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The Generalized Interpolation Material Point Method

S. G. Bardenhagen1 2 and E. M. Kober3

Abstract: The Material Point Method (MPM) discrete
solution procedure for computational solid mechanics
is generalized using a variational form and a Petrov–
Galerkin discretization scheme, resulting in a family of
methods named the Generalized Interpolation Material
Point (GIMP) methods. The generalization permits iden-
tification with aspects of other point or node based dis-
crete solution techniques which do not use a body–fixed
grid, i.e. the “meshless methods”. Similarities are noted
and some practical advantages relative to some of these
methods are identified. Examples are used to demon-
strate and explain numerical artifact noise which can be
expected in MPM calculations. This noise results in non-
physical local variations at the material points, where
constitutive response is evaluated. It is shown to destroy
the explicit solution in one case, and seriously degrade it
in another. History dependent, inelastic constitutive laws
can be expected to evolve erroneously and report inac-
curate stress states because of noisy input. The noise is
due to the lack of smoothness of the interpolation func-
tions, and occurs due to material points crossing compu-
tational grid boundaries. The next degree of smoothness
available in the GIMP methods is shown to be capable of
eliminating cell crossing noise.

keyword: MPM, PIC, meshless methods, Petrov–
Galerkin discretization.

1 Introduction

The past several decades have brought tremendous ad-
vances in computing power and provided fertile ground
for the development of the computational sciences.
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In computational solid mechanics the Finite Element
Method (FEM) (see, e.g. [Johnson (1987)]) has been
very successfully applied to a wide range of problems
with good results. However, body fixed FEM meshes can
be difficult and time consuming to generate for complex
three–dimensional objects. Further, mesh distortion as-
sociated with large deformations compromises solution
accuracy, ultimately requiring re–meshing. These dif-
ficulties have spurred the development of alternate dis-
cretization strategies which avoid mesh distortion by dis-
cretizing at points and never maintaining a body–fixed
mesh.

Quite a number of “meshless methods” have been de-
veloped. Some of the ways in which the methods differ
include whether or not a temporary mesh is used in the
solution procedure, whether the discretization procedure
begins with the differential equations or a weak form, and
in the construction and support of the point weighting
functions. In a recent review article, [Belytschko, Kro-
ngauz, Organ, Fleming, and Krysl (1996)], similarities
between Smooth Particle Hydrodynamics, Diffuse Ele-
ment, Element Free Galerkin, and Reproducing Kernel
Particle methods are discussed, and it is found that for
certain cases all may considered particular examples of
the more general Partition of Unity Method, [Babuˇska
and Mellenk (1997)]. The Partition of Unity method
uses a variational form to specialize the discrete approx-
imation in regions of the problem domain using a stan-
dard Galerkin discretization scheme. This is in contrast
to the development, from a variational form but using a
Petrov–Galerkin discretization scheme, of methods such
as Adaptive Characteristic Petrov–Galerkin Finite Ele-
ment, [Demkowicz and Oden (1986)], and Meshless Lo-
cal Petrov–Galerkin methods, [Atluri and Zhu (2000)].
While there are still more meshless methods, these are
singled out because they are derivable from a weak form
and therefore share features with the Generalized Inter-
polation Material Point Method described here.

The Material Point Method (MPM) is one of the latest de-
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velopments in particle–in–cell (PIC) methods. PIC meth-
ods were originally used in computational fluid mechan-
ics to model highly distorted fluid flow, [Harlow (1963)].
Subsequent developments advanced the understanding
of the algorithm and brought modifications to reduce
numerical diffusion in the FLIP algorithm, [Brackbill,
Kothe, and Ruppel (1988); Burgess, Sulsky, and Brack-
bill (1992)]. Fundamental aspects of PIC methods in-
clude the interpolation of information between a grid and
particles, and precisely which solution variables are as-
cribed to the grid, and which to the particles. The gen-
eral trend has been toward keeping more properties on
particles. This trend has been continued in the devel-
opment of MPM, where the ability of the particles, or
“material points”, to advect naturally Lagrangian con-
stitutive response state variables, has been exploited in
application to computational solid mechanics, [Sulsky,
Chen, and Schreyer (1994); Sulsky, Zhou, and Schreyer
(1995)]. In MPM the grid may be viewed as a temporary
computational scratch pad, as the material points carry
the complete solution.

Particle methods are well suited for solid mechanics
where it is natural to have a reference state and prop-
erties which are a function of location in the reference
state. Material response is governed by continuum me-
chanics constitutive models which generate stress based
on both the history and current mechanical state. These
models are often complex and require the calculation
of “internal variables” representing the (history depen-
dent) material state. Lagrangian particles allow easy im-
plementation of these constitutive models, and straight–
forward advection of internal variables through the com-
putational grid. MPM has found application in the so-
lution of a wide variety of problems in solid mechan-
ics, including mantle convection, [Lenardic, Moresi, and
Mühlhaus (2000)], silo discharge, [Wie¸ckowski, Youn,
and Yeon (1999)], membrane stretching, [York, Sul-
sky, and Schreyer (1999)], landfill settlement, [Zhou,
Stormont, and Chen (1999)], elastic vibrations, [Sul-
sky, Chen, and Schreyer (1994)], collisions, [Barden-
hagen, Harstad, Maudlin, Gray, and Foster (1998); Sul-
sky, Chen, and Schreyer (1994); Sulsky and Schreyer
(1996); Sulsky, Zhou, and Schreyer (1995)], and the re-
sponse of granular material, [Bardenhagen and Brackbill
(1998); Bardenhagen, Brackbill, and Sulsky (2000b,a);
Bardenhagen, Guilkey, Roessig, Brackbill, Witzel, and
Foster (2001)].

The derivation of the MPM algorithm has recently been
cast in variational, or weak form, [Sulsky, Chen, and
Schreyer (1994); Sulsky, Zhou, and Schreyer (1995)],
providing a standard setting for the discretization of the
governing equations, [Johnson (1987)]. If drawing at-
tention to the similarities between FEM and MPM by
deriving MPM from a weak form enhances communi-
cation between research communities, it provides a valu-
able contribution. In addition, however, this setting pro-
vides a venue for generalizing the MPM discretization
technique, which has not been taken advantage of. PIC
methods were developed by considering particles to pro-
vide an alternate representation of solution variables on
the grid. The particle representation was used to advect
these variables through the grid, avoiding (in particular)
difficulties associated with interface tracking. In order
that grid and particle solutions have the appropriate cor-
respondence, the nature of transferring information be-
tween grid and particles had to be carefully attended to.
For example, both the MPM algorithm and its predeces-
sor FLIP, [Brackbill and Ruppel (1986)], conserve total
mass and momentum in interpolating from particles to
grid and back again. In fact, essentially the same govern-
ing equations presented in [Sulsky, Chen, and Schreyer
(1994); Sulsky, Zhou, and Schreyer (1995)] may be de-
rived, without reference to a variational form, simply by
considering conservation of momentum on the compu-
tational grid, and conservation of mass and momentum
in the interpolation between grid and particle represen-
tations of the current solution, [Brackbill and Ruppel
(1986)].

Here the full generality of the variational formulation
is exploited. The variational form of the governing
equations provides a consistent framework for general-
izing the MPM discretization technique, and similarities
to other meshless methods, [Belytschko, Krongauz, Or-
gan, Fleming, and Krysl (1996); Babuˇska and Mellenk
(1997); Demkowicz and Oden (1986); Atluri and Zhu
(2000)], may be identified. The use of smoother repre-
sentations of discrete material point data allows an en-
tire family of methods to be developed. A significant
result of this generalization is smoother representation of
particle data on the computational grid. This removes
a numerical artifact inherent in the MPM formulation,
which can develop when material points fail to regis-
ter in a self–similar fashion on the computational grid.
This situation can be expected to arise regularly in fi-
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nite deformation analyses, and is demonstrated to very
seriously degrade the accuracy of solutions obtained us-
ing MPM. The nature of the general derivation suggests
denoting the family of Material Point Method discretiza-
tion schemes developed here the Generalized Interpola-
tion Material Point (GIMP) methods. It is hoped that the
generalization is more deserving of its acronym’s formal
definition (an attractive trim) than its slang.

