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Abstract

Taylor impacts tests were originally devised to determine the dynamic yield strength of
materials at moderate strain rates. More recently, such tests have been used extensively to
validate numerical codes for the simulation of plastic deformation. In this work, we use
the material point method to simulate a number of Taylor impact tests. The goal is to par-
tially validate some plasticity models used by the UINTAH multi-physics code. In addition,
we would like to determine the plasticity model that is most appropriate for fire-structure
interaction problems that are being simulated using UINTAH. We compare the Johnson-
Cook, Steinberg-Cochran-Guinan-Lund, Zerilli-Armstrong, Mechanical Threshold Stress,
and the Preston-Tonks-Wallace plasticity models. We evaluate these models for OFHC cop-
per, 6061-T6 aluminum alloy, and 4340 steel alloy at various temperatures and strain rates.
A number of validation metrics are presented for quantitative comparisons of numerical
simulations and experimental data. It is observed that the accuracy of all the models drops
when the initial conditions involve high temperatures and high impact velocities.

1 INTRODUCTION

The Taylor impact test (Taylor [86]) was originally devised as a means of determin-
ing the dynamic yield strength of solids. The test involves the impact of a flat-nosed
cylindrical projectile on a hard target at normal incidence. Taylor provided an an-
alytical solutions for the dynamic yield strength of the material of the projectile
based on the length of the elastic region and the radius of the region of perma-
nent set. As described by Whiffin [93], that use of the test was limited to relatively
small deformations obtained from low velocity impacts. Though the Taylor impact
test continues to be used to determine yield strengths of materials at high strain
rates, the test is limited to peak strains of around 0.6 at the center of the specimen
(Johnson and Holmquist [51]). For higher strains and strain rates, the Taylor test is
currently used more as a means of validating plasticity models in numerical codes
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for the simulation of high rate phenomena such as impact and explosive deforma-
tion as suggested by Zerilli and Armstrong [99].

In this paper, we describe our experience in validating the plasticity models in a
parallel, multi-physics code (UINTAH) that uses the material point method (Sulsky
et al. [83, 84]) and an implicit compressible Eulerian CFD code for simulating
fire-structure interactions. A number of different validation tests such as uniaxial
tension, flyer-plate impact, high velocity impact and penetration, and expanding
ring fragmentation have been performed to validate plasticity and failure models in
Uintah. In this paper, we have chosen to describe the results of Taylor impact tests
for various strain rates and temperatures without considering any failure or damage.
These tests provide a second layer of validation for the plasticity models beyond
uniaxial tension tests. We also present a number of metrics that can be used to
compare simulations and experiments for Taylor impact tests. These metrics can be
used to better quantify the modeling errors in large-scale multi-physics simulations.

The objectives of the simulations presented in this paper are:

(1) To select a phenomenological plasticity model that is best suited for the fire-
structure interaction problems to be simulated by UINTAH.

(2) To quantify the modeling errors that we incur while using a particular plastic-
ity model.

The available experimental data at high temperatures (for high strain rate deforma-
tions) are sparse and often unreliable. We would caution that a decision on either
of the above objectives cannot be made solely on the basis of Taylor impact tests
and needs to be augmented with other validation tests.

The organization of this paper is as follows. Section 2 provides the background
for the current study. Section 3 discusses the plasticity models, the equation of
state, and the shear modulus and melting temperature models. A brief discussion
of the materials is provided in Section 4. Validation metrics are identified and their
significance is discussed in Section 5.1. Comparisons between experimental data
and simulations of Taylor impact tests using the validation metrics are described in
Section 5. Finally, conclusions and suggestions are presented in Section 6.

2 BACKGROUND

The goal of this work is to present some results and insights we have obtained dur-
ing the process of validation of plasticity models within the multi-physics UINTAH
code (de St. Germain et al. [29]). This code is used to simulate of the deformation
and failure of a steel container due to gases produced by an explosively reacting
high energy material (PBX 9501) contained inside. The entire process is simulated
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using the massively parallel, Common Component Architecture (Armstrong et al.
[3]) based, UINTAH Computational Framework (UCF) (de St. Germain et al. [29]).

Figure 1 shows the result of a simulation of a coupled fire-container-explosion
using UINTAH. The simulation involves a fire that heats the steel container to a
temperature exceeding the burn temperature of the high energy material (450 K to
600 K). The heated high energy material reacts and produces gases. These gases
pressurize the container from inside and deform it plastically. The initial strain
rates in the container during this process are around 1/s. However, the explosive
nature of the high energy material rapidly increases the rate of straining to a peak
of around108/s. At some point in the process, large cracks develop in the container
and fragments are produced. Experiments conducted at the University of Utah have
shown that failure of the container can be due to ductile fracture associated with
void coalescence and adiabatic shear bands. Depending on the geometry of the
high energy material, the container either breaks into fragments or into a few large
pieces.

The dynamics of the solid materials - steel and PBX 9501 - is modeled using the
Lagrangian Material