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The recent precipitous losses of summer Arctic sea ice have outpaced the projections of most climate models. A
number of efforts to improve these models have focused in part on a more accurate accounting of sea ice albedo
or reflectance. In late spring and summer, the albedo of the ice pack is determined primarily by melt ponds that
form on the sea ice surface. The transition of pond configurations from isolated structures to interconnected net-
works is critical in allowing the lateral flow of melt water toward drainage features such as large brine channels,
fractures, and seal holes, which can alter the albedo by removing the melt water. Moreover, highly connected
ponds can influence the formation of fractures and leads during ice break-up. Here we develop algorithmic tech-
niques formapping photographic images ofmelt ponds onto discrete conductance networkswhich represent the
geometry and connectedness of pond configurations. The effective conductivity of the networks is computed to
approximate the ease of lateralflow.We implement an image processing algorithmwithmathematicalmorphol-
ogy operations to produce a conductance matrix representation of the melt ponds. Basic clustering and edge
elimination, using undirected graphs, are then used to map the melt pond connections and reduce the conduc-
tance matrix to include only direct connections. The results for images taken during different times of the year
are visually inspected and the number of mislabels is used to evaluate performance.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Sea ice is a critical component of Earth's climate system and a sensi-
tive indicator of climate change. The dramatic losses of summer Arctic
sea ice observed in the past few decades have a substantial impact on
Earth's climate system, yet most global climatemodels have significant-
ly underestimated the rate of decline (Boé et al., 2009; Serreze et al.,
2007; Stroeve et al., 2007). One of the fundamental challenges of climate
science is to developmore rigorous representations of sea ice in climate
models and to incorporate important small scale processes and struc-
tures into these large scalemodels. For example, during themelt season
the Arctic sea ice cover becomes a complex evolving mosaic of ice, melt
ponds on the sea ice surface, and openwater. While white snow and ice
reflectmost incident sunlight, melt ponds and the ocean absorbmost of
it. The overall reflectance or albedo of sea icefloes – the ratio of reflected
to incident sunlight – is determined by the evolution of melt pond cov-
erage and geometry (Perovich et al., 2002; Polashenski et al., 2012; Scott
and Feltham, 2010). As melting increases, the albedo is lowered, which
increases solar absorption, leading to more melting, and so on. This key
mechanism is called ice–albedo feedback (Curry et al., 1995), and has
played a significant role in the decline of the summer Arctic ice pack
ngineering, University of Utah,
(Perovich et al., 2008; Pistone et al., 2014). Sea ice albedo is a significant
source of uncertainty in climate projections and one of the most impor-
tant parameters in climatemodeling (Flocco et al., 2010; Pedersen et al.,
2009; Polashenski et al., 2012; Scott and Feltham, 2010).

While melt ponds form a key component of the Arctic marine envi-
ronment, comprehensive observations or theories of their formation,
coverage, and evolution remain relatively sparse. Available observations
of melt ponds show that their areal coverage is highly variable. This is
particularly true for first year ice early in the melt season, with rates of
change as high as 35% per day (Polashenski et al., 2012; Scharien and
Yackel, 2005).

Such variability, as well as the influence of many competing factors
controlling melt pond and ice floe evolution, makes the incorporation
of realistic treatments of albedo into climate models quite challenging
(Polashenski et al., 2012). Small and medium scale models of melt
ponds which include some of these mechanisms have been developed
(Flocco and Feltham, 2007; Scott and Feltham, 2010; Skyllingstad
et al., 2009), and melt pond parameterizations are being incorporated
into global climate models (Flocco et al., 2010; Flocco et al., 2012;
Hunke and Lipscomb, 2010; Hunke et al., 2013; Pedersen et al., 2009).

Asmelting progresses during the season, the evolution ofmelt ponds
from small isolated structures into large interconnected networks is re-
sponsible for a number of processes that help control the rate at which
the ice pack melts. It is believed (Hohenegger et al., 2012) that this
evolution of connectedness is an example of a percolation transition
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(Christensen and Moloney, 2005; Stauffer and Aharony, 1992). Such a
transition occurs when one phase in the microstructure of a composite
material, for example, becomes connected on macroscopic scales as
a controlling parameter exceeds a critical value called the percolation
threshold (Broadbent and Hammersley, 1957; Christensen and Moloney,
2005; Stauffer and Aharony, 1992).

In the case of melt ponds the controlling parameter which gives rise
to critical behavior is thought to be the fraction of the area of the sea ice
surface covered by melt ponds.