In the first section the GIMP methods are derived from
a variational form using a Petrov–Galerkin discretiza-
tion scheme. The specialization to the MPM algorithm
is shown. In the second section a GIMP algorithm is de-
veloped in which the interpolation functions are inC 1 (as
opposed to MPM, for which they are inC0). Properties
of this version, denoted the contiguous particle GIMP
method, and more general “fuzzy particle” discretiza-
tions, are discussed. Next the performance of MPM
and contiguous particle GIMP methods are compared by
considering the quasi–static compression of a continuum
column, and stress wave propagation in the same bar. A
convergence study is reported. Finally, conclusions are
drawn.

2 Derivation of the Discrete Equations

In the following derivation of the discrete equations, bold
face quantities indicate tensors,∇ is the gradient opera-
tor, and. and : are first order (vector) and second order
tensor contractions, respectively. The subscriptp is used
to index material point variables, andv grid vertex vari-
ables. The notation∑p and∑v is used to denote summa-
tion over all material points, and over all grid vertices,
respectively.

Of interest in solid mechanics is the deformation and
material response of a continuous solid body under pre-
scribed loads and initial conditions, as governed by con-
servation of mass and momentum. Conservation of mass
is satisfied implicitly by leaving discrete particle masses
unchanged throughout a computation. Here we develop
the discrete version of conservation of momentum, which
permits evolution of particle momenta in time. We con-
sider a deformable body acted upon by body forces and
subjected to either kinematic or traction boundary condi-
tions everywhere on its surface. The variational form for
conservation of momentum may be written

∫
Ω

ρa.δv dx+
∫

Ω
σσσ:∇δ v dx

=
∫

Ω
ρb.δv dx+

∫
∂Ωτττ

τττ .δv dS. (1)

Hereρ is the current mass density,a is the acceleration,σσσ
is the Cauchy stress,b is the specific body force,τττ is the
boundary traction, andδv is an admissible velocity field.
The entire current volume is denoted byΩ with bound-
ary, ∂Ω, which is the union of that part of the boundary
on which tractions are prescribed,∂Ωτττ , and that part on
which velocities are prescribed,∂Ωv.

The essence of the discretization procedure is to repre-
sent a solid material continuum as a collection of body
fixed (Lagrangian) particles, or “material points”. The
terms particle and material point will be used inter-
changeably throughout this manuscript. Particles are de-
fined by “particle characteristic functions”,χ p(x). In
practice the particle characteristic functions are non zero
over a small volume. They define the space occupied,
perhaps only partially, by a given particle, and can be
thought of as the spatially varying volume fraction of that
particle. They are functions of current particle position
and, most generally, deformation state.

2.1 Initial Discretization

The particle characteristic functions are required to be a
partition of unity in the initial configuration, i.e.

∑
p

χi
p(x) = 1 ∀ x. (2)

whereχi
p denotes the particle characteristic functions re-

stricted to their initial positions and undeformed state.
In the simplest cases, particle characteristic functions are
taken to be initially non–overlapping. However, nothing
precludes overlapping, or “fuzzy” particles, as discussed
in Section 3.3. Initial particle volumes,V i

p, are defined
by

Vi
p =

∫
Ωi

χi
p(x) dx, (3)

whereΩi is the initial volume of the continuum body to
be discretized.
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In addition to initial particle volumes, the material point
initial masses,mi

p, momenta,pi
p, and stresses,σσσi

p, must
be defined. These properties may be assigned by inte-
grating properties of the continuum against the particle
characteristic functions,

mi
p =

∫
Ωi

ρi(x)χi
p(x) dx, (4)

pi
p =

∫
Ωi

ρi(x)vi(x)χi
p(x) dx, (5)

whereρi is the continuum body’s initial mass density,
andvi the initial velocity. Note that these definitions re-
sult in reduced particle volumes, mass and momenta for
boundary particles whenΩ i ∩Ωi

p < Ωi
p, whereΩi

p de-
notes the support of particle characteristic functionp in
the initial configuration. Particle densities are defined as
the ratio of particle mass to particle volume. Note that
using this definition, the initial density,ρ i

p = mi
p/Vi

p, is
consistent with the (volume averaged) continuum body’s
initial density everywhere, including on boundary parti-
cles. Similarly, particle velocities are defined as the ratio
of particle momentum to particle mass, giving an initial
particle velocity,vi

p = pi
p/mi

p, consistent with the con-
tinuum body’s. Initial values of particle Cauchy stresses,
σσσi

p, may be assigned

σσσi
p =

∫
Ωi

σσσi(x)
χi

p(x)
Vi

p
dx, (6)

where σσσi(x) is the continuum body’s initial Cauchy
stress. The particle stresses are also consistent with the
volume averaged continuum initial stress everywhere.

Using Eqn. 2, the following identities obtain

∑
p

mi
p = ∑

p

∫
Ωi

ρi(x)χi
p(x) dx =

∫
Ωi

ρi(x) dx, (7)

∑
p

pi
p = ∑

p

∫
Ωi

ρi(x)vi(x)χi
p(x) dx =

∫
Ωi

ρi(x)vi(x) dx,

(8)

i.e., the continuum body initial mass and momentum are
conserved exactly in the discretization. Employing the

particle characteristic functions in the initial discretiza-
tion provides exact conservation of total mass and mo-
mentum between the continuous system and its discrete
representation. However, it also results in the possibil-
ity of particles near surfaces having scaled values of vol-
ume, mass and momentum relative to interior, or “bulk”
particles. In practice, particularly for non–overlapping
particle characteristic functions, it may be easier to ap-
proximate the spatial extent of a continuous body as a
union of the support of particle characteristic functions.
In that case, Eqn.s 7 and 8 only hold in the limit of infi-
nite spatial resolution, but the initialization integrals are
simplified asΩi

p∩Ωi = Ωi
p ∀ p.

2.2 Discrete Solution Procedure

The main reason to explicitly detail the initial discretiza-
tion technique is to identify connections to the represen-
tation of material point data in the discrete solution pro-
cedure. Given a material point property,f p, a representa-
tion consistent with the initial discretization procedure is
the sum over the material points,

f (x) = ∑
p

fpχp(x). (9)

The particle characteristic functions are used as a basis
for representing particle data throughout the computa-
tional domain and determine the degree of smoothness
of the spatial variation.

Using Eqn. 9 to develop a continuous representation of
the particle density,ρp, stress,σσσp, and rate of change
of momentum density,

.pp/Vp, splits the volume integrals
into sums of integrals over particles

∑
p

∫
Ωp∩Ω

.ppχp

Vp

.δv dx+∑
p

∫
Ωp∩Ω

σσσpχp:∇δ v dx =

∑
p

∫
Ωp∩Ω

mpχp

Vp
b.δv dx+

∫
∂Ωτττ

τττ .δv dS.
(10)

whereΩp denotes the current support of particle charac-
teristic functionp, and the current particle volumes are
defined by

Vp =
∫

Ωp∩Ω
χp(x) dx, (11)
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analogous to Eqn. 3.

