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Abstract. For inverse problems one attempts to infer spatially variable functions from indirect
measurements of a system. To practitioners of inverse problems, the concept of “information” is
familiar when discussing key questions such as which parts of the function can be inferred accurately
and which cannot. For example, it is generally understood that we can identify system parameters
accurately only close to detectors, or along ray paths between sources and detectors, because we have
“the most information” for these places.

Although referenced in many publications, the “information” that is invoked in such contexts is
not a well understood and clearly defined quantity. Herein, we present a definition of information
density that is based on the variance of coefficients as derived from a Bayesian reformulation of the
inverse problem. We then discuss three areas in which this information density can be useful in
practical algorithms for the solution of inverse problems, and illustrate the usefulness in one of these
areas – how to choose the discretization mesh for the function to be reconstructed – using numerical
experiments.

AMS subject classifications. 65N21, 35R30, 94A17

1. Introduction. Inverse problems – i.e., determining distributed internal pa-
rameters of a system from measurements of its state – are frequently ill-posed. Math-
ematically, this ill-posedness is often described as the lack of a continuous mapping
from the space of measurements to the corresponding parameters reconstructed from
a measurement. A consequence of ill-posedness is that a small measurement error
can result in a significantly different reconstructed parameter unless the problem is
regularized in some way.

Concretely, let us consider that we want to identify a spatially varying parameter
q(x), for instance the density and elastic moduli of the earth in seismology, or the
absorption and scattering properties of the human body in biomedical imaging. This
will require using measurements z of some part of the state of the system under
interrogation, e.g. the time-dependent displacement at a seismometer station, or the
light intensity at the surface of the body as recorded by the pixels of a camera. If
z is corrupted by noise of level ε, we will get two reconstructions (q1, q2) for two
measurements (z1, z2) that differ only by the realization of the measurement noise.
Ideally, we would be able to show that

‖q1(x)− q2(x)‖ ≤ C‖z1 − z2‖ (1.1)

for some appropriate choice of norms and a constant C of moderate size. The problem
is “ill-posed” if such an estimate does not exist. Many inverse problems fall into this
category of ill-posedness.

On the other hand, a pragmatic view of inverse problems is that the ill-posedness
of the problem is simply the result of a lack of information. Some inverse problems can
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achieve well-posedness by obtaining different kinds of measurements from the system
under consideration, but even if that is not the case, it would already be advantageous
to simply improve the degree of ill-posedness. In either case, we may ask whether it
is possible to derive estimates of the kind

‖J(x)(q1(x)− q2(x))‖ ≤ C‖z1 − z2‖, (1.2)

again with an appropriate choice of norms. We will call J(x) ≥ 0, or a related quantity
such as its square root, the information density. Equation (1.2) is motivated by the
observation that at places where J(x) is large, we can accurately determine the value
of the coefficient q(x) we are looking for (i.e., q1(x)−q2(x) must be small to satisfy the
inequality). Conversely, the places where J(x) is small coincide with those locations
where we have little control over the coefficient, and even small amounts of noise in
z may lead to large variations q1(x) − q2(x). In the extreme case when the prob-
lem is truly ill-posed, J(x) would not be bounded away from zero and consequently
‖J(x)ϕ(x)‖ would not be a norm of ϕ.1

It is unlikely that for practical problems once can find meaningful expressions for
J that give rise to provable estimates of the form (1.2). This is because for many
inverse problems, what can and cannot be recovered stably is often not about where
in space we are, but about which modes in feature space (for example low- versus
high-frequency components of a function q(x)) are identifiable. In our discussions
below, we therefore consider estimates such as (1.2) aspirational : We will instead
seek statements such as

‖j(x)(q1(x)− q2(x))‖ ' C‖z1 − z2‖, (1.3)

where j(x) takes on the role of the information density, and where ' expresses a
relationship of the form “behaves conceptually like, but possibly only when spatial
discretization is used”. While we will not be able to (and one likely cannot) prove
that any choice of j in (1.3) implies an estimate of the form (1.2), the conceptual
approach of seeking a function j(x) that expresses the idea of an information density
of how much we know about q at different points in space will turn out to be useful
in practice – as we will demonstrate in Sections 4 and 5.

References to information in inverse problems in the research literature. The no-
tion of information density is not new, in particular in applications where q(x) is
replaced by finite-dimensional parameter vectors (qi)

N
i=1. Indeed, similar notions can

be found in many areas of inverse and parameter estimation problems in various forms,
and among practitioners of inverse problems, there is a degree of “knowledge” that
information is a key concept. At the same time, practitioners do not appear to have
a clear understanding of what information actually means, and uses of this concept
in the literature appear to be vaguely defined and disconnected.

In our review of the existing literature, we have come across many publications
that touch on the concept of information in inverse problems. The most obvious appli-
cation of information concepts to inverse problems is in optimal experimental design
where the goal of the design of schemes is to measure data about the system so as
to minimize the uncertainty (that is, to maximize the information) in the parameters

1In many inverse problems, for example in imaging, the ill-posedness manifests not by there
being locations x at which q(x) is not identifiable. Rather, it is the high-frequency (Fourier) content
of q that is often not identifiable without regularization. In this case, one may want to consider an
equation like (1.2) with x replaced by the wave number k. Regardless of this obvious difference, let
us for the moment move forward with the derivation as stated.
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we wish to recover [5, 10, 23]. This relation to uncertainty is most clearly articulated
in the Bayesian setting of optimal experimental design where the information gain of
the posterior probability distribution over the prior is maximized. However informa-
tion, generally defined in less concise terms, is also a topic discussed in other contexts.
For example, considering concrete applications, [37] presents Fisher information for
a single-particle system and proposes a new uncertainty relationship based on Fisher
information. Similarly, [12, 47] discuss the use of a resolution matrix in seismic to-
mography (see also [36]); related concepts of “resolution”, “resolution length scales”,
“event kernels”, “sensitivity kernels”, or “point spread functions” also appear in both
seismic imaging and a number of other fields, see for example [21, 29–31, 35, 43]. In
many other cases, the literature references the Fischer information matrix that, to-
gether with the Cramér-Rao bound, quantifies how accurately we know what the
inverse problem seeks to identify [28]; examples include [11], which uses this approach
for estimating diffusion in a single particle tracking process; [25], which compares
Fisher matrices to the Hessian calculation in boundary value inversion problem us-
ing the heat equation; and [33] presents a preconditioning and regularization scheme
based on Fisher information.