An important example of critical behavior related to percolation
theory as applied to sea ice, and important for melt pond drainage,
comes from the study of fluid flow through the porous microstructure
of sea ice. Specifically, the brine microstructure displays a percolation
threshold at a critical brine volume fraction of around 5 % in columnar
sea ice (Golden et al., 1998; Golden et al., 2007; Pringle et al., 2009),
which corresponds to a critical temperature Tc ≈ −5 ° C for a typical
bulk salinity of 5 ppt. Below this threshold the brine phase of the
sea ice consists primarily of isolated, disconnected pockets. It is only
above the threshold where the brine phase becomes connected over
large scales. This threshold acts as an on-off switch for fluid flow
through sea ice, and is known as the rule of fives. It leads to critical be-
havior of fluid flow, where sea ice is effectively impermeable to fluid
transport for brine volume fractions below 5 % and increasingly perme-
able for volume fractions above 5 %.

In addition to identifying the critical behavior of fluid transport in
sea ice, the percolation theory of fluid and electrical transport through
lattices (Christensen and Moloney, 2005; Stauffer and Aharony, 1992)
was used to produce models of the fluid permeability of sea ice as
a function of brine volume fraction (Golden et al., 2007). In this work
X-ray computed tomography images of the brine microstructure of
sea ice were analyzed and mapped onto random graphs of nodes and
edges, in order to establish the percolative behavior of the system
(Golden et al., 2007; Pringle et al., 2009), and the rule of fives in
particular.

Other types of networkmodels have also been used to describe both
fluid and electrical transport in the brine phase of sea ice. For example,
in the randompipemodel, the diameters of randompipes, which repre-
sent brine channels in the ice, are chosen from lognormal probability
distributions that describe the cross-sectional areas of the brine inclu-
sions in sea ice and then assigned to the edges in a square lattice (Zhu
et al., 2006). The fluid permeability of the model is then computed by
using a random resistor network representation of the system and
employing a fast multigrid method to find its effective conductivity
which can then be related to the permeability. This same approach
can also be used to directly model the electrical conductivity of the
ice, an important parameter in remote sensing of sea ice thickness,
fluid transport properties, and microstructural transitions (Addison,
1969; Buckley et al., 1986; Fujino and Suzuki, 1963; Ingham et al.,
2008; Reid et al., 2006; Thyssen et al., 1974). Network models have
been used extensively in analyzing the transport properties of compos-
ite materials (Milton, 2002; Torquato, 2002).

It has been suggested that percolative behavior occurs for melt
ponds on the sea ice surface, As they cover more of the surface, discon-
nected, isolated ponds begin to evolve into large connected structures
with complex boundaries, presumably achieving large scale connectivity
above a critical area fraction (Hohenegger et al., 2012).

Increased connectivity of melt ponds promotes further melting
through increased heat transport, contributes to the break-up of ice
floes, and allows increased horizontal transport of meltwater toward
drainage avenues such as large vertical brine channels, cracks, leads,
and seal holes (Polashenski et al., 2012; Scharien and Yackel, 2005).
Other melt pond models including both vertical and horizontal trans-
port of melt water, such as a type of cellular automata, have been devel-
oped elsewhere, as in Scott and Feltham (2010).

In this work we begin to develop techniques for network modeling
of melt ponds, their connectivity, and horizontal flow characteristics.
Some of the groundwork for this type of modeling was laid in
Hohenegger et al. (2012). Images of melting Arctic sea ice collected
during twoArctic expeditions – the 2005Healy-Oden Trans Arctic Expe-
dition (HOTRAX) (Perovich et al., 2009) and the 1998 Surface Heat Bud-
get of the Arctic Ocean (SHEBA) expedition (Perovich et al., 2002) –
were analyzed for area–perimeter data on thousands of individual
melt ponds. Algorithmic methods of distinguishing melt ponds from
the ocean in leads between the sea ice floes were developed. This data
was used to discover that pond fractal dimension transitions from 1 to
2 around a critical length scale of 100 m2 in area (Hohenegger et al.,
2012). Pond complexity was found to increase rapidly through the
transition as smaller ponds coalesce to form large connected regions,
reaching a maximum for ponds larger than about 1000 m2 whose
boundaries resemble space filling curves.

In earlier work on melt ponds and sea ice albedo, image processing
has been used to measure the area fractions of melt ponds and leads
from aerial and satellite images. In Perovich et al. (2002) these area frac-
tions from June toOctober, using SHEBA images taken in 1998 (Perovich
et al., 2002), showhow the area fraction ofmelt ponds increases as sum-
mer progresses, and starts decreasing again at the end of summer as
new ice forms. A probability distribution for the size of melt ponds is
also derived from the data, which depends on the progress of the melt
season.

In the work reported here, the connectivity of these melt pond net-
works is determined using aerial images of Arctic sea ice from the
SHEBA and HOTRAX databases. We develop an algorithmic method of
mapping a configuration of melt ponds onto a graph of nodes and
edges. These melt pond configurations may be disconnected individual
components, or partially or completely connected across an image. The
edges are assigned values which indicate the width of “bottlenecks”
separating larger pools of melt water, which are identified with the
nodes of the graph.