The other fundamental aspect of PIC methods is the use
of a computational grid. In MPM the grid serves as a
scratch pad for the solution of conservation of momen-
tum, from which particle states are updated. To complete
the discretization procedure, approximations to the ad-
missible velocity fields, or test functions, are introduced
in terms of grid vertex quantities and grid shape func-
tions. This step is analogous to the development of FEM
discrete equations. However, use of both grid and particle
basis functions to represent test functions and trial func-
tions, respectively, is a Petrov–Galerkin method, [John-
son (1987)], and therefore more akin to some of the
meshless methods (in particular [Demkowicz and Oden
(1986); Atluri and Zhu (2000)]) than the FEM.

The continuous representation,g(x), of grid data,gv, is
then

g(x) = ∑
v

gvSv(x). (12)

HereSv(x) is a computational grid shape function, which
takes unit value at nodev and zero value at the other
nodes. Further, the shape functions are required to be
a partition of unity, i.e.

∑
v

Sv(x) = 1 ∀ x. (13)

As can be seen from Eqn.s 2, 9, 12 and 13, the grid shape
functions and particle characteristic functions have simi-
lar requirements and serve analogous functions. An im-
portant difference is the continuity imposed in practice.
While useful discrete equations can be developed using
distributions for particle characteristic functions, the grid
shape functions are typically inC0.

Substitution of the grid shape function representation for
the admissible velocity fields as in Eqn. 12, and use of
the arbitrariness of the admissible velocity fields, yields
the discrete governing equations

.
pv = fint

v + fb
v + fτττv, (14)

where

.
pv = ∑

p
Svp

.
pp (15)

fint
v = −∑

p
σσσp .∇ SvpVp. (16)

fb
v = ∑

p
mpbSvp, (17)

fτττv =
∫

∂Ωτττ

τττSv(x) dS, (18)

and, for simplicity, the specific body force is assumed to
be constant. Here the rate of change of momentum on the
grid is denoted by

.
pv, the “internal force” due to stress is

denoted byfint
v , and the forces due to body forces and

surface tractions are denoted byfb
v and fτττv respectively,

and

Svp =
1

Vp

∫
Ωp∩Ω

χp(x)Sv(x) dx, (19)

∇ Svp =
1

Vp

∫
Ωp∩Ω

χp(x)∇ Sv(x) dx. (20)

The functionsSvp and ∇ Svp, will be referred to as the
weighting, and gradient weighting, functions respec-
tively. Note that both are implicitly functions of grid ver-
tex positionxv and particle positionx p as emphasized by
the subscripts. The weighting functions are also func-
tions of the integration domain, i.e. the current particle
volume.

Grid mass,mv, and momenta,pv are interpolated from
the particles to initialize the grid using the weighting
functions, i.e.

mv = ∑
p

mpSvp, (21)

pv = ∑
p

ppSvp, (22)

and grid velocities may then be defined asvv = pv/mv.
Because the grid shape functions are a partition of unity,
Eqn. 13, and using the definition of particle volume,
Eqn. 11, gives

∑
v

Svp = 1 ∀ xv,xp, (23)

i.e. the weighting functions are also partitions of unity.
Using Eqn. 23 it is easily shown that



482 Copyright c© 2004 Tech Science Press cmes, vol.5, no.6, pp.477-495, 2004

∑
v

mv = ∑
v
∑
p

mpSvp = ∑
p

mp, (24)

∑
v

pv = ∑
v
∑
p

ppSvp = ∑
p

pp. (25)

The general weighting functions preserve the property
that mass and momentum are conserved (in total, as in
Eqn.s 7–8) in interpolating from particles to the grid.

Eqn. 14 gives the acceleration of the computational grid,
av = .

pv/mv. All that remains is to use this information to
update the particles. Because there may be more particles
than grid vertices, a unique relationship between particle
and grid variables does not exist in general, i.e. Eqn. 15
is not invertible. Rather, particle updates are defined by

.
xp = ∑

v

pv

mv
Svp = ∑

v
vvSvp, (26)

.
pp = ∑

v

.pvmp

mv
Svp = mp∑

v
avSvp, (27)

As emphasized using the above notation, particle po-
sitions are updated using (grid) velocities, and particle
velocities are updated using (grid) accelerations. Inter-
polating changes in position and velocity in this way
serves to reduce numerical diffusion, [Brackbill, Kothe,
and Ruppel (1988); Brackbill and Ruppel (1986)]. Using
Eqn. 27, the total change in momentum is the same on
both the particles and the grid as required by Eqn. 15,

∑
p

.pp = ∑
v

.
pv

mv
∑
p

mpSvp = ∑
v

.pv, (28)

where Eqn. 21 was again used. From Eqn.s 15, 17, 21,
22, 26, and 27, it may be seen that the weighting func-
tions,Svp, are used to interpolate information from grid
to particles and back again. Although derived differently,
the MPM algorithm and its predecessors, [Brackbill,
Kothe, and Ruppel (1988); Sulsky, Chen, and Schreyer
(1994); Sulsky, Zhou, and Schreyer (1995); Brackbill
and Ruppel (1986)], also use the same functions to in-
terpolate to and from the computational grid.

In addition to positions and momenta, particle constitu-
tive response must be updated consistent with the defor-
mation of the grid. Particle strain rates are calculated by

constructing a continuous approximation to the grid ve-
locity using grid shape functions, i.e. Eqn. 12. The strain
rate,

.ε, may then be calculated,

.ε(x) =
1
2

(
∇ v(x)+ ∇ v(x)T)

=
1
2

(∇ Svvv +vv∇ Sv) , (29)

where a superscriptT indicates the transpose. Particle
strain rates,

.εp, are determined using a volume weighted
average over each particle

.εp =
1

Vp

∫
Ωp∩Ω

χp(x) .ε(x) dx = ∑
v

1
2

(
∇ Svpvv +vv∇ Svp

)
.

(30)

Hence it can be seen from Eqn.s 16 and 30 that the gra-
dient weighting functions,∇ Svp, are used to interpolate
information to and from the particles. The MPM algo-
rithm, [Sulsky, Chen, and Schreyer (1994); Sulsky, Zhou,
and Schreyer (1995)], also uses the same functions to in-
terpolate gradients to and from the computational grid.

Eqn.s 14 – 18, 21, 22, 26, 27, and 30 are identical in
form to those presented for MPM, [Sulsky, Chen, and
Schreyer (1994); Sulsky, Zhou, and Schreyer (1995)].
The difference is that the weighting functions and gra-
dient weighting functions have been generalized. These
generalized weighting and gradient weighting functions
may be calculated for any combination of particle charac-
teristic functions and grid shape functions. Examples, us-
ing particular choices of particle characteristic functions
and grid shape functions, will be given in the following
section.

2.3 Observations

In general the weighting functions serve to smooth and
distribute data more than the particle or grid basis func-
tion representations, Eqn. 9 or 12. This is a consequence
of integrating over particle volumes, which smoothes the
grid shape functions. The weighting functions,Svp, have
larger support than the grid shape functions in general,
and, except for special cases,Svp|xp=xv < 1 . A conse-
quence of the inequality is that a particle whose position
is coincident with a grid vertex will not interpolate data
exclusively to that vertex. It is precisely this property
which improves performance in handling finite deforma-
tions, as demonstrated in Section 4. This property is
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also used in many other meshless methods, where, at any
given spatial point, data from many particles is required
to construct a spatially continuous representation of the
data there, [Belytschko, Krongauz, Organ, Fleming, and
Krysl (1996); Babuˇska and Mellenk (1997); Demkow-
icz and Oden (1986); Atluri and Zhu (2000)]. For these
methods the same effect is desired, namely a smoother
representation of particle data. However, in the absence
of a regular grid, construction of the weighting functions
is only achieved at considerable effort and computational
cost. The construction of the GIMP weighting functions
benefits substantially from the use of a regular grid. They
can be determined analytically for common particle char-
acteristic functions and grid shape functions.