These publications and several others make connections between the accuracy of
measurements and the uncertainty in the recovered parameters of the inverse prob-
lem, but these studies have not been undertaken to specifically identify the role of
information in the spatially variable ability to recover parameters in inverse problems.
Indeed, a common feature of the many definitions of resolution, adjoints, controlla-
bility, and identifiability that can be found in the literature, is that most of these
notions originate in, and were developed for, deterministic inverse problems. On the
other hand, “information” is probably best understood as a statistical concept, and
a useful definition will therefore be rooted in statistical reformulations of the inverse
problems. It is the connection between the Fisher information matrix and the vari-
ance of reconstructed parameters, via the Cramér-Rao bound, that we will utilize to
derive information densities in Section 2.2 below.

The differences in the concepts mentioned above, and the lack of a common
language to describe them, then presents the background of this work. Our goals are
as follows:

• To introduce the notion of an information density based on a statistical in-
terpretation of the inverse problem, the Fisher information matrix, and an
application of the Cramér-Rao bound.

• To outline a number of applications for which we believe that an information
density can be usefully employed.

• To practically evaluate our concepts in a concrete application, namely the
choice of mesh on which to discretize an inverse source-identification problem.

Herein, we will pursue these goals by first considering a finite-dimensional, linear
model problem in Section 2 that we use to provide a conceptual overview of what
we are trying to achieve, followed by the extension of this model problem to the
infinite-dimensional case in Section 3. Having so set the stage, we provide “vignettes”
for three ways in which we believe information densities can be used in practice in
Section 4. Section 5 then explores one of these – the choice of mesh for discretizing an
infinite-dimensional inverse problem – in detail and with numerical and quantitative
results. We conclude in Section 6.

2. A finite-dimensional, linear model problem. We first consider a simple,
finite-dimensional problem. Specifically, let us consider a problem in which a state
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vector u is related to source terms via the relationship

Au =
∑
k

qksk, (2.1)

where sk are possible source vectors and qk are their relative strengths. We assume
that the system matrix A is invertible although it may be ill-conditioned. In the
inverse problem, we are then interested in recovering unknown source strengths qk
through a number of (linear, noisy) measurements

z` = mT
` u + ε`, (2.2)

where ε` is measurement noise. We assume that we have a guess σ` for the magnitude
of the noise ε`.

For convenience, let us collect the quantities qk, sk, z`,m` into vectors and matri-
ces q, S, z,M , where the sk form the columns of S and the m` the rows of M . Then,
we can state the source strength recovery problem we will consider here as

min
q,u

1

2
‖Mu− z‖2Σ−2 +

β

2
‖Rq‖2 ,

such that Au = Sq.

(2.3)

Here, we have used the weighted norm ‖Mu− z‖2Σ−2 =
∑
`

1
σ2
`
|mT

` u− z`|2, where the

diagonal matrix Σ`` = σ` weighs measurements according to the assumed certainty 1
σ`

we have of the `th measurement. We have also added a Tikhonov-type regularization
term where β is the regularization parameter and R a matrix that amplifies the
undesirable components of q.

By eliminating the state variable using the state equation (2.1), we can re-state
this problem as an unconstrained, quadratic minimization problem:

min
q
Jred(q) :=

1

2

∥∥MA−1Sq− z
∥∥2

Σ−2 +
β

2
‖Rq‖2 . (2.4)

It is then not difficult to show that the minimizer q of this problem satisfies(
STA−TMTΣ−2MA−1S + βRTR

)︸ ︷︷ ︸
Q

q = STA−TMTΣ−2z. (2.5)

If we consider the noise to be random, we can ask how the solution q depends
on concrete measurements. Specifically, if we have two, presumably nearby, mea-
surements z1, z2, then the following relationship holds for the corresponding solutions
q1,q2:

Q(q1 − q2) = STA−TMTΣ−2(z1 − z2). (2.6)

For the following discussions, it is important to point out that the structure of
Q guarantees that it is a symmetric, positive, semidefinite matrix; that is, all of its
eigenvalues are non-negative. We will assume that the user has chosen β and R in
such a way that Q is positive definite, although some of the eigenvalues may be small.
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2.1. Defining an “information content” for components of the solution
vector. The question we want to investigate herein is if the relationship (2.6) between
q1−q2 and z1−z2 allows us to define stability bounds such as those outlined in (1.2)
or (1.3) above. In the context of this finite-dimensional situation, such a bound would
have the form

‖j� (q1 − q2)‖ ' C ‖z1 − z2‖ , (2.7)

with a constant C of possibly unknown size, and where � indicates the Hadamard
product that scales each entry of the vector q1−q2 by the corresponding entry of the
“information vector” j. (Alternatively, we can interpret j�(q1−q2) as diag(j)(q1−q2)
where diag(j) is a diagonal matrix with diagonal entries jk.)

A meaningful statement2 such as (2.7) will not always follow from (2.5) unless
either the action of the matrix Q = STA−TMTΣ−2MA−1S+βRTR can somehow be
approximated from below by a diagonal matrix, or Q−1 be approximated from above
by a diagonal matrix. Indeed, we could choose j to be a vector whose elements are
all equal to jk = λmin(Q) = [λmax(Q−1)]−1. If, in addition, C = ‖STA−TMTΣ−2‖,
then (2.7) holds true. This approach works as long as the regularization is chosen so
that all eigenvalues of Q are reasonably large, i.e., that the problem is well-posed; in
practice, however, this choice may over-regularize the problem.

