÞ with a further reduction in temperature.

Fig. 3 shows the center of mass distribution function for

micelles of size greater than m ¼ 10: With the emergence of

well-defined clusters ðT , TxÞ; an increase in liquid-like

ordering of the micelles manifested through increasing

nearest-neighbor peak intensity and the emergence of

longer-range (second and third neighbor, etc. peaks) can

be observed. The position of nearest neighbor peak ðr <
7:0Þ; however, is only weakly dependent on T :

3.2. Non-Gaussianity of end-group displacements

The second cumulant of the distribution of end-group

displacements (Eq. (5)) is a measure of the extent of devi-

ation of the end-group displacements from Gaussian behavior.

The second cumulant (defining the non-Gaussianity para-

meter) is shown as a function of mean-square displacement

of end-groups in Fig. 4. The maximum value of a2ðtÞ

Fig. 1. The probability of finding an end-group in a cluster of size m for

various T investigated.

Fig. 2. Averaged cluster radius of gyration as a function of temperature.

Fig. 3. The cluster center of mass radial distribution functions for clusters

with m $ 10:
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increases with decreasing temperature for T , Tx; while the

mean square displacement associated with this maximum

remains essentially independent of temperature at kR2l ¼
5:3: This defines a third length scale ðRða2 2 maxÞ ¼ 2:3Þ

induced by the emergence of micelles and which can be

thought of as a cage size [26]. This scale lies between the

radius of gyration of the micelles ðRg < 1:6Þ and the mean

intermicellar spacing ðRinter < 7:0Þ:

3.3. Dynamic structure factor

The incoherent dynamic structure factor, calculated for

end-groups only, is shown in Fig. 5 for T above and below

the micellization temperature for q0 ¼ 2p=Rða2 2 maxÞ ¼

2:7: The rate of decay of Iðq0; tÞ decreases with decreasing

temperature, indicating that the end-group dynamics, and

hence structural relaxation, are slowing down appreciably.

Also shown in Fig. 5 is the corresponding IGaussðq0; tÞ; which

reflects the intrinsic ‘diffusion’ of the end-groups (see

Eq. (4)). The difference in the rate of decay between Iðq0; tÞ

and IGaussðq0; tÞ at a given temperature is a manifestation of

non-Gaussian end-group displacements, i.e. dynamic

heterogeneity, on structural relaxation. It is clear that for

T below the micellization temperature dynamic hetero-

geneity plays a much more important role in structural

relaxation than for temperatures above Tx:

At low temperatures, the Iðq0; tÞ shows a well-defined

two-step relaxation with a clear plateau between steps as

shown in Fig. 5 by a dotted horizontal line for T ¼ 0:13: We

define a structural relaxation time as a time when for a given

q0 value the Iðq0; tÞ [or IGaussðq0; tÞ] reaches a value of 0.01

of the plateau value for the lowest T investigated ðT ¼

0:13Þ: To obtain the structural relaxation time ðtsÞ we fit the

terminal relaxation process [Iðq0; tÞ the below the second

inflection point as indicated by solid lines in Fig. 4] using

the Kohlrausch–Williams–Watts (KWW) equation, [27]

Iðq0; tÞ ¼ A exp½2ðt=tÞb� ð6Þ

For T ¼ 0:13 the constant A is equal to the plateau value of

the Iðq0; tÞ and therefore for all temperatures ts was

determined by equating the KWW fit (r.h.s. Eq. (6)) to

0:01AT¼0:13: The same procedure was used to determine

IGaussðq0; tÞ relaxation times ðtGauss
s Þ: In Fig. 6, the relaxation

times ts; t
Gauss
s and the ratio ts=t

Gauss
s are shown as a function

Fig. 4. a2ðtÞ as a function of mean-square displacement of end-groups.

Fig. 5. The Iðq0; tÞ (symbols) and IGaussðq0; tÞ dash lines as a function of t for

q0 ¼ 2:7: Solid lines show the fits of terminal relaxation for Iðq0; tÞ by

KWW expression (Eq. (6)). Horizontal dotted line indicates a plateau value

of Iðq0; tÞ for the lowest T investigated.

Fig. 6. Relaxation times ts; t
Gauss
s (panel a) and the ratio ts=t

Gauss
s (panel b)

are shown as a function of 1=T for three q0 values corresponding to the

length scales of Rg; Rða2 ¼ maxÞ and Rinter:
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of inverse temperature. Data are shown for q0 corresponding

to the micelle radius of gyration, Rða2 2 maxÞ; and the

intermicellar spacing. On these length scales, the T-

dependence of the ts, obtained from Iðq0; tÞ; increases

dramatically for T , Tx compared to T . Tx: This is

consistent with the T-dependence of the shear relaxation

time in the telechelic solution determined in our previous

work [26]. It is interesting to point out that the shear stress

modulus has a three-step relaxation at T , Tx (not shown),

while the structural relaxation exhibits two steps. The

longest relaxation time in each type of the relaxation

corresponds to the structural relaxation time and mean

cluster lifetime, while the stress relaxation also exhibits

a dependence on the ‘caging time’ characterizing the

crossover from caged to diffusive motion in the mass

diffusion.