Because the GIMP methods are particle methods derived
using a Petrov–Galerkin discretization scheme, of all the
various meshless methods, they have the most in com-
mon with the Meshless Local Petrov–Galerkin (MLPG)
Method introduced in [Atluri and Zhu (1998)] and de-
scribed in more detail in [Atluri and Shen (2002b)]. Both
methods generate families of algorithms, the details of
which are determined by the specific choices of test and
trial functions [Atluri and Shen (2002a)]. However, the
MLPG method emphasizes the complete absence of a
computational mesh, while the GIMP methods embrace
the use of a (spatially fixed) mesh for the simplifications
it provides.

It is worth noting that if weighting functions with support
beyond nearest neighbor vertices are introduced arbitrar-
ily, difficulties can arise at the boundaries of the com-
putational grid. Particles near the grid boundary may
be required to interpolate information to ghost vertices,
or different interpolation rules may be required there, in
order that the mass and momentum are conserved in in-
terpolating between particles and grid. Other meshless
methods, [Belytschko, Krongauz, Organ, Fleming, and
Krysl (1996); Babuˇska and Mellenk (1997); Demkowicz
and Oden (1986); Atluri and Zhu (2000)], require spe-
cial treatment at boundaries on account of the support
of the interpolation functions overlapping the computa-
tional boundary. A notable exception are some MLPG
methods [Atluri and Shen (2002a)]. The shape functions
derived for the GIMP methods require no special treat-
ment. Each particle only contributes to vertices whose
shape functions overlap its characteristic function. By
construction, contiguous particle characteristic functions
are completely contained within the computational grid

boundaries and hence conserve interpolated quantities to
only these vertices.

It is also worth noting similarities with other particle
methods, not derived from a variation form, which have
been especially successful in plasma simulations, [Bird-
sall and Langdon (1985)]. In these methods the utility
of smoother interpolation has also been recognized. Fur-
ther, the construction of smoother weighting functions
by integrating over particle volumes is well established,
[Hockney and Eastwood (1981)]. At this point, how-
ever, the similarities end, as once data has been collected
at grid points finite difference approaches are used to
solve the governing equations. Construction of a sen-
sible method requires a balance of interpolation errors,
finite difference errors, and computational complexity.
Global conservation of important solution variables such
mass and momentum, as in Eqn.s 24 and 25, is obtained
by imposing requirements on the interpolating functions.
However local grid data errors due to particle disorder
are only reduced, not eliminated, by using smoother in-
terpolation functions.

In contrast, GIMP methods can be easily constructed in
which local grid data errors are eliminated completely in
at least one important situation. Consider the case of a
uniformly stressed body, i.e.σσσp = σσσ ∀ p. The inter-
nal force, from Eqn. 16 simplifies to

fint
v = −σσσ.∑

p
∇ SvpVp. (31)

If particle characteristic functions which are a partition
of unity in the current configuration are chosen, i.e.

∑
p

χp(x) = 1 ∀ x, (32)

then Eqn. 31 may be further simplified, using the defini-
tion of ∇ Svp, Eqn. 20,

fint
v = −σσσ.

∫
Ωp∩Ω

∇ Sv(x) = 0 if Ωp∩Ω = Ωp, (33)

i.e. internal forces are identically zero at “internal” grid
vertices (away from the material boundary). This repre-
sents an important special case where, in the absence of
body forces, static equilibrium is maintained only if Eqn.
33 holds.
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MPM may be recovered from the more general formula-
tion presented here by appropriate selection of the parti-
cle characteristic functions. Specifically, for

χp(x) = δ(x−xp)Vp, (34)

whereδ(x− xp) is the Dirac delta function, the formu-
lation presented in [Sulsky, Chen, and Schreyer (1994);
Sulsky, Zhou, and Schreyer (1995)] is recovered exactly.
For this case the integrals in Eqn.s 19 and 20 are trans-
formed into evaluations at pointsx p, i.e. Svp = Sv(xp)
and∇ Svp = ∇ Sv(xp). Note that the MPM discretization
scheme represents a special case where grid shape func-
tions are not smoothed in the construction of the weight-
ing functions. Note also thatthe particle characteristic
functions in Eqn. 34 are not a partition of unity, Eqn. 32.
Hence a uniform stress state on the particles can result in
non–zero internal forces on the computational grid. This
is examined in Section 4.

Finally, it is noted that the Petrov–Galerkin method gives
“lumped mass” governing equations directly (Eqn. 14).
This is a consequence of the consistent use of particle and
grid basis functions, for trial and test functions respec-
tively. In the variational procedure presented in [Sulsky,
Chen, and Schreyer (1994); Sulsky, Zhou, and Schreyer
(1995)], a full mass matrix is derived. The full mass ma-
trix is then diagonalized or “lumped” for computational
efficiency to give the discrete governing equations typi-
cally solved in practice. It is interesting that the Petrov–
Galerkin method avoids this additional step, which typ-
ically lacks justification beyond computational tractabil-
ity.

3 Example GIMP Methods

In this section examples will be given for several GIMP
methods. Attention will be focused on the results ob-
tained for various selections of particle characteristic
functionsχp. Grid shape functionsSv are identical for all
cases considered, and are chosen consistent with those
used in practice in MPM, [Sulsky, Chen, and Schreyer
(1994); Sulsky, Zhou, and Schreyer (1995)]. In one di-
mension, the shape functions are the piecewise linear
“tent” functions

Sv(x) =




0 x−xv ≤−L,

1+(x−xv)/L −L < x−xv ≤ 0,

1− (x−xv)/L 0< x−xv ≤ L,

0 L < x−xv.

(35)

See also Fig. 1, whereL is the cell spacing. For
simplification a uniform grid is assumed, i.e.Lv =
L ∀ v. In more than one dimension, the shape
functions are constructed as products of these (one–
dimensional) tent functions, i.e. in three–dimensions
Sv(x) = Sv1(x1)Sv2(x2)Sv3(x3) wherexi are the compo-
nents ofx in the grid directions. An analogous multi-
plicative decomposition is available for the particle char-
acteristic functions.

S

x−x v

v

−L L0

1

Figure 1 : One dimensional “tent” grid shape function
used in all GIMP Methods presented here.

While straight–forward conceptually, implementation of
GIMP methods with finite, deforming particles in three
dimensions does suffer a practical complication. Per-
forming the integrations to determine the weighting func-
tions requires integration over the current support of the
particle characteristic functions, as they deform and ro-
tate relative to the computational grid. This may need
to be done numerically in general. The investigation in
the following section is performed in one–dimension for
simplicity. In one–dimension the weighting functions
can be determined analytically.

For this reason it is worth investigating the performance
of approximate GIMP algorithms, where particle defor-
mations are not tracked. For these algorithms all compli-
cations associated with integrating over the current sup-
port of the particle characteristic functions are obviated
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and the weighting functions may be calculated analyti-
cally, but at the cost of errors associated with the particle
characteristic functions not forming a partition of unity.
The following section investigates the performance of
MPM and contiguous particle GIMP algorithms with and
without tracking particle deformations.

3.1 Material Point Method

As mentioned in the previous section the original MPM
discrete equations may be obtained from the principle of
virtual work by selecting the Dirac delta function for the
particle characteristic functions as in Eqn. 34, [Sulsky,
Chen, and Schreyer (1994); Sulsky, Zhou, and Schreyer
(1995)]. For this caseSvp = Sv(xp) and∇ Svp = ∇ Sv(xp).
This formulation has the virtue that is computationally
efficient because a given particle interpolates information
only to the vertices of the grid cell it is contained in, and
a grid vertex interpolates information only to particles
in adjacent cells. However, this also results in the inter-
polation being strongly dependent on the registration of
the particles on the grid, potentially changing abruptly as
particles cross cells.