At the same time, the choice jk = λmin(Q) is not interesting since it does not give
us any insight into which elements of q can be estimated accurately and which cannot.
Furthermore, if the problem is indeed ill-posed, as the regularization parameter β is
reduced, all elements jk will become small, despite the fact that the unregularized
problem may only imply that some components of q cannot be stably recovered. To
address this problem, we will appeal to a stochastic (Bayesian) interpretation of the
inverse problem [27, 42]. From this perspective, we assume that our measurements z
are stochastic because they are corrupted by noise, and that consequently our recov-
ered coefficients q are also stochastic variables whose joint probability distribution we
would like to infer. If we assume that the components of z are distributed according
to z = ẑ + N(0,Σ2) (that is, we assume that the noise is Gaussian and that our
guessed noise levels σ` are indeed correct), then the desired probability distribution
for q will be of the form

p(q|z) = κe−
1
2Jred(q) (2.8)

where κ is a normalization constant whose concrete value is not of importance to us.
Given this interpretation, the question of how much we know about the individual

components of q can be related to the uncertainty under p(q|z) – namely, we should
choose the information weights jk as the inverse of the standard deviation of qk, that
is,

jk =
1√

varp(q)k
, where varp(q)k =

∫
(qk − Ep[q]k)

2
p(q|z) dq. (2.9)

Here, Ep[q] =
∫

q p(q|z) dq. Because we are considering a linear problem (2.1)
and because the objective function Jred is quadratic, this expectation value Ep(qk)

2Equation (2.5) implies that ‖q1 − q2‖ ≤ C‖z1 − z2‖ with C = ‖Q−1STA−TMT Σ−2‖, which
corresponds to choosing j in (2.7) as a vector of ones. At the same time, this estimate reflects no
specifics of the problem and we do not consider this choice useful because it does not help us identify
which components of q can be identified accurately and which cannot.
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is equal to the solution of the original, deterministic problem (2.5). This choice of j
has the pleasant property of making (2.7) dimensionally correct also for cases where
the components of q have different physical units. We note that the inverse of the
variance is often called the “precision” with which a parameter is known [22]; jk is
then the square root of the kth parameter’s precision.

2.2. Estimating the information content for components of the solution
vector. This definition of an information content jk based on the inverse of the
variance in the stochastic inverse problem makes intuitive sense. The question remains
whether these weights jk can be computed efficiently or at least estimated.

To do so, recall that the variances varp(q)k = covp(q)kk are the diagonal entries of
the covariance matrix associated with p(q|z), where the covariance matrix is defined
as

covp(q)kl =

∫
(qk − Ep[q]k) (ql − Ep[q]l) p(q|z) dq. (2.10)

This matrix is not computable via the integral in an efficient way. However, we
can find estimates of its elements via the Cramér-Rao bound that states that

covp(q) ≥ I−1
p

in the sense that [covp(q) − I−1
p ] is a positive semidefinite matrix. Here, Ip is the

Fisher information matrix defined by

(Ip)kl = −E
[

∂2

∂qk∂ql
ln p(q|z)

]
, (2.11)

which for our choice of p(q|z) and Jred(q) evaluates to

(Ip)kl = E
[

∂2

∂qk∂ql

(
− lnκ+

1

2
Jred(q)

)]
=

1

2
E
[

∂2

∂qk∂ql
Jred(q)

]
= Qkl.

Moreover, the following inequality holds [17]:

varp(q)k = covp(q)kk ≥
[
I−1
p

]
kk
≥ [(Ip)kk]

−1
.

These statements then provide us with an efficient way to estimate varp(q):

varp(q)k ≥ [(Ip)kk]
−1

= [Qkk]
−1
. (2.12)

In the spirit of the transition from (1.2) to (1.3), let us then define the information
content of the kth parameter as

jk :=
√
Qkk. (2.13)

Remark 1. Based on the definition Q = STA−TMTΣ−2MA−1S + βRTR, the
elements jk =

√
Qkk can be computed in different ways by setting parentheses in the

defining expression. The first way computes

Qkk = ekQek

= (Σ−1MA−1Sek)T (Σ−1MA−1Sek) + β(Rek)T (Rek)

= (Σ−1MA−1sk)T (Σ−1MA−1sk) + β(Rek)T (Rek)

= (Σ−1Mhk)T (Σ−1Mhk) + βrTk rk

=
∑
`

1

σ2
`

(
mT
` hk

)2
+ βrTk rk,

6



where ek is the kth unit vector and

hk = A−1Sek = A−1sk, rk = Rek.

That is, computing the information content vector j requires one solve with the forward
operator A for each of the source terms, plus a few matrix vector products.

An alternative way involves computing MA−1 = (A−TMT )T first. Because the
vectors m` form the rows of M (and so the columns of MT ), we can compute vectors

h∗` = A−Tm`,

and then recognize that

Qkk =
∑
`

1

σ2
`

(
(h∗` )

T sk
)2

+ βrTk rk.

This approach requires solving a linear system with AT for each measurement.
Which of the two ways of computing Qkk is more efficient depends on whether

there are more measurements than source terms, or the other way around.3

Regardless of the way Qkk (and consequently jk =
√
Qkk) is computed, it can be

interpreted as having contributions from all measurements (through the sum over `)
and from regularization. The scalar product mT

` hk can be considered as the influence
of the forward propagated sources (hk) on measurements. On the other hand, the
equivalent term (h∗` )

T sk corresponds to a view where we first compute an adjoint so-
lution h∗` that indicates which possible source terms affect a measurement functional,
and then take the dot product with a concrete source sk. Both views represent the
sensitivity of measurement functionals to sources.

Interestingly, the formula expresses the intuitive concept that information is ad-
ditive: If there are no measurements and no regularization, then j = 0; each measure-
ment in turn adds a non-negative contribution. Finally, because the measurement
contributions to Qkk are proportional to 1

σ2
`
, we have the pleasant and reasonable

property that information is inversely proportional to the measurement uncertainty.

3. Extension to infinite-dimensional inverse problems. We can extend the
reasoning of the previous section to infinite-dimensional inverse problems. Specifically,
let us consider the linear source identification problem

Lu(x) =
∑
k

qksk(x), ∀x ∈ Ω, (3.1)

where L is a differential operator acting on functions defined on a domain Ω ⊂ Rd,
and the equations are augmented by appropriate boundary conditions on ∂Ω whose
details we will skip for the moment. As before, sk(x) are possible source vectors
and qk are their relative strengths. We again seek to identify source strengths qk.
Importantly, we will assume that the source terms are all of the form

sk(x) = χωk
(x),

where χωk
is the characteristic function of a subdomain ωk, and we assume that

ωk ∩ ωl = ∅ for k 6= l and
⋃
k ωk = Ω. In other words, we seek to identify a source

term that is a step function defined on a partition of the domain Ω.