Notably, the T-dependence of the structural relaxation

time, determined from the mean-square displacements

ðtGauss
s Þ; is rather strong. Moreover, it can be well

represented with two Arrhenius functions, and cannot be

accurately represented with a Vogel–Fulcher [28] function

commonly used to describe the temperature dependence of

‘fragile’ glass forming liquids, including polymers,

approaching Tg: The latter fitting function predicts a

diverging relaxation times with decreasing temperature,

although it is unproven whether the relaxation times

actually diverge in glass-forming liquids. The structural

relaxation times for our telechelic solution, while showing a

strong T-dependence below the micellization temperature,

remain finite. The T-dependence of ts itself is more

complex, apparently reflecting the T-dependence of the

non-Gaussian contribution to structural relaxation (see

below).

Fig. 6 also shows that the contribution of non-

Gaussianity in end-group displacements to the structural

relaxation time, quantified by ts=t
Gauss
s ; increases dramati-

cally with decreasing T near Tx; the effect being greatest

on the length scale of the maximum in a2: This dramatic

T-dependence of ts=t
Gauss
s persists only over a limited range

of temperature below Tx: At lower T ; the relaxation time

ratio ts=t
Gauss
s saturates, leading to a complex T-dependence

of ts:

3.4. Length and time scale dependence of dynamic

heterogeneity

The maximum value of a2ðtÞ at each temperature,

amax
2 ðTÞ is shown in Fig. 7 for the three length scales of

interest (Rg; Rða2 2 maxÞ; RinterÞ: The magnitude of

amax
2 ðTÞ reaches a maximum near the micelle transition

(maximum in specific heat [26]) and then decreases at lower

T as the transition is ‘completed’, showing no tendency to

diverge on any length scale. Furthermore, on longer length

(time) scales, a2 decreases dramatically for all T ; indicating

that the dynamics are rapidly homogenizing (i.e., displace-

ments are becoming diffusive) on the longer length scale.

This is consistent with the smaller ts=t
Gauss
s seen in Fig. 6 for

the smallest q: We observe that the dynamic heterogeneity

in our micelle-forming system has a clear origin in terms of

the emerging structural heterogeneity (micelle formation) in

the fluid.

Fig. 8 shows the probability distribution of end-group

displacements for a mean-square displacement of kRðtÞ2l ¼
5:3; corresponding to amax

2 ðTÞ for the telechelic solutions at

several T : Also shown is the Gaussian distribution

(corresponding to diffusive motion) for kRðtÞ2l ¼ 5:3 The

heterogeneity in end-group dynamics that leads to increas-

ingly large contributions of non-Gaussianity to the slowing

structural relaxation with decreasing T can be clearly seen.

At T below Tx; the displacement distribution is bimodal with

relatively high probabilities for displacements at the scale

of <1.3 and <7.0. The 1.3 scale corresponds to the Rg of

the micelles and reflects the motion of end-groups still

trapped within their micelle. The distance 7.0 is consistent

with the nearest-neighbor intermicellar distance (see Fig. 2)

and reflects the motion of end-groups that have ‘jumped’ to

neighboring micelles. This jumping process leads to

diffusive motion on larger length scales [26]. The maximum

in a2ðtÞ occurs on a length (time) scale where the mean

displacement of end-groups lies between these two scales

Fig. 7. (a) The maximum value of a2ðtÞ at each T ; (b) the product of the

molecular diffusion coefficient ðDÞ and the solution viscosity ðhÞ:
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and thus reflects the fluid dynamic heterogeneity. Here,

many end-groups are still trapped within their micelles, but

many have also jumped, leading to quite non-Gaussian

behavior in the displacement distribution. On longer length

(time) scales, most end-groups have jumped, leading to

more diffusive dynamics and a reduced dynamic

heterogeneity.

The contrast in behavior of the telechelic solution and

glass forming liquids is further illustrated by examining the

T-dependence of the product of the molecular diffusion

coefficient D and the solution viscosity h; shown in Fig. 7.

This product is observed to strongly increase in ‘fragile’

glass-forming liquids as the glass transition is approached

[1] and this is often taken as an indication of increasingly

(spatially) heterogeneous dynamics. Fig. 7 reveals that

while Dh increases as the T is decreased through Tx; this

quantity saturates after a modest increase. This saturation of

Dh parallels the change of relaxation time data from one

Arrhenius regime at high T to another at low T ; described

above.

4. Conclusions

Detailed examination of structural relaxation in a model

telechelic solution reveals a dramatic increase in the

structural relaxation time as this solution pass below the

micellization temperature. We also find substantial evidence

for dynamic heterogeneity exhibited by the strong non-

Gaussianity of bead displacements and an increase in the

product Dh: Although there are some qualitative similarities

between dynamic heterogeneity of our micelle-forming

solution with glass-forming fluids and thermoreversible

gels, the extent of dynamic heterogeneity in our system is

apparently much more limited at low T : Instead of a

continually increasing dynamic heterogeneity with decreas-

ing T ; we find that it saturates at T below Tx for telechelic

solution.
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