Because these particle characteristic functions are not a
partition of unity, they are not suitable for use in the
initial discretization procedure presented in Section 2.1.
This is easily overcome by selecting other particle char-
acteristic functions for the initial discretization, or sim-
ply using another initial discretization procedure alto-
gether. However, this situation points out an inconsis-
tency wherein the material points mass and volume are
assigned as required by the initial mass density of the
continuum body on one hand, but then are assumed to
represent infinitesimal points on the other. It is certainly
more intuitively appealing to use the same particle char-
acteristic functions to prescribe material point properties
in the initial discretization, and as basis functions for the
discrete solution procedure.

3.2 Contiguous Particles GIMP Method

The simplest choice of particle characteristic functions
(of finite extent) in one–dimension is the combination of
step functions,H(x) (H(x) = 0 if x < 0 andH(x) = 1 if
x > 0),

χp(x) = H(x− (xp− l p))−H(x− (xp + l p)). (36)

Here 2l p is the current particle size. The initial size, 2l i
p,

is determined by dividing the cell spacingL by the num-
ber of particles per cell. This selection of particle charac-
teristic functions defines “contiguous particles”, i.e. con-
tiguous regions of non–overlapping supportΩ p. The par-
ticle characteristic functions may also be written,

χp(x) =

{
1 if x∈ Ωp,

0 otherwise.
(37)

This generalization is the simplest finite particle general-
ization in the sense that it retains the grid shape functions
used in the original implementation of MPM [Sulsky,
Chen, and Schreyer (1994); Sulsky, Zhou, and Schreyer
(1995)], but replaces particle mass points with particle
volumes. It represents the very next degree of smooth-
ness obtainable in the family of GIMP methods (with tent
grid shape functions).

Note that for this case the weighting and gradient weight-
ing functions, Eqn.s 19 and 20, simplify to

Svp =
1

2l p

∫ xp+l p

xp−l p

Sv(x) dx, (38)

∇ Svp =
1

2l p

∫ xp+l p

xp−l p

∇ Sv(x) dx, (39)

and∇ Svp(xp) = ∂Svp(xp)/∂xp, where the dependence on
particle position is indicated explicitly. Specifically, us-
ing the piecewise linear tent function for grid shape func-
tion Sv(x), Eqn. 35, gives from Eqn. 38,

Svp =




0 xp−xv ≤−L− l p,
(L+lp+(xp−xv))2

4Llp
−L− l p < xp−xv ≤−L+ l p,

1+ xp−xv

L −L+ l p < xp−xv ≤−l p,

1− (xp−xv)2+l2
p

2Llp
−l p < xp−xv ≤ l p,

1− xp−xv

L l p < xp−xv ≤ L− l p,
(L+lp−(xp−xv))2

4Llp
L− l p < xp−xv ≤ L+ l p,

0 L+ l p < xp−xv.

(40)

See also Fig. 2. The result is a weighting function with
support in adjacent cells and in next nearest neighbor
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cells. This specialization has the advantage that it devel-
ops weighting functions inC1 with a minimal amount of
additional complexity, both theoretically and computa-
tionally. It will be referred to as the “contiguous particle
GIMP method”. The increased support does result in an
increase in computational effort. The grid vertex quan-
tities appearing in the governing equations (Eqn. 14) are
accumulated by summing over particles. The contribu-
tion of a material point’s data to a grid vertex is deter-
mined by the distance between its centroid and the grid
vertex. In the contiguous particle GIMP method addi-
tional grid vertices to which a given material point con-
tributes data must be located.

S

x−x

vp

−L L0

1

vp
l−l L+lL−l−L−l −L+l

p p p p pp

Figure 2 : Contiguous particle GIMP weighting function
in one dimension.

An approximation to the exact weighting functions,
which provides considerable simplification in practice,
is provided by not tracking current particle volumes, i.e.
l p(t) = l i

p ∀ p, t. This is a good approximation for
small deformations. However, errors develop when par-
ticle volumes fail to remain contiguous, or overlap the
computational boundaries, during finite deformations.
For example, when a particle’s (approximate) character-
istic function overlaps the computational grid boundary,
the mass and momentum corresponding to the fraction
of the particle characteristic function which lies outside
the grid are not interpolated to the grid. Hence errors in
conservation of mass and momentum between grid and
particles are made. Examples are given in Section 4.

3.3 Fuzzy Particle GIMP Methods

While not examined in detail, some aspects and possible
merits of overlapping particle characteristic functions, or
“fuzzy particles”, are considered here. Eqn. 32 constrains

the form of the particle characteristic functions, but two
possibilities immediately present themselves. These are
illustrated in Fig 3 for “tent” particle characteristic func-
tions in one–dimension, in the case where two particles
initially occupy each cell. Note that for one particle per
cell the two possibilities in Fig. 3 converge.

xL0

1

L/4 3L/4

xL0

1

L/4 3L/4

(a)

(b)

Figure 3 : Two possible fuzzy particle discretization
schemes illustrated in one–dimension for two particles
per cell. All particle characteristic functions which con-
tribute to the continuous representation of particle data
for 0≤ x≤ L are shown, with particle characteristic func-
tions centered between 0 andL in bold.

The first possibility, Fig. 3(a), is characterized by parti-
cles only overlapping their nearest neighbors, and parti-
cle characteristic functions uniquely representing the grid
data at one or more points. For these casesf (xp) = fp in
Eqn. 9 andΩ i

p ≤ 2L. A second possibility is illustrated
in Fig. 3(b) and is characterized by particle characteristic
function overlap with all neighbors initially within some
region and f (xp) �= fp. In Fig. 3(b) this case is illus-
trated forΩ i

p = 2L. This possibility is akin to that gen-
erally preferred in various meshless methods where ba-
sis function support is typically taken to be much larger
than particle spacings and hence many particles typically
contribute to continuous representation of particle data
at any given spatial point, [Belytschko, Krongauz, Or-
gan, Fleming, and Krysl (1996); Babuˇska and Mellenk



The Generalized Interpolation Material Point Method 487

(1997); Demkowicz and Oden (1986); Atluri and Zhu
(2000)].

Both overlapping particle scenarios are a natural exten-
sion of the piecewise constant representation of particles
(contiguous particle GIMP) to piecewise linear represen-
tations. Nearest neighbor only overlap tends to localize
particle data while constant overlap tends to distribute
it. Further analysis/experimentation is needed to deter-
mine the merits of each possibility. However, their com-
plementary functionality is suggestive of utility in parti-
cle addition and deletion algorithms in conjunction with
computational grid refinement and coarsening.

4 Example Calculations

In this section numerical solution artifacts associated
with the properties of the interpolation scheme used
to transfer information between particles and grid are
demonstrated. Numerical solutions using two different
particle characteristic functions, as detailed in the previ-
ous section, are compared. One solution is obtained us-
ing the MPM algorithm, where material points are taken
as infinitesimal points. For this caseSvp = Sv(xp) where
Sv(x) is given by the piecewise linear tent function as in
Eqn. 35 or Fig. 1. This solution is labeled “MPM” in
Figs. 4, 5, 6, and 7. Another solution is obtained us-
ing contiguous particle GIMP, where particle character-
istic functions are given by Eqn. 37, andSvp is given by
Eqn. 40 or Fig. 2. This solution is label “GIMP”. For
both of these solutions particle volumes are not tracked,
i.e. l p(t) = l i

p ∀ p, t.