3Clearly, both ways are expensive for real-world cases with many parameters and many measure-
ments. We will come back to this in our conclusions and outlook, Section 6.
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We will infer the source strengths qk through (linear, noisy) measurements

z` = 〈m`, u〉+ ε` =

∫
Ω

m`(x)u(x) dx+ ε`, (3.2)

where ε` is again measurement noise assumed to have magnitude σ`. The formalism
we will develop will allow us to assign an information content to each qk. Because
the source strengths qk correspond to characteristic functions sk of subdomains ωk,
the information content jk divided by the volume |ωk| will define information density
j(x), for which we can consider the limit case |ωk| → 0. This limit is not computable,
but we can hope to use finite subdivisions into regions ωk that allow us to approximate
it with reasonable accuracy.

To make these concepts concrete, in Section 5 we will consider this model where
L is an advection-diffusion operator, L = −D∆ + b · ∇, and where z` correspond
to weighted point measurements of u(x) (or a well-defined approximation of point
measurements if the solution u is not guaranteed to be a continuous function). This
example is motivated by a desire to identify sources of air pollution from sparse
measurements at a finite number of points.

3.1. Definition of the inverse problem. The inverse problem we have de-
scribed in words above then has the following mathematical formulation, where we
also include an L2 regularization term:

min
q,u
J (q, u) =

1

2

∑
`

1

σ2
`

|〈m`, u〉 − z`|2 +
β

2

∥∥∥∥∥∑
k

qksk

∥∥∥∥∥
2

L2(Ω)

,

such that Lu =
∑
k

qksk.

(3.3)

In the same spirit as in the previous section, we can define a reduced objective
function

Jred(q) = J

(
q,L−1

∑
k

qksk

)
(3.4)

=
1

2

∑
`

1

σ2
`

∣∣∣∣∣
〈
m`,L−1

∑
k

qksk

〉
− z`

∣∣∣∣∣
2

+
β

2

∥∥∥∥∥∑
k

qksk

∥∥∥∥∥
2

L2(Ω)

,

which gives rise to a related stochastic inverse problem with a probability density
p(q|z) defined as in (2.8).

3.2. Defining the information content. In the same spirit as in Section 2.2,
we can again identify the information content associated with each parameter qk via
the precision, i.e., inverse of the variance varp(q)k = covp(q)kk, and the estimate we
have for the variance based on the Fisher information matrix.

In the finite-dimensional case, the Fisher information matrix Ip could be computed
by solving one forward problem for each source vector sk. The same is true for the
current infinite-dimensional situation:

Proposition 3.1. For the model problem defined above, the Fisher information
matrix Ip defined in (2.11) has the following form:

(Ip)kl = Qkl (3.5)

8



where

Qkl =
∑
`

1

σ2
`

〈m`, hk〉 〈m`, hl〉+ β

∫
Ω

sksl, (3.6)

and where hk satisfies the equation

Lhk(x) = sk(x) ∀x ∈ Ω, (3.7)

again augmented by appropriate boundary conditions for hk.
Proof. Recall that

(Ip)kl = −E
[

∂2

∂qk∂ql
ln p(q|z)

]
, with p(q|z) = κe−

1
2Jred(q).

Based on the definition of Jred(q) and the linearity of L, we then obtain

(Ip)kl =
∂2

∂qk∂ql
J (q)

=
∂2

∂qk∂ql

1

2

∑
`

1

σ2
`

〈
m`,L−1

∑
r

qrsr

〉2

+
β

2

∥∥∥∥∥∑
r

qrsr

∥∥∥∥∥
2

L2(Ω)


=
∑
`

1

σ2
`

〈
m`,L−1sk

〉 〈
m`,L−1sl

〉
+ β

∫
Ω

sksl,

as claimed when using hk := L−1sk. �
Proposition 3.2. The matrix Q that appears in the definition of the Fisher

matrix in (3.6) can alternatively be expressed through the following formula:

Qkl =
∑
`

1

σ2
`

〈h∗` , sk〉 〈h∗` , sl〉+ β

∫
Ω

sksl, (3.8)

and where h∗` satisfies the equation

L∗h∗` (x) = m`(x) ∀x ∈ Ω, (3.9)

where L∗ is the adjoint operator to L, and with appropriate boundary conditions for
h∗` .
Proof. The proposition follows from the observation that

〈m`, hk〉 =
〈
m`,L−1sk

〉
=
〈
L−∗m`, sk

〉
= 〈h∗` , sk〉 .

�
Remark 2. As in the finite-dimensional case, the Fisher information matrix

(3.5) is easy to compute for problems with either not too many parameters (using
(3.6)) or not too many measurements (then using (3.8)). In either case, the functions
hk or h∗` can be computed independently in parallel. Which of the two forms is more
efficient depends on whether there are more measurements than source terms or the
other way around. That said, in the discussions below, we will want to let |ωk| → 0 and
consequently make the number of source terms infinite, and in that case the adjoint
formulation in (3.8) provides the more useful perspective.

9



The Fisher information matrix approximates the inverse of the covariance ma-
trix, and the diagonal elements of the Fisher matrix Ip therefore provide a means to
estimate the certainty in the corresponding parameters qk. In the same way as for
the finite-dimensional case in (2.13), we can then define an information content for
the parameter k via

jk :=
√
Qkk, (3.10)

where now

Qkk =
∑
`

1

σ2
`

〈m`, hk〉2 + β

∫
Ω

s2
k =

∑
`

1

σ2
`

〈h∗` , sk〉
2

+ β

∫
Ω

s2
k.

3.3. Defining the information density. The discussions in the previous sec-
tion did not make use of any particular properties of the source basis functions sk. Let
us now come back to the special case where we aim to identify a piecewise constant
source function, i.e., where

sk(x) = χωk
(x).