The horizontal flow of water between melt ponds depends on the
narrowest bottlenecks between them and the width of these bottle-
necks is inversely proportional to the fluid conductance between them.

Mathematical morphology based image processing techniques
(Gonzalez and Woods, 2008) are used with a clustering algorithm and
graph theory to find a conductance graph associated with each melt
pond configuration studied. Further work will explore the relationship
of these graphs and associated conductance networks with the actual
flow of fluid in the pond network, and the effect on sea ice albedo.
2. Method

The images of melt ponds from the SHEBA and HOTRAX expeditions
are in color. The intensity and color of each pixel in the image are
encoded using the intensities of the Red, Green and Blue colors that
make up each pixel. The image is represented as a matrix of pixels,
with each pixel being a vector of three variables — red, green and blue
color values. These are called, respectively, the red, green and blue
channels of the image.

These images are converted to gray-scale to reduce each pixel to
only one intensity and lessen the number of computations required.
The gray scale image is derivedusing the red channel aswe see the largest
difference between ice and water there.

A simple thresholding operation, as described in the Appendix A, is
sufficient to segment themelt pondwater from ice and produce a binary
image. Otsu'smethod (Gonzalez andWoods, 2008) is used to determine
this threshold individually for each image, which is then segmented
based on this threshold. Fig. 1 shows a histogram of the intensity levels
of a gray-scale aerial image with Otsu's threshold. After having seg-
mented water from ice, it is also possible to use the blue color intensity
in the images to distinguish between the ocean water leads and melt
pond water. However, in this paper, we have selected images that do
not contain any ocean water leads.



Fig. 1.An aerial grayscale image ofmelt ponds fromHOTRAX is shown on the left, with horizontal scale of about 80m. A histogram of red channel intensities of the image is shown on the
right. The bi-modal distribution is evident and Otsu's threshold, marked on the histogram, can be used to separate melt ponds and ice.
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Fig. 2. The red lines indicate constricted regions that should be marked as a boundary
between two different melt ponds. The green line indicates a region that is simply a part
of one large melt pond but might be treated as a divider between two different melt
ponds because it is slightly constricted.
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The images used are cropped from those in the SHEBA and HOTRAX
databases, which have dimensions around 865 × 770 pixels. The size of
the images does not affect the algorithm as long as the resolution re-
mains the same. Only the processing time varies with image size. In
this paper we calculate the sizes of ponds and bottlenecks only in
terms of pixels. The number of pixels could be converted to a physical
scale by knowing the helicopter altitude, camera characteristics, and
so on, or if there were an object of known size, such as a ship, in the
image. This information can be different for each image used, thus our
focus here on pixel size. However, in Fig. 1 the horizontal scale of the
image is about 80 m.

2.1. Preprocessing the image

The binary image produced by Otsu's method can have small pieces
of ice floating in the melt ponds, melt ponds that are too small to pro-
vide much information, and other small artifacts due to noise. These
can clutter up the final connectivity graph with unnecessary data.
Basic mathematical morphology operations involving erosion and
dilation as described in Gonzalez and Woods (2008) and Appendix A
are used to clean up the image.

A predetermined mask or structuring element of fixed size is cen-
tered at each pixel of the image and only those pixels, at which the
structuring element fits inside the original image, are set to one. So, if
a 3 × 3 structuring element is used, it will remove the outermost layer
of pixels from the foreground, a 5 × 5 structuring element would re-
move two layers and so on. Morphological dilation is a complementary
process where all those pixels, at which the intersection between the
structuring element and the image is non-zero, are set as one. Dilation
by a 3 × 3 structuring element would cause the foreground to grow an-
other layer of pixels. Opening involves erosion followed by dilationwith
the same structuring element and is used to remove smaller structures
from the foreground like protrusions and narrow connections. Closing
on the other hand is dilation followed by erosion and it fills in small
gaps in the foreground. Geodesic opening or closing involves finding
the intersection of the result of opening or closing with the original
image to preserve the shape of the image. The image is first cleaned
up using geodesic opening of melt ponds to remove inconsequential
melt ponds and geodesic closing to remove floating ice. Circular
masks, as shown in Fig. 14, are used for these processes to maintain
the curvy shapes of ponds. The mask size can be adjusted as desired.
Here a 3 × 3 mask, like the first image in Fig. 14, is used. Note that
care should be taken to ensure that the mask size is at least smaller
than the narrowest bottleneck in the image, otherwise this connection
will be lost.