Two one–dimensional examples are examined. Both
simulate uniaxial compression of a bar or column, the
first quasi–statically, the second dynamically. In both ex-
amples the bar has unit initial mass density,ρ0, and an
initial length,∆0, of 50. Material response is determined
by a one–dimensional hyperelastic model

σ = E(F −1), (41)

whereF is the deformation gradient in one dimension.
Young’s Modulus,E, is taken to be 106, giving a wave
speed,c, of 1000. Any consistent set of units suffices.
For the first two subsections the bar is discretized using
50 computational cells,L = 1, and two material points
per cell. The last two subsections consider variations in
cell size and the number of particles per cell. The time for

a wave to propagate the length of the bar, or the “wave
transit time” is∆0/c = .05. The explicit time stepping
algorithm used in all numerical solutions is governed by
the CFL stability condition which demands that for linear
systems the time step,∆t, satisfy∆t ≤ L/c = 10−3. For
all (nonlinear) calculations presented here the time step
is reduced by an additional factor of ten, i.e.∆t = 10−4,
both to assure numerical stability and to increase the ac-
curacy of the computations.

Results are reported at specific stages in the deforma-
tion by plotting stresses at material points. Attention
is focused on the appearance of computational artifacts
associated with particles crossing cell boundaries, and
the effect on material point stresses. While the resolu-
tion of the computation is commensurate with the grid
cell size, constitutive response is computed on material
points only. In order that inelastic constitutive response
be accurately simulated, material point stresses must vary
smoothly. In both cases examined here average defor-
mations are small, but are sufficient to cause particles to
cross cell boundaries. Of course cell crossing artifacts
exhibited at this relatively coarse discretization occur at
yet smaller strains if the spatial resolution is increased.
This is examined in more detail at the end of the section.

4.1 Quasi–static Compaction

The quasi–static compaction case simulates the response
of a column of material to a slowly increasing compres-
sive body forceb (e.g. gravity). The magnitude of the
body force is increased linearly with time during the
computations. In order to obtain good quasi–static so-
lutions, the total simulation time is taken equal to 40
wave transit times. Results are depicted in Figs. 4 and 5,
where vertical lines indicate cell boundaries. Each mate-
rial point position and stress is indicated with open trian-
gles for the solution obtained using MPM, and with open
circles for contiguous particle GIMP. Dashed lines con-
necting the material points emphasize non–uniformity in
the numerical solutions.

Analytical solutions for static equilibrium at any given
body force may be easily found. These solutions are

σ(x) = E

{√
2ρ0b

E
(∆−x)+1−1

}
0≤ x≤ ∆, (42)

wherex denotes position in the current configuration, and
∆ is the current length of the column. This solution is
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plotted for guidance as a solid line in Figs. 4 and 5. The
current position of each point may be calculated, in par-
ticular, the current length of the column is given by

∆ = ∆0 +
ρ0b
2E

∆2
0. (43)

This equation is used to select the magnitude of the fi-
nal body force,bf , such that the end displacement is one
grid cell at the end of the simulation, i.e.∆−∆0 = −1.
For this casebf = −800. Results are reported at various
column weights per unit cross–sectional area, W, defined
by

W = ρ0|b|∆0. (44)

For the parameters chosen, the weight of the column at
the end of the simulation isWf = 40,000.

Fig. 4(a) depicts solutions early in the deformation, be-
fore any material points have crossed cell boundaries.
For this case both numerical solutions and the analytical
solution essentially overlie one another. Fig. 4(b) depicts
the situation shortly after the first cell crossings. The ex-
act solution predicts that at this column weight the left
particles initially in cells for whichxv ≥ 30 will have
crossed their left cell boundaries, resulting in 3 mate-
rial points in the cell occupying 29≤ x≤ 30. These cell
crossings have substantiallyperturbed the MPM solution,
both forx≥ 29, where the cell crossings have occurred,
and in the remainder of the column, due to propagation
of the cell crossing disturbances.

It is not difficult to understand cell crossing noise. Con-
sider uniformly stressed material, as discussed in Sec-
tion 2.3, but in only one dimension. Because of the dis-
continuous nature of the gradient of the weighting func-
tion used in MPM, a force imbalance develops when uni-
formly stressed material points register non–uniformly
on the grid, i.e. different numbers of particles are in ad-
jacent cells. This force imbalance is proportional to the
particle stress multiplied by the difference between the
number of particles on each side of a grid vertex. The
contiguous particle GIMP gradient weighting functions
reduce these artificial force imbalances substantially. As
gaps or overlaps in particle characteristic functions de-
velop (as material points move relative to each other), the
particle characteristic functions are no longer a partition
of unity and artificial force imbalances can still develop.
However, these force imbalances are proportional to the
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Figure 4 : Numerical and analytical solutions to the
quasi–static compression of a continuum bar due to a
slowly increasing body forceb. The MPM solution
material point stresses are indicated with open triangles
and the contiguous particle GIMP solution material point
stresses with open circles. Vertical lines indicate cell
boundaries. The solid diagonal lines indicate analytical
solutions. Solutions are obtained at increasing column
weights.

stress multiplied by the ratio of the gap or overlap volume
to the initial particle volume, and only develop when the
gaps or overlaps register non–uniformly on the grid.

Fig. 5(a) depicts solutions for a still larger column
weight. The MPM solution has degraded substantially.
The spurious forces developed due to the low degree of
continuity in interpolation are overwhelming the “phys-
ical” forces in the system and destroying the solution.
The GIMP solution remains smooth, although a slight
difference between it and the analytical solution has de-
veloped. In Fig. 5(b) only traces of the MPM solution
remain. The GIMP solution remains smooth, but fur-
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Figure 5 : As in Fig. 4, but for still higher column
weights. In (b), the Finite GIMP solution material point
stresses are indicated with x’s.

ther under predicts the full weight of the column (the
stress atx = 0). Because the GIMP solution uses initial
particle widths throughout the computation, as a particle
approaches the boundary its characteristic function be-
gins to overlap the edge of the computational grid. The
overlapping portion information is not interpolated to the
grid. Therefore in the GIMP algorithm, the solution on
the grid is one for slightly reduced column mass/weight
as discussed in Section 3.2.

For this final weight one more numerical solution, la-
beled “Finite GIMP” is presented in Fig. 5(b). The Finite
GIMP solutionoverlies the analytical one. In Finite (con-
tiguous particle) GIMP, particle widths are tracked and
used in the interpolation functionsSvp. Hence the par-
ticle characteristic functions remain a partition of unity
throughout the deformation. Particle characteristic func-
tion overlap at the boundary is eliminated and the full
weight of the column is reflected in the solution.

In summary, the MPM algorithm can be very noisy.
Neighboring material points may experience computa-
tional artifacts resulting in radically different deforma-
tion histories, compromising the accuracy of stress eval-
uations, especially for history dependent, inelastic mate-
rials. Material point stress oscillations may even become
strong enough to overwhelm the physical forces in the
system and destroy the solution, as seen in this example.

4.2 Dynamic Compaction

The second case of interest is the dynamic compaction
of the same bar. For this case the bar is given an initial
velocity to the left, impacting a rigid wall (the compu-
tational boundary). The initial velocity,v0, is taken to
be c/50. In this case, for the same end displacement,
∆− ∆0 = −1, there isn’t time for stress equilibrium to
take place, rather the solution is a stress wave. The sim-
ulation is run for one wave transit time. A Richtmyer–
VonNeumann artificial viscosity term is added to smear
the shock over several computational cells, [VonNeu-
mann and Richtmyer (1950)], and a linear term is added
to damp out ringing behind the shock. The general form
of the artificial viscosity pressure,q, is

q =

{
c1ρc| .εL|+c2ρ( .εL)2 .ε < 0,

0 otherwise,
(45)

wherec1 andc2 are dimensionless coefficients. Analo-
gous to the constitutive response, the artificial viscosity
term is evaluated at the particles. It is then used to aug-
ment the particle stresses, i.e.σp → σp−qp. For the cal-
culations presented here, coefficientsc1 = .2 andc2 = 2.0
were used.