In that case, we have that the information content for the parameter qk associated
with area ωk is

jk =
√
Qkk =

√√√√∑
`

1

σ2
`

(∫
ωk

h∗`

)2

+ β|ωk|. (3.11)

Since this quantity scales with the size of the subdomains ωk, it is reasonable to define
a piecewise constant information density as

j(x)|ωk
=

1

|ωk|
jk =

1

|ωk|
√
Qkk

=

√√√√∑
`

1

σ2
`

(
1

|ωk|

∫
ωk

h∗`

)2

+ β
1

|ωk|
(3.12)

≈
√∑

`

1

σ2
`

h∗` (x)2 + β
1

|ωk|
. (3.13)

We can make a number of observations based on these definitions, analogous to
the finite-dimensional case of the previous section:

• Because the definition of h∗` is independent of the choice of ωk, the formulas
shown above can be interpreted as saying that the information density has a
component that results from the measurements ` (and, in particular, grows
monotonically with the number of measurements), and a component that
results from regularization.

• As before, the information density is inversely proportional to the measure-
ment uncertainties σ`.

• Regularization bounds the amount of information from below: j(x)|K ≥√
β/|ωk|. This dependence on the square root of the regularization parameter

is well known [18].
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Remark 3. We end this section by remarking that the definitions of information
content and information density above depend only on the forward operator and the
measurement functionals, but not on concrete measured values z`. Consequently, and
as anticipated, information quantities can be computed before measurements, and they
are independent of the specific noise in measurements later obtained. We will come
back to this point in Sections 5.2 and 5.3.1.

Remark 4. We end this section by remarking that the idea of using variances
Qkk as a spatially variable measure of certainty is not new. For example, [35, Section
3.1] illustrates the spatially variable variance for a seismic imaging problem. Yet, the
authors’ definition is unclear regarding the role of regularization, misses the square
root, and is then discarded as not very useful.

4. Using information densities. Having shown a way to define an information
density j(x), the question is whether it is useful for anything. Indeed, there are
numerous questions related to the practical solution of inverse problems for which
information densities could be useful. In the following subsections, we therefore first
outline three “vignettes” of situations in which the information density could be useful.
In Section 5, we then illustrate one of these ideas using a concrete numerical example.

In the examples below, we will concretely consider the situation where we have
discretized the source term q(x) =

∑
k qksk(x) in (3.1) on a “mesh” T, as is common

in the finite element method. Because there are no differentiability requirements on
q(x), it is common to identify the source term as a piecewise constant function on this
mesh, and in this case, the source functions sk are the characteristic functions of the
cells K of T. By identifying the index k with a cell K, (3.10) and (3.11) then define
an “information content” jK for each cell K of the mesh.

4.1. Using information densities for regularization. As a first example
of where we believe that information densities could be used, let us consider the
regularization of inverse problems. In a large number of practical applications, one
regularizes inverse problems by adding a penalty term to the misfit function, in hopes
of penalizing undesirable aspects of the recovered function. For example, in our
definition of the source identification problem in Section 3.1 (see also equation (3.3)),
we have penalized the magnitude of the source term to be identified. The strength of
this penalization is provided by the factor β.

A practical question is how large this factor β should be. Many criteria have
been proposed in the literature [24], but, in practice many studies do not use any of
these automatic criteria and instead choose values of β that yield “reasonable” results
based on trial and error.

Moreover, it is clear to many practitioners that regularization may not be neces-
sary to the same degree in all parts of the domain. For example, if measurements are
available only in parts of the domain (say, on the boundary), then intuitively “more
information” is available to identify source strengths close to the boundary than deep
in the interior of the domain. A particularly obvious example is in seismic imaging:
There, we can only accurately identify properties of the Earth in those places that are
crossed by ray paths from earthquake sources (predominantly located at plate bound-
aries) to seismometer stations (predominantly located on land), but not in the rest of
the Earth [6,13,30,35,38]. In the definition of the information density j(x) in (3.13),
this would imply that the first term under the square root would be large along these
ray paths, but small elsewhere. In cases such as this, a reasonable approach would be
to make the regularization parameter spatially variable: large where little information
is available, and small where regularization is not as important, for example so that
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j(x) ≥ j0. This could be achieved by replacing the regularization term in (3.3) by

1

2

∥∥∥∥∥√β(x)

(∑
k

qksk(x)

)∥∥∥∥∥
2

L2(Ω)

,

and defining β(x) in some appropriate way.
Using spatially variable regularization is not a new idea (see, for example, [4, 6,

13,16,34,41,45,46]), though we are not aware of any references that would provide an
overarching, systematic framework for choosing β(x). In contrast, it is clear that the
connection between information density j(x) and β(x) in (3.13) has the potential to
provide such a systematic approach. A scheme based on this observation also satisfies
other considerations that appear reasonable. For example, increasing the number of
measurements, or decreasing the measurement error, leads to a larger information
density and therefore to a smaller regularization term to satisfy j(x) ≥ j0.

4.2. Using information densities to guide the discretization of an in-
verse problem. In actual practice, inverse problems are solved by discretization. In
our derivation above, we have done so by choosing finitely many source functions sk
that we have assumed are the characteristic functions of “cells” K of some kind of
mesh or subdivision of the domain Ω on which q(x) is defined, and then expanded
the function we seek as

q(x) =
∑
k

qksk(x).

A practical question is how to choose this subdivision into cells K. Oftentimes,
the subdivision is chosen fine enough to resolve the features of interest but coarse
enough to keep the computational cost in check. Regularization is frequently used to
ensure that an overly fine mesh does not lead to unwanted oscillations in the recovered
coefficients – in other words, to keep the problem reasonably well-posed.

Most often in the literature, the mesh for the inverse problem is either uniform or
at least chosen a priori through insight into the problem (for approaches in the latter
direction, see for example, [6, 14, 30]). On the other hand, discretization is a form of
regularization, and it is reasonable to choose the mesh finer where more information is
available – say, close to a measurement device – but coarser where our measurements
have little information to offer. This idea has been used as a heuristic in the past [6],
or at least mentioned (see Section 2.3 of [35] and the references therein), but, as with
regularization, no overarching scheme is available to guide this choice of the mesh.