2.2. Isolating melt ponds

The previous step results in large interconnected melt pond net-
works. The next step is to find individual melt ponds. First, connected
components described in Appendix A are used to find all the separate
unconnected melt pond networks and label each uniquely as Xi where
1 ≤ i ≤ Nmax. Here, Nmax is the number of unconnected melt pond
networks in the image.

Each of these networks is then eroded progressively with a 3 × 3
circular mask. Every erosion iteration scrapes away the outermost
layer of pixels from the melt pond network image and the connections
between the melt ponds gets narrower and some connections may
break. In other words, at each erosion, some ponds might break away
from the main network. These can be identified from an increase in
the number of unconnected regions in the image, which are found
using connected components. The jth region that breaks away from the
network Xi is labeled as Xij. This can be an individual melt pond or a
smaller network of melt ponds. The connection strength of the separat-
ed region Xij, to its parent network Xi, is proportional to the number of
erosion iterations after which it breaks away. Each of these smaller
melt pond networks Xij is further eroded in a similar manner. The aim
is to continue this until all the networks have broken down into their in-
dividual components, i.e., to separate out all the individual melt ponds.

Depending on the season in which the photographs are taken and
the resolution of the photographs, we can find the expected largest bot-
tlenecks in themelt pond network empirically by performing the above
erosion steps repeatedly until all the connections between melt ponds
are broken. This was done for a sample image in each image set in
Table 1. Knowing that a 3 × 3 circular mask erodes two layers of pixels
from the bottleneck— one from each side, we can calculate the number
of erosion iterations that are needed to break the network into

Image of Fig. 1
Image of Fig. 2


Fig. 3. The connection between melt ponds is incorrectly labeled in the image on the left. Ponds 7 and 10 are connected by a long channel but the image shows the presence of two
additional melt ponds due to the constrictions present in the channel. The image on the right uses the constriction ratio to determine that these constrictions are too wide in
comparison to the surrounding area to be labeled as separate melt ponds. Hence, it correctly labels two separate melt ponds — 9 and 10.
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individual ponds. For example, if the widest bottleneck is 60 pixels
across, 30 erosions are required. So the repeated erosions defined
above are performed until this maximum bottleneck size is reached.
Fig. 4. The first figure on the top left is the input image used. The second figure on top-right sho
figure — blue is ice, green is water and maroon shows the smallest geodesic paths between
elimination.
After this maximum bottleneck size is reached in the above connected
components process, it is assumed that all the remaining melt ponds
are individual ponds and not networks of smaller melt ponds.
ws geodesic distances betweenmelt pond nodes; this figure is a binary version of the first
nodes. The third figure on the bottom shows the final connections obtained after edge

Image of Fig. 3
Image of Fig. 4


Fig. 5. Here we show how the connecting components between the separated (after
erosion) melt ponds are generated after subtracting the eroded image from the original
image, to obtain the layer that was peeled away, followed by erosion to isolate just the
connecting components between the melt ponds. These connecting components can
then be used to determine how well the individual ponds were connected to each other.
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Consider the image in Fig. 2. Here, the red lines indicate bottleneck
regions and should be eroded away eventually as they are connections
between melt ponds. The green line indicates a region that is slightly
constricted, but cannot be considered as a bottleneck as it is large
relative to the pond surrounding it. Simply performing erosions as
described above would eventually break all of these connections. To
prevent this, we consider a so-called constriction ratio, CR, defined as

CR ¼ pond area
bottleneck size

:

It was empirically found that a constriction ratio of CRmin = 20
worked well with the images used in this paper. During any erosion
step, if a network under consideration has a constriction ratio CR such
that CR b CRmin, then this is probably amelt pond and should not be bro-
ken down any further. Another example of this is shown in Fig. 3. The
image on the left shows themelt pondnetwork that is obtainedwithout
using the constriction ratio. It can be seen that theponds that are labeled
8 and 9 in this image are just a part of the long channel that connects
ponds 7 and 10. The image on the right uses the constriction ratio and
correctly labels the ponds.
Fig. 6.The image on the left results fromusingmorphological dilation formappingpond connectio
without trying to determine the strongest connection using edge weights in undirected graphs, t
2.3. Connections between melt ponds

The last part of the problem is finding the conductances between
the individual melt ponds. As already described in the previous sec-
tion, this is done while the interconnected melt ponds are being sep-
arated into smaller melt pond networks. To re-iterate, each erosion
with a 3 × 3mask removes the outermost pixel layer. Thus two layers
of pixels, one from each side of the bottleneck, are removed. If a
region separates from the main network at the kth erosion iteration,
then the bottleneck joining this region to the network is 2 × i pixels
wide.

Until this point, the method has concentrated on grouping the
melt ponds that are connected to each other and finding the sizes
of bottlenecks between a melt pond and the network to which it be-
longs. The next step in the algorithm is to find out exactly whichmelt
ponds are connected to each other and represent them using undi-
rected graphs.