Figs. 6 and 7 show the stress state in the bar, as given
by both numerical solutions, at the same end displace-
ments as in the quasi–static example. Again each mate-
rial point position and stress is indicated with open tri-
angles for the solution obtained using MPM, and open
circles for GIMP. Vertical lines indicate cell boundaries.
The exact solution is a discontinuity propagating to the
right with speedc. In front of the shock the material is
uncompressed and stress free, while behind it material is
uniformly compressed. Behind the shock front the defor-
mation gradient is equal to the ratio of the current length
of compressed material to its initial length
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Figure 6 : MPM and GIMP numerical and analytical so-
lutions for the dynamic compaction of a continuum bar.
The MPM solution material point stresses are indicated
with open triangles and the contiguous particle GIMP so-
lution material point stresses with open circles. Verti-
cal lines indicate cell boundaries. The solid horizontal
lines indicate the analytical solution for the stress behind
a sharp shock (a discontinuity). Solutions are obtained at
various fractions of the wave transit time.

F =
ct−v0t

ct
= 1−v0/c. (46)

Using the selected material properties, and Eqn. 41, the
stress behind the shock may be calculated to be−20000.
This value is indicated with the solid horizontal lines in
Figs. 6 and 7.

Fig. 6(a) depicts solutions early in the deformation, be-
fore any material points have crossed cell boundaries.
For this case both numerical solutions are similar. How-
ever, close inspection reveals that stresses are uniform
within cells in the MPM solution, while in the GIMP so-
lution particle stress variation within cells is more consis-
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Figure 7 : As in Fig. 6, but at later times.

tent with the smeared shock front. Fig. 6(b) depicts the
situation shortly after the first cell crossing behind the
shock. Note that cell crossings ahead of the shock have
no effect, because the stress is zero there. From Eqn. 46
it may be found that the first cell crossing occurs at the
vertexxv = 13 resulting in 3 material points in the cell oc-
cupying 12≤ x≤ 13. As in the quasi–static case, the cell
crossing substantiallyperturbs the MPM solution, but not
the GIMP solution.

Fig. 7(a) depicts solutions after the shock has propagated
across 75% of the bar. The stress disturbance in the MPM
solution is locked in as required to maintain equilibrium
on the grid for non–uniform particle registration. The
GIMP solution is much smoother. In Fig. 7(b) the shock
has reached the end of the bar, resulting in another cell
with three material points as evident in the MPM solu-
tion.

As for the quasi–static compression case presented ear-
lier, the Finite contiguous particle GIMP method may be
applied in this case to further improve the discrete solu-
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Figure 8 : Various GIMP numerical solutions for the dy-
namic compaction of a continuum bar after the stress
wave has reached the end of the bar. The contiguous
particle GIMP solution material point stresses are indi-
cated with open circles, and the Finite contiguousparticle
GIMP solution material point stresses are indicated with
x’s. Vertical lines indicate cell boundaries. The solid hor-
izontal line indicates the analytical solution for the stress
behind a sharp shock.

tion. Fig. 8 depicts contiguous particle GIMP and Finite
contiguous particle GIMP (labeled “Finite GIMP”) solu-
tions at the end of the simulations, when the compression
wave has propagated across the entire bar. The range over
which stress is plotted is greatly reduced in order to allow
the difference between the solutions to be distinguished.
It is found that, as for the quasi–static compression case,
information is lost to the grid when finite deformations
are not accounted for. It should be noted that MPM does
not suffer from information loss to the grid unless a par-
ticle leaves the computational domain. Tracking current
particle volumes corrects the MPM solutions as well, but
does not alleviate cell crossing noise.

4.3 Sensitivity to Particle Discretization

To assess the effect of particle density used in the nu-
merical simulations, the wave propagation example was
also run with 1 and 4 particles/cell initial discretiza-
tions for both MPM and contiguous particle GIMP algo-
rithms. The results, along with the 2 particle/cell results
presented in Section 4.2, are depicted in Fig. 9, at the
end of the simulations. In comparing results for MPM,
Fig. 9(a), and contiguous particle GIMP, Fig. 9(b), it is

evident that regardless of the number of particles used,
the GIMP solutions result in much smoother variation of
particle stresses. The MPM solutions suffer large vari-
ations in particle stresses due to cell crossings and con-
sequent non–uniform registration of the particles on the
grid. The frequency of these large particle stress vari-
ations is strongly dependent on the number of particles
used. This is expected and due to the direct relationship
between the number of particles used and the details of
their non–uniform registration on the grid. Although the
magnitude of the large variations in particle stresses is
slightly reduced by using more particles, the increase in
frequency of these variations results in a noisier solution
overall.

It is worth noting, from Eqn. 40, that asl p → 0, then
Svp→ Sv(xp), i.e. the GIMP weighting functions tend to-
ward the MPM ones as more particles are used. Shorter
wavelength noise consistent with this limiting behavior
can be seen in the GIMP solutions for 4 particles/cell in
Fig. 9(b). Because increasing the particle density is gen-
erally expected to increase solution smoothness in PIC
methods, the result is unexpected. However, as it sug-
gests the use of fewer particles/cell is advantageous, it
is of significant practical importance. Computational ef-
fort and storage requirements are, of course, strongly in-
fluenced by the number of particles used, especially in
three–dimensions.

4.4 Convergence

In order to gain further insight into the performance of
the various algorithms investigated in this section, the
dependence of solution quality on grid spacing was also
investigated. Because an exact solution is available for
the case of a column quasi–statically compressed under
gravity, and the numerical solutions are not complicated
by artificial viscosity, this case was chosen for further
study.

Of continuing interest is the quality of the solution on the
particles. An error measure was chosen which compares
particle stresses to the exact solution at current particle
locations. Specifically,

Error= ∑
p

|σ(xp)−σp|2l p

W∆0
(47)

whereσ(x) is the exact solutiongiven by Eqn. 42, andxp,
σp, andl p are particle positions, stresses and dimensions,
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Figure 9 : MPM (a) and contiguous particle GIMP (b)
solutions of the dynamic compaction of a continuum bar
after the stress wave has reached the end of the bar. Dif-
ferent solutions have different numbers of particles/cell.
Vertical lines indicate cell boundaries. The lightly dashed
horizontal lines indicate the analytical solution for the
stress behind a sharp shock.

respectively, from numerical simulations. The summa-
tion is normalized by the weight of the column multiplied
by the initial length, to give a unitless error measure.

Gravity was applied slowly to the system in the numer-
ical simulations, as described in Section 4.1, to obtain
quasi–static results. However, because the numerical so-
lutions track the system’s dynamics, there will always be
some variation relative to the analytical (static) solution,
Eqn. 42, on account of stress waves. In order to get simi-
lar contributions to the error calculations due to dynamics
for all cases considered, the same time step size was used
regardless of cell size. This results in the same tempo-

ral discretization of the applied loading for all numerical
simulations.