At the same time, an information density can provide such a guide to determine
optimal cell sizes. First, we might conjecture that meshes should be graded in such
a way that the information content of each cell (i.e., roughly the information density
times the measure of a cell) is approximately equal among all cells. We will explore in
detail how well this works in practice in Section 5. Second, in mathematical research,
mesh refinement cycles are frequently terminated whenever we run out of memory, out
of patience, or both, whereas in applications, mesh refinement is stopped whenever an
expert deems the solution sufficiently accurate. Either approach is unsatisfactory, and
the amount of information available per cell might provide a more rational criterion
to stop mesh refinement.

4.3. Using information densities for experimental design. As a final ex-
ample, let us consider optimal experimental design, that is, the question of what, how,
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or where to measure so as the minimize the uncertainty in recovered parameters given
a certain noise level in measurements.

Optimal experimental design for inverse problems is more difficult than for finite-
dimensional parameter estimation problems because it is not entirely clear what the
objective function should be when minimizing or maximizing by varying the specifics
of measuring. For finite-dimensional problems, objective functions include the A-, C-,
D-, E-, and T -optimality criteria, plus many variations [5].

For the infinite-dimensional case (or discretized versions thereof), the choice might
be to maximize the information content in all of Ω, or a subset ω ⊂ Ω:

φ({mk}) =

∫
ω

j(x) dx,

where {mk} denotes the set of measurements to be performed and optimization will
typically happen over a set of implementable such measurements.

If ω = Ω, then the integral above reduces to

φ({mk}) =
∑
k

√
Qkk,

based on the definitions in (3.11) and (3.12). Recalling that the matrix Q is the Fisher
information matrix, we recognize that the criterion φ above is similar to – but distinct
from – the T -optimality criterion that maximizes the sum of diagonal entries of Q
(i.e., the trace of Q).

5. Numerical examples of using information densities. The previous sec-
tion provided three “vignettes” of how we imagine information densities could be used
for practical computations. That said, exploring all of these ideas through numerical
examples exceeds the reasonable length of a single publication, and as a consequence
we will focus on only one of these applications: namely, mesh refinement.

In the following subsections, we will first lay out the inverse problem we will use
as a test case. We will then show some numerical results that illustrate the use of
information densities as applied to this problem.

All numerical results were obtained with a program that is based on the open-
source finite element library deal.II [2, 3]. This program is itself also available
under an open source license as part of the deal.II code gallery at https://dealii.
org/developer/doxygen/deal.II/CodeGallery.html under the name “Information
density-based mesh refinement”.

5.1. The test case. Let us consider the following question: Given an advection-
diffusion problem for a concentration u(x), can we identify the sources q(x) of the
concentration field from point measurements of u at points ξ`? This kind of problem
is widely considered in environmental monitoring of pollution sources [26, 32, 39, 44],
and also when trying to identify the sources of nuclear radiation.

Mathematically, we will assume the concentration field satisfies the stationary
advection-diffusion equation

Lu(x) ≡ b(x) · ∇u(x)−D∆u(x) = q(x) in Ω, (5.1)

where b is a (known) wind field and D is the (known) diffusion constant. For sim-
plicity, we will assume homogenous Dirichlet boundary conditions

u = 0 on ∂Ω. (5.2)
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Fig. 5.1. Left: The solution u∗(x) of the forward problem from which we generate “synthetic”
measurements z` via (5.3). Right: The source term q∗(x) from which we compute synthetic mea-
surements is constant and nonzero only in the solid red circle offset from the center; the detector
locations ξ`, ` = 1, . . . , L = 100 are marked by dots.

Concretely, for our computations, we will assume that Ω = (−1, 1)2 ⊂ R2 is a
square, D = 1, and b = (100, 0)T . These choices lead to a Péclet number of 200; that
is, the problem is advection dominated.

For the inverse problem, we ask whether we can recover the function q(x) (or a
discretized version of it) from measurements z` at a number of points ξ` ∈ Ω, ` =
1, . . . , L. That is, we consider (3.2) with m`(x) = δ(x− ξ`) where σ` is the assumed
noise level for the measurement at location ξ` (see below). We choose these points
ξ` equally distributed around two concentric circles of radius 0.2 and 0.6, centered at
the origin, with 50 points on each of the circles, for a total of L = 100 measurement
points.

For our experiments, we will consider a situation where the data we have, z`, has
been obtained by solving the forward problem with the finite element method, using a
known source distribution q∗(x) that is equal to one in a circle of radius 0.2 centered
at (−0.25, 0)T . A solution u∗(x) can then be evaluated at the points ξ` to obtain
“synthetic” measurements z` via

z` = 〈m`, u
∗〉+ ε` = u∗(ξ`) + ε`. (5.3)

We choose Gaussian noise ε` = N(0, σ2
` ) and set σ` = 0.1 maxx∈Ω |u∗(x)|.

To avoid an inverse crime, we solve for u∗ on a mesh that is different from the
meshes used for all other computations. The solution of this forward problem so
computed to obtain synthetic measurements is shown in Fig. 5.1, along with the
locations of the source term and the detector locations.

5.2. The inverse problem. The inverse problem we seek to solve is the iden-
tification of the source term q(x) (which we approximate via a finite-dimensional
expansion

∑
k qksk(x)) in (5.1), based on the measurements described by (5.3). We

approach this problem by reformulating it in the form of the constrained optimization
problem (3.3), where we set the regularization parameter to β = 104. This problem
is then solved by introducing a Lagrangian

L(u, q, λ) = J (u, q) +

∫
Ω

λ(x) (Lu(x)− q(x)) dx,

and then solving the linear system of partial differential equations that results by
setting the derivatives of L to zero (that is, the optimality conditions). In strong
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form, these optimality conditions read

Lu(x) = q(x),

L∗λ(x) = −
∑
`

1

σ2
`

(u(ξ`)− z`)δ(x− ξ`),

βq − λ = 0.