The problem also requires that we find only direct connections
between ponds. To understand what this means, let each individual
melt pond be a node in an undirected graph. Consider the 3rd
image in Fig. 4 which labels each pond as a node. The node 56 is con-
nected to all the nodes from 47 to 55 in this image. However, it is im-
mediately or directly connected only to node 52.We can characterize
the connection between nodes 56 and 48 by instead using the con-
nection between modes 56 and 52 followed by connection between
nodes 52 and 48.

At each erosion iteration, the interconnected melt pond network
splits into a number of smaller ponds in the same erosion step. We
have to find out which ponds are directly connected to each other as
described above. Two simple methods of doing this would involve the
following operations:

(i) morphological dilation (Gonzalez and Woods, 2008),
(ii) a simple clustering approach (Gonzalez and Woods, 2008)

followed by a graph theory method (Van Steen, 2010).

In the first method, at each iteration, the eroded image is subtracted
from the original image to get only the bottlenecks that were eroded
away. This resulting image is then dilated and a simple overlapping op-
eration (using the logical OR function) is performed to check which
ponds form a direct connection with each other. This is illustrated
in Fig. 5. A major problem with this approach is that sometimes the di-
lation is not sufficient to cause an overlap with the expected ponds and
this leads to incorrect or missing connections.

In the second method, the center of each melt pond pixel-cluster is
located using the mean of the cluster with Euclidean distances. One
ns. The image on the right uses the clustering andgraphmethod approach. It canbe seen that
he connections between melt ponds do not connect the nearest neighbors with each other.

Image of Fig. 5
Image of Fig. 6


Fig. 7. Flowchart representation of the method.
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may try to use k-means clustering on the initial image to separate the
ponds, but as this only uses Euclidean distances between pixels and
needs a fixed estimate of the number of clusters at the output, it will as-
sign more than one cluster center to larger ponds and may ignore the
smaller ponds. The geodesic distances between these cluster centers
are calculated. The distance between unconnected ponds is set to infin-
ity because the strength of the connection between two ponds de-
creases with increasing distance and an infinite distance corresponds
to the absence of any connection between ponds. These distances are
then used along with the conductance strengths calculated below to
construct a graph of the melt pond network.

The nodes of the graph are the cluster centers found above, and all
the nodes belonging to connected melt ponds are connected to each
other with graph edges. Note that the conductance strength here
only refers to the width of the channel connecting different ponds
and gives a basis for relative comparison of ease of flow of fluid be-
tween these channels. Let the conductance strength between nodes
i and j be denoted by σij and the geodesic distance between them
be dij. Each edge between two nodes i and j is assigned a weight wij

given by,

wij ¼
σ i j

di j
: ð1Þ

The above equation is analogous to conductance in an electrical
circuit, which is directly proportional to conductivity of the wire
and inversely proportional to the length of the wire. Between each
pair of connected nodes, the direct path and all paths involving
only one intermediate connection are considered. For any node,
there are (n − 1) possible paths to another node, or (n − 2) indirect

Image of Fig. 7
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Fig. 8.Melt ponds in June from SHEBA early in the melt season. Here there are no complete connections that go across the entire image, so that the conductivity factors are zero.
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paths with one intermediate node and one direct path. The weight of
the k th indirect path connecting two nodes is calculated as,

w kð Þ
i j ¼ σ ik

dik
þ σk j

dk j

� �
;∀k≠i; j: ð2Þ

Hereσ ik
dik

is theweight of the edge fromnode i to node k. Theweight of

the edge which directly connects nodes i and j iswij ¼ σ i j

di j
. Only the path

corresponding to the maximumweight between two nodes is retained
and all the edges corresponding to other paths are removed. This favors
paths which are either very short or have large conductances. At each
step, one pair of nodes in the graph is considered. For the next pair,
the previously updated connection graph is used so that the edges
that no longer exist are not reconsidered. The final step of the algorithm
is for node deletion, where the algorithm searches for very small nodes
that lie between two or more much larger nodes, and eliminates these
small nodes based on a predetermined ratio. This step is performed be-
cause, if a really small melt pond lies between two much larger melt
ponds, it is probably just a part of the channel connecting the two
large melt ponds and should not be labeled as an individual melt
pond. For the results presented in this paper, this ratio is empirically
set to 20.

The second graph method performs much better for mapping con-
nections than the dilation method. Fig. 6 shows the results obtained
using the two different approaches. Consider nodes 5 and 6 at the bot-
tom right corner in the first figure. The connection between the two
nodes is not detected because dilation of the connection shown in
Fig. 5 is not sufficient to overlap with ponds 5 and 6. Thus, pond 6 is
shown connected directly to pond 1. This issue is solved in the second
figure by using the clustering and graph method.
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Fig. 9.Melt ponds in July from SHEBA. Here thewhite nodes are battery nodes. Conductivity factor values are calculated across these battery notes and give an indication of the horizontal
fluid conductance from the left to right edge of the image. Thewhite lines represent direct connections to the battery nodeswhile the blue lines are simply connections between ponds. For
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2.4. Conductivity factor calculations

To calculate the horizontalfluid “conductivity”,first twobattery nodes
are added to the left and right of the image. This is analogous to an elec-
trical circuit, where the conductivity between two points can be calculat-
ed and the flow of current through the circuit depends on the potential
drop across the battery nodes aswell as the connectedness and local con-
ductances of the graph representing the circuit. The left battery node is
connected to all the ponds touching the left edge of the image with a
conductance value of 1 for each connection. The right battery node is
similarly connected. The purpose of the battery nodes is to simulate the
computation of the effective or equivalent conductivity of a conductor
network, which must be subjected to a potential difference, most easily
visualized by connecting a battery. The effective conductivity of the net-
work, between these battery nodes, is then measured. The conductivity
of very large networks can be calculated approximately by considering
smaller sections and then replacing these subsections with their equiva-
lent conductivities in a hierarchical fashion similar to renormalization
group techniques (Goldenfeld, 1992). The conductivity of each section
could be calculated to create a new, simpler graph model.

To calculate the conductivity between battery nodes, and thus the ef-
fective conductivity of the graph with given bond conductivities, let cij be
the conductivity of the edge between nodes i and j, and consider the for-
mulation of the problemoffinding the effective conductivity of a graph as
found in Golden (1991). Here, each cij is the normalized edge weight,

ci j ¼
wij

max
i; j

wi j
� � ; ∀i; j: ð3Þ
Let M be the total number of nodes in the graph, including the two
battery nodes. We define theM × M matrix A such that

Ai j ¼ −ci j; i; j ¼ 1…M; i≠ j; ð4Þ

Aii ¼
X
∀ j: j≠i

ci j i ¼ 1…M: ð5Þ

The matrix A′ is the (M− 1) × (M− 1) array obtained by removing
the first row and column of A, which corresponds to the left battery
node. Removing the last row and column of matrix A′, corresponding
to right battery node, gives the (M− 2)(M− 2)matrix A ″. The conduc-
tivity factor of the image represented by matrix A, between the battery
nodes, is given by Golden (1991) and Mason and Zimmermann (1960)

σ Að Þ ¼ det A0� �
det A0 0

� � : ð6Þ

It should be noted that the conductivity factor obtained is then relat-
ed to the fluid permeability of the network, but not equal to the effective
conductivity of the network, due to the length scale involved. As noted
in the Introduction, further work will explore the relationship of this
computed network conductivity to the horizontal fluid flow properties
of melt pond configurations. Our goal here is to establish a viable
method of transforming images of arrays of melt ponds and map them
onto random, labeled graphs. The connectivity and local conductance
characteristics of these graphs provide idealized, mathematical models
of melt pond connectivity and effective, horizontal flow properties.
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Fig. 10. Continued from Fig. 9, melt ponds in July from SHEBA. Here the white nodes are battery nodes. Conductivity factor values are calculated across these battery nodes and give an
indication of the horizontal fluid conductance from the left to the right edge of the image. The white lines represent direct connections to the battery nodes while the blue lines are
simply connections between ponds. For the conductivity to be nonzero there must be at least one full connection from left to right. Ponds which do not connect to battery nodes or
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A brief summary of themethod discussed in this section is presented
in the form of a flowchart in Fig. 7.

3. Results

The abovemethod is used to generate conductance graphs for differ-
ent sets of images as described in Table 1. MATLAB is used to implement
the method summarized above for each of these images.

This method was found to be most useful for images obtained in
mid-summer, i.e. July, as the melt ponds are large and interconnected.
The average time taken for different sets of images was calculated and
is shown in Table 2. The SHEBA images taken in July were processed
the quickest, because the images consist of larger and fewer melt
ponds. Consequently, the operations involving connected components
and the calculation of geodesic distances do not occupy the processor
for too long. When these times are compared to the August melt pond
images from SHEBA, which have many more melt ponds per image,
the computations takemuch longer. Only about 10% of the computation
time is spent in the calculation of geodesic distances and using graph
methods to eliminate all but the direct connections between melt
ponds. A major part of the computation time is spent in iteratively
eroding the image, finding all the connected components and updating
the bottleneck widths at each iteration. This can be sped up by using
parallel processing for different connected components. Another step

Image of Fig. 10
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in reducing the time latency would be to ignore all ponds that have no
other connections. However, this choice would be application specific,
as even the isolated ponds may be used to study the evolution of
networks with time, because they might, at some point further in time
join larger interconnected networks. Table 3 gives a list of the parame-
ters used for different sets of images.

In image processing, ground truth refers to data from images that
have already been processed and are known to be correct. Ground
truth data are often used to evaluate the performance of an algorithm
as they provide a desired solution to the problem under consideration.
Due to lack of any ground truth for these images, they are visually
inspected to ascertain the performance of the method used. We manu-
ally count the number of mislabels and missed connections in each
image. A mislabel occurs when a large channel is labeled as a pond or
a large pond with a complex morphology may be labeled as 2 or more
connected ponds. We find that less than 10 % of labels are obvious mis-
labels. In terms of calculating the conductance, whether or not a large
channel is considered a pond, or one large pond is considered two
connected ponds, is less important. It is the connectedness that matters
most for this calculation. Missed connections occur when the connec-
tion is very small or appears broken in the image. We find that at
most 1 in 10 of connections in our images are missed and typically are
only missed when pond size is much larger then channel size.

The processed images from July, August and June are shown in
Figs. 9, 10, 11, 12 and 8 respectively. Fig. 13 shows the conductance
graph obtained for the 3rd image in Fig. 11. The conductivity factors
for these figures are shown in Tables 4, 5 and 6. Note that in the images
shown in Figs. 9, 10, 11 and 12, the melt ponds that are not part of the
network which connects the battery nodes have not been labeled to
prevent excess clutter in thefigures (thesemelt ponds donot contribute
to the horizontal conductivity calculations). The images shown in Fig. 8
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Fig. 11.Melt ponds inAugust fromHOTRAX. It can be seen that there aremore parallel paths tha
progressed much further, evolving into large interconnected networks. This is also reflected in
do not have any complete connections that go across the image from left
to right. For this reason, unlike the abovementioned figures, the images
are shown without removing the melt pond labels which are uncon-
nected to the battery nodes. The conductivity factor values for all
these images are zero.

4. Conclusions

Melt ponds play a critical role in determining the albedo of the sea
ice pack. Understanding their role in climate processes and incorporat-
ing their impact into climate models are fundamental challenges in cli-
mate science. In particular, quantifying key characteristics of melt pond
geometry and connectivity are critical to quantifying andmodelingmelt
pond growth, decay, and evolution. We have developed here a method
of extracting the essential connectivity and scale characteristics of com-
plex melt pond configurations and representing them in a discrete
model. We have used image processing techniques in order to map
melt ponds onto graphs whose edges represent horizontal flow path-
ways through the configuration. By computing the effective conductiv-
ity of these graphs, we obtain an idealized way of estimating the ease of
horizontal flow of meltwater, which is important in melt pond
evolution.

After visual inspection, it can be concluded that the algorithm we
have developed does a very good job of identifying individual melt
ponds, labeling their connections and creating the conductance matrix.
More work can be done to improve its speed and remove the few
mislabeling errors. The edge elimination method used assigns weights
to the edges between nodes (melt pond centers) based on geodesic dis-
tance and widths of the connections. The function assigning weights to
the edges can be modified and the weights of the nodes (areas of melt
ponds) can also be used.
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t exist between the batterynodes compared to both June and July images as themelting has
the data of Tables 4, 5, and 6.

Image of Fig. 11


Fig. 12. Continued from Fig. 11, melt ponds in August fromHOTRAX. It can be seen that there aremore parallel paths that exist between the battery nodes compared to both June and July
images as the melting has progressed much further evolving into large interconnected networks. This is also reflected in a the data of Tables 4, 5, and 6.
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The work done here can be used to aid in understanding both the
horizontal water and heat flow between melt ponds. These are impor-
tant parameters to consider when modeling melt pond evolution and
drainage which are the major controlling factors of ice albedo during
the melt season. The conductivity factors calculated can be used to rep-
resent effective behavior of the ice–pond composite, and in turn this can
be used to develop simplermodels of the complex processeswhich gov-
ern melt pond evolution, ultimately to include them in climate models.

Image of Fig. 12


Fig. 13. Conductance values for August (HOTRAX 3rd photograph). The first column on the left and the first row on top represent ponds that are connected to the battery node on the left.
The last column on the right and the last row represent the battery node on the right. Each nonzero value on the graph represents the conductance between two melt ponds.
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Appendix A

Herewe explain inmore detail some of the concepts and techniques
of image processing and analysis used in the body of the paper.