Errors are reported in Fig. 10, for cell sizes spanning
three orders of magnitude, for the MPM, GIMP and Fi-
nite GIMP algorithms. The number of particles per cell
in the initial configuration, labeled “p/c” in the figure’s
legend, is varied between one and four. The dashed line
indicates first–order convergence with cell size, and the
solid line indicates second–order convergence (in this
norm, i.e. Eqn. 47). It should be noted that the data
from Fig. 4(a) have been used in the error calculations,
resulting in the filled and open circles on the vertical line
corresponding to a cell size of 1 (both are clustered with
the majority of the data for this cell size and are diffi-
cult to distinguish). This time, early in the computation
(W = 10000), was chosen because the solution quality
depicted in Fig. 4(a) looks good for both algorithms. As
discussed in Section 4.1, it corresponds to a time for this
cell size which is prior to any cell crossing events. For
cell sizes 2.5 and larger, there are no cell crossing events
for any of the particle densities considered. Except for
two points, discussed specifically below, the errors for
cell sizes of one or larger are all closely clustered, regard-
less of the algorithm or particle density. For cell sizes less
than one, the errors exhibit trends strongly dependent on
the numerical algorithm.
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Figure 10 : Results of a convergence study for the MPM,
GIMP and Finite GIMP algorithms, for various particle
densities. Error relative to the exact solution is plotted
against computational cell size. The computation is of
the quasistatic compression of a column under gravity,
identical to that depicted in Fig. 4(a).
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The error calculations for the MPM algorithm are de-
picted with filled symbols. In all cases examined the
error begins to increase with decreasing cell size after
some minimum cell size is reached. This behavior is the
result of the excitation, by cell crossing noise, and subse-
quent unstable growth, of solution instabilities. Specif-
ically, PIC methods have been known to exhibit an in-
stability, denoted the “finite grid instability”, which orig-
inates because the particles can support solution varia-
tion wavelengths which are unresolvable on the compu-
tational grid. This instability has been shown to depend
on the degree of smoothness of the weighting functions,
the Mach number of the problem, and the numerical inte-
gration scheme used, [Brackbill (1988)]. The low speed,
explicit calculations presented here would be expected to
be very susceptible to the finite grid instability. The dra-
matic increase in error with decrease in cell size is due to
unstable growth of perturbations to the solution created
by cell crossing noise. Unfortunately, there is no way to
decouple the deleterious effect the finite grid instability
has on the solution from the positive effect decreasing
the cell size has. The reason is simply that, for the same
deformation, decreasing the cell size results in increas-
ing the number of cell crossings and corresponding noise.
Increasing the resolution will always ultimately result in
cell crossings, no matter how small the deformation. An
example of a numerical solution in which cell crossing
noise has grown unstably, resulting in large error, may be
seen in Fig. 4(c).

Further examination of Fig. 10 confirms that cell crossing
noise drives the MPM algorithm solution error. Increas-
ing the particle density decreases the magnitude of the
cell crossing noise. The MPM algorithm data in Fig. 10
are consistent with this, at least until the error becomes
large. After a minimum is reached (which depends on
both cell size and particle density), error accumulates
more slowly with increased particle density. Further evi-
dence for the importance of the role of cell crossing noise
is found in the unit cell size MPM algorithm error calcu-
lations. The four particle per cell calculation has sub-
stantially more error than the one or two particle per cell
calculations. It is the only MPM calculation which has
had cell crossings at this column weight and grid resolu-
tion.

The GIMP algorithm simulation errors are plotted with
open symbols. This algorithm is found to be convergent
over a larger range of cell sizes than MPM, as would be

expected on account of dramatically reduced cell cross-
ing noise inherent in the contiguous particle GIMP algo-
rithm. Although difficult to discern in Fig 10, it is found
that one particle per cell computations have consistently
less error than the other GIMP simulations. This result is
consistent with the fact that the GIMP interpolation func-
tions are smoothest when only one particle is used per
cell, as discussed in the previous subsection. Ultimately
the error saturates with decreasing cell size, independent
of the particle density. The numerical results continue to
converge, but to the solution for a column with slightly
reduced mass, due to boundary effects, as discussed in
conjunction with Fig. 4. For this algorithm the combina-
tion of smoother interpolation and reduced cell crossing
noise prevents the finite grid instability from dominating
the quality of the calculations.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

0.01 0.1 1 10

E
rr

or

Cell Size

Finite GIMP convergence at W=10000

x^2
faster

benchmark
slower

Figure 11 : Results of a convergence study for the Finite
GIMP algorithm using one particle per cell, for various
loading rates. Error relative to the exact solution is plot-
ted against computational cell size. Gravity is applied
five times faster, and 4 times slower, than for the results
in Figs. 4 and 10.

The Finite GIMP simulation errors are plotted with var-
ious crossed–line symbols. This algorithm is found to
converge the most rapidly over the entire range of cell
sizes considered. Convergence rates are consistent with
the smoothness of the weighting functions, which are
quadratic when only one particle is used per cell. The
spread between one particle per cell results and those ob-
tained with more particles is most evident for cell sizes
less than or equal to one and again suggests that one par-
ticle per cell may be the optimal discretization scheme.
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Ultimately the error saturates with decreasing cell size in
the one particle per cell Finite GIMP computations. The
numerical simulations resolve dynamic stress wave prop-
agation in the column. Gravity is applied very slowly in
order to reduce the magnitudes of the stress waves, but
they cannot be completely eliminated. Calculations in
which gravity was applied five time faster and four times
more slowly resulted in the error saturating at larger and
smaller values, respectively, as seen in Fig. 11. This sug-
gests the primary contribution to the error at the finest
grid sizes is the difference between the quasi–static nu-
merical solution and the exact (static) solution, i.e. the
error saturation is caused by resolving the dynamics.

5 Conclusions

A family of PIC methods has been derived from a
variational form using a Petrov–Galerkin discretization
scheme. This family of methods has been named the
Generalized Interpolation Material Point (GIMP) meth-
ods to indicate their relation to the Material Point Method
(MPM), [Sulsky, Zhou, and Schreyer (1995)], which can
be derived as a special case. This generalized framework
allows comparison to other discretization schemes which
also do not use a body–fixed mesh, such as Smooth Parti-
cle Hydrodynamics, Element Free Galerkin, and Repro-
ducing Kernel Particle methods, [Belytschko, Krongauz,
Organ, Fleming, and Krysl (1996)], the Partition of Unity
Method, [Babuˇska and Mellenk (1997)], Adaptive Char-
acteristic Petrov–Galerkin Finite Element, [Demkowicz
and Oden (1986)], and Meshless Local Petrov–Galerkin
methods, [Atluri and Zhu (2000)]. Two practical advan-
tages of the GIMP methods stand out it this context. The
first is the advantage of using a spatially fixed mesh in
generating the weighting functions used to develop con-
tinuous representations of discrete data. The second is
the lack of any special treatment required near computa-
tional boundaries due to weighting function overlap.

The GIMP methods were investigated because of con-
cern about the noise inherent in MPM. Constitutive mod-
els are implemented only on the particles in all GIMP
methods. In evaluating constitutive response on material
points, there is an implicit assumption that neighboring
points have similar histories. Computational artifacts re-
sult in nonphysical input to the material point constitu-
tive models, and in large variance between adjacent ma-
terial points and/or oscillations. These artifacts result in
unphysical stress states, poor solution quality, and even

complete breakdown of the solution, as illustrated in this
manuscript for elastic materials. These artifacts will re-
sult in erroneous evolution of history variables in inelas-
tic constitutive models. If there is sufficient dissipation to
prevent a complete breakdown, solution divergence may
go undetected. In MPM, material point stresses can be
strongly perturbed in this manner when particles cross
cells. For this reason, it is suggested that the MPM al-
gorithm only be used for infinitesimal deformation prob-
lems, defined in practice by the absence of cell cross-
ings. For finite deformation problems, greater continu-
ity in interpolation between material points and the com-
putational grid is required for accurate solutions. The
very next degree of smoothness available in the family
of GIMP methods, dubbed the contiguous particle GIMP
method, is demonstrated to perform decidedly better.
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