(5.4)

The solution of this system of equations is facilitated by discretizing on a finite element
mesh. We use continuous, piecewise cubic elements for u and λ, and discontinuous,
piecewise constants elements for q.4

The three components u, q, λ of this solution, computed on a very fine mesh with
256 × 256 = 65 536 cells, for which the coupled problem has 1 248 258 unknowns,
are shown in Fig. 5.2. The maximal value of the recovered source is less than half
the maximal size of the “true” source, owing to the effect of the L2 regularization
term. As a consequence, the forward solution u is also too small. Furthermore the
inverse problem places the source in a broader region than where it really is, but this
is not surprising: In an advection-dominated problem, it is only possible to say with
accuracy that the source is upstream of a detector, but not where in the upstream
region it actually is unless another detector further upstream indicates that it must
be downstream from the latter.

The adjoint variable λ clearly illustrates the effect that the adjoint operator L∗
transports information in the opposite direction −b of the forward operator L, and
that the sources of the adjoint equation are the residuals −(u(ξ`)− z`)δ(x− ξ`); here
u(ξ`)− z` reflects the measurement error and, based on our choice of noise above, is
Gaussian distributed with both positive and negative values.

The bottom right panel of the figure also shows the information density j(x) that
corresponds to this problem, as defined in (3.13). It illustrates that, given the loca-
tion of detectors and the nature of the equation, information is primarily available
upstream of detector locations. Notably, and as mentioned in Remark 3, the informa-
tion density is based solely on the operator L and the measurement functionals m`,
but not on the actual measurements z` (or the noise that is part of z`).

5.3. Choice of mesh for the inverse problem. The question of interest then
is how we can use information densities for mesh refinement. To this end, we have
repeated the computations discussed above, but instead of using a uniformly refined
mesh, we have used a sequence of meshes in which we refine cells hierarchically so as
to equilibrate the information content jk of each cell ωk, see (3.10), by always refining
those cells that have the largest information content. The reconstructions and the
sequence of meshes they are computed on are shown in Fig. 5.3. For comparison with
the computations mentioned above and shown in Fig. 5.2, the rightmost mesh has
1642 cells and the coupled problem solved on it has 32 582 unknowns.

5.3.1. Comparison with other mesh refinement criteria. The relevant
question to ask is whether this mesh is better suited to the task than any other
mesh we could come up with. Answering this question is notoriously difficult in in-
verse problems because, in general, the exact solution of the problem is unknown if

4This choice of higher-order finite element spaces for u and λ is akin to solving for the forward
and adjoint variables on a finer mesh than the source terms we seek to identify. As a result, we need
not worry about satisfying discrete stability properties for the resulting saddle point problem. We
can also, in essence, consider the forward and adjoint equation to be solved nearly exactly, with the
majority of the discretization error resulting from the discretization of the source term q(x).
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u(x) q(x)

λ(x) j(x)

Fig. 5.2. The solution of the inverse problem (5.4), computed on a very fine finite element mesh.
Top left: The recovered primal variable u(x), shown with the same scale for color and isocontours
as in Fig. 5.1. Top right: The recovered sources q(x). Bottom left: The recovered adjoint variable
λ(x). Bottom right: The information density j(x) associated with this problem, as defined in (3.13).

Fig. 5.3. Reconstructions (top) on a sequence of meshes (bottom) refined based on the infor-
mation content of each cell of the mesh.

only finitely many measurements are available and if regularization is used. As a
consequence, it is difficult to answer the question through comparison of convergence
rates of different methods, for example.

However we can sometimes make intuitive comparisons based on experience on
“how a good mesh should look”, even though for problems like the one under consid-
eration, it is generally difficult to create such meshes by hand a priori. To this end,
Fig. 5.4 shows the meshes generated by always refining those cells K that have the
largest “refinement indicators” ηK defined in two different ways. In the top row of
the figure, this indicator is the cell-wise norm of the residual of the third equation of
(5.4) and is thus an a posteriori error indicator that can be derived in a way similar
to that shown in [7–9]:

ηK = ‖βq − λ‖L1(K).
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Fig. 5.4. Sequences of meshes generated by different mesh refinement criteria. Top: Mesh
refinement is driven by an a posteriori error indicator. Bottom: Mesh refinement is driven by a a
smoothness indicator.

We will consequently refer to this quantity as the “error estimator”.

In the bottom row of the figure, we show meshes generated by evaluating a finite
difference approximation ∇hq(x) on each cell by comparing the values of q|K with
the values of q on neighboring cells, and then computing

ηK = hK‖∇hq‖L2(K).

This quantity is proportional to the interpolation error of a continuous function when
approximated by a piecewise constant finite element function (as we do here); the
indicator therefore measures where the piecewise constant approximation is likely
poor. We will refer to this criterion as the “smoothness indicator”. It is also used
in [38], for example.

As outlined in Section 4.2, the literature contains discussions of many other ways
to refine meshes for the inverse problem, but we consider the two mentioned above as
representative mesh refinement criteria to compare our approach against.

The meshes generated by these two criteria and shown in Fig. 5.4 are structurally
similar to those generated based on the information content and shown in Fig. 5.3.
However, they lack the top-bottom symmetry of the ones in Fig. 5.3 and look generally
“less organized”, owing to the fact that they are based on the solution of the inverse
problem, which is subject to the noise in the measurements, whereas the information
density reflects only how much we know about the solution at a specific point in the
domain – that is, a quantity that is independent of the concrete realization of the
noise that is part of the measurements, see also Remark 3. Conceptually, the best
mesh should be independent of the concrete realization of noise, although dependent
on what is being measured. The refinement by information content allows us to
construct the mesh even before solving the inverse problem because it does not depend
on the solution of the inverse problem.

If the individual measurements m` had had differently sized measurement errors,
then this would also have affected the information density-based mesh refinement and
led to smaller cells where more accurate measurements are available. In contrast,
there is no such direct dependence for the other refinement methods; rather, for
those methods, variable noise levels only affect mesh refinement because λ indirectly
depends on the error level.
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5.3.2. Quantitative evaluation: Condition numbers of matrices. A more
concrete comparison between meshes would be to measure the degree of ill-posedness
of the problem. Of course, we use regularization to make the problem well-posed, but
a well-chosen mesh results in a matrix after discretization that has a better condition
number than a poorly chosen mesh, and for which the reconstruction is consequently
less sensitive to noise. In practice, the condition number is a poor indicator since
it considers only the largest and smallest eigenvalues; we hypothesize that a better
criterion would be to ask how many “large” eigenvalues there are, and it is this
criterion that we will consider below.