(i) Thresholding: Consider an image in which the value of each pixel
is denoted by f(x, y) where x and y are the 2-dimensional coordi-
nates of the pixel. If the image is bimodal, i.e., most pixel values
3x3 circular structuring element 9x9 circular structu

Fig. 14. Structuring eleme
fall in two major groups, then this image can be converted to a
binary image by performing the following threshold operation:

g x; yð Þ ¼ 0 if f x; yð ÞNT;
1 if f x; yð Þ≤T :

�

In the resulting image g(x, y), all unity-valued pixels are consid-
ered to be the foreground and the zero-valued pixels are the
background.

(ii) Mathematical morphology: This uses set theory and is common-
ly applied in image processing solutions as it applies well to
the analysis of geometric shapes and structures. For example,
in a binary image, the set of all zero-valued pixels can be con-
sidered to represent the background, and the unity-valued
pixels, the foreground. When applied in image processing,
mathematicalmorphology usually employs structuring elements
or masks which are used to perform various operations on the
images of interest. Some examples of structuring elements are
shown in Fig. 14.
ring element 3x3 square structuring element

nts of different sizes.

Image of Fig. 13
Image of Fig. 14


Table 1
List of images considered.

Set Month Number of images Database

1 June 5 SHEBA
2 July 10 SHEBA
3 August 10 HOTRAX

Table 2
Average time to process each image.

Set Month Database Number of iterations Average time (minutes)

1 June SHEBA 8 31.66
2 July SHEBA 20 9.06
3 August HOTRAX 20 18.04

Table 5
Conductivities for image set 2.

Image1 Image2 Image3 Image4 Image5

0 0 0 0 0

Image6 Image7 Image8 Image9 Image10

0 0.0546 0.0283 0.0443 0.2062

Table 6
Conductivities for image set 3.

Image1 Image2 Image3 Image4 Image5

0 0.0542 0.1353 0.1216 0.0563

Image6 Image7 Image8 Image9 Image10

0.1778 0.1003 0.1078 0.0718 0.1127
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(iii) Translation: A 2-D image can be represented by a 2-D integer
space Z2. Each pixel in the image has a value and is associated
with a fixed location z = (x, y). Translation of a set B, by z =
(z1, z2) is given by,

Bð Þz ¼ cjc ¼ bþ z;∀ b ∈ Bf g:

Translation shifts every point in B, (x, y), to (x + z1, y + z2) to
result in (B)z.

(iv) Reflection: Reflection of a set B is given by

B̂ ¼ cjc ¼ −b;∀ b ∈ Bf g:

Reflection is the mirror image of B such that every point in B,
(x, y), is reflected to (−x, − y), resulting in B̂. If B is symmetric
then B ¼ B̂.

(v) Erosion: The erosion of A by B is defined as

A⊖ B ¼ zj Bð Þz⊂ A
� 	

where A;B ∈ Z2:

Erosion of A by B results in a set of points z so that all the ele-
ments of B translated by z fit completely inside A. Erosion usually
results in the removal of the outermost layers of the foreground.

(vi) Dilation: The dilation of A by B is defined as

A⊕ B ¼ zj B̂
� �

z
∩ A ⊂ A

n o
where A;B ∈ Z2:

Dilation of A by B results in a set of points z so that at least one
element of B translated by z overlaps with A. Dilation results in
the addition of layers to the foreground in an image.

(vii) Geodesic opening: Opening of A by B is erosion of A by B followed
by dilation of the result by B,

A ∘ B ¼ A⊖ Bð Þ⊕B: ð7Þ
Table 3
List of parameters used for different image sets.

Set Constriction ratio Number of erosion steps

1 20 8
2 20 18
3 20 20

Table 4
Conductivities for image set 1.

Image1 Image2 Image3 Image4 Image5

0 0 0 0 0
This results in smoothing of the image by the removal of small
protrusions and breakage of narrow connections.

(viii) Geodesic closing: Closing of A by B is dilation of A by B followed by
erosion of the result by B.

A • B ¼ A⊕ Bð Þ⊖ B: ð8Þ

This results in smoothing of the image by filling in of small gaps
and fusing of narrowly separated components.

(ix) Geodesic distance: The geodesic distance between two points in a
binary image is the distance length of the path between the two
points in pixels, such that the entire path lies in the same set as
the two points. For example, in the foreground (unity-valued
pixels), the distance between two pixels is measured along
paths in which all pixels are unity.

(x) Connected components: This is a technique for finding all the ele-
ments in a binary image that are connected to each other. Let A
be the image in which we are trying to find connected compo-
nents and B be a 3 × 3 structuring element. X0 is an image with
the same size as A, but containing one unity-valued pixel at the
same location as the component of interest in A. This is called
the seed. To find all the pixels in A connected to the seed, the fol-
lowing operation is performed recursively until Xk ¼ Xk−1;

Xk ¼ Xk−1⊕ Bð Þ ∩ A with k ¼ 1;2;… ð9Þ
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