To test this hypothesis, let us consider the discretized version of (5.4). If we
collect the degrees of freedom of a finite element discretization of u into a vector U ,
and similarly those of λ into a vector Λ and those of q into the vector P (a symbol
chosen to avoid confusion with the matrix Q of Section 2), then (5.4) corresponds
to the following system of linear equations after discretization by the finite element
method:

AU = BP,

ATΛ = −C(U − Z),

βMP −BTΛ = 0.

(5.5)

Here, the matrix A corresponds to the discretized operator L = b ·∇−D∆ acting on
the finite element space chosen to discretize the state and adjoint variables, and M is
the mass matrix on the finite element space chosen for the source q – that is, on the
set of piecewise constant functions sk(x) associated with the cells of the mesh. The
matrix B results from the product Bik = (ϕi, sk)Ω between the shape functions for u
and q, and C corresponds to terms of the form Cij =

∑
`

1
σ2
`
ϕi(ξ`)ϕj(ξ`). By noting

that the matrices A and M are invertible, we can reduce this system of equations to
an equation for P by repeated substitution to

HP = BTA−1CZ, (5.6)

where the matrix H is the Schur complement,

H = BTA−TCA−1B + βM. (5.7)

The matrix H, which is symmetric and at least positive semidefinite, thus relates
the vector of measurements Z to the vector of coefficients H we would like to recover.
H can be thought of as the discretized counterpart to the matrix Q in (2.5). Each
eigenvalue of H then corresponds to an eigenvector (“mode”) of the coefficient q(x)
we would like to recover. Moreover, large eigenvalues correspond to modes that are
insensitive to noise, whereas small eigenvalues correspond to modes that are strongly
affected by noise. As a consequence, we would like to aim for discretizations that
result in many large and few small eigenvalues.

Fig. 5.5 provides a numerical evaluation of this perspective. It shows that when
refining the mesh using the information content criterion, the eigenvalues of H are
further to the “top right” – in other words, there are more large eigenvalues than
when using refinement by the error estimator or the smoothness indicator. This
pattern persists after both three refinement cycles (the left part of the figure) and six
refinement cycles (the right part).

The stair-step structure of the figure results from the fact that mesh refinement
turns one large cell into four small ones. Consequently in general one large eigenvalue
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Fig. 5.5. Comparison of the eigenvalues of the resolution matrix H for different ways of refining
meshes. Left: After three refinement cycles, yielding problems with approximately 1,000 parameters
to identify for the adaptive refinement criteria, and 16,384 for global refinement. Right: After
six refinement cycles, resulting in problems with approximately 4,000 parameters for the adaptive
refinement criteria. (Global refinement would have resulted in more than one million parameters;
the eigenvalues of this matrix could not be computed.)

turns into four smaller eigenvalues. By counting the number of derivatives present in
the operators that enter intoH, we can conjecture that the conditioning of the problem
scales with the mesh size h squared; indeed, the levels in the plots confirm that each
mesh refinement step reduces the size of the smallest eigenvalues by approximately a
factor of (hlarge/hsmall)

2 = 4.
The left part of the figure also shows the eigenvalues of H for meshes constructed

via global refinement, where the globally refined mesh is chosen so that it has the
same finest resolution as the adaptively refined ones. Global refinement results in
vastly more unknowns than for the adaptively refined meshes, with a large majority
of eigenvalues small. These eigenvalues all correspond to small cells to the right of
the array of detectors where very little information is available. Given the size of
the problem, we were not able to compute the eigenvalues of H following six global
refinement steps; the corresponding data are therefore omitted in the right panel.

The comparison shown in the figure confirms the suspicion we have laid out at
the beginning of the section: namely, that refining the mesh based on information
contents leads to an inverse problem that is better posed than those that result from
any of the other refinement criteria we have compared with, in the sense that our
approach leads to more large eigenvalues.

6. Conclusions and outlook. In this paper, we have used a statistical approach
to define how much “information” we have about the parameter that is recovered in
an inverse problem. More concretely, we have defined a density j(x) that corresponds
to how much we know about the solution at a given point x, and derived an explicit
expression for it that can be computed. We have then outlined a number of ways
in which we believe that this information density can be used, via three “vignettes”.
Finally, we have assessed one of these application areas numerically and showed that
basing mesh refinement for inverse problems on information densities indeed leads to
meshes that not only visually look more suited to the task than other criteria, but
also quantitatively lead to better-posed discrete problems.

At the same time, this paper did not address many areas that would make for
very natural next questions, including the following:

• In our work, we have chosen a simple L2 regularization term β
2 ‖q‖

2
L2

, see
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(3.3). In practice, however, regularization terms would typically be used that
penalize oscillations, for example using terms of the form β

2 ‖∇
αq‖2L2

, α ≥ 1.
How this would affect the definition of the information density would be
interesting to ask in a future study. In order to consider the limit of infinite-
dimensional inverse problems, we need to ensure that the covariance operators
that result from regularization are of trace class (see, for example, [15, 40]),
which is also likely a precondition for the definition of information densities.

• For many inverse problems – such as ultrasound or seismic imaging, or elec-
trical impedance tomography – the quantity we would like to identify is not
a right-hand source term, but a coefficient in the operator on the left side
of the equation. In these cases, the definition of the information density will
have to be linearized around the solution of the inverse problem, which then
may make the definition of j(x) dependent on actual noise values. How this
affects the usefulness of the information density is a priori unclear, but it is
clear that it would at least require solving the inverse problem before we can
compute j(x).

• The computation of j(x) requires the solution of a number of forward or
adjoint problems, which is expensive, especially for three-dimensional inverse
problems, even though these problems are all independent of each other and
can be computed in parallel. At the same time, although we have shown
in Sections 2 and 3 what is necessary to form the complete matrix Q, we
only need the diagonal entries of this matrix, see (3.12). It is conceivable
that one can compute approximations to the entries Qkk more cheaply, for
example by random projections, low-rank approximations, or hierarchical low-
rank approximations. Such ideas can, for example, be found in [19, 20], and
in [15, Section 5] and [1] for the closely related reduced Hessian matrix.

We leave the exploration of these topics to future work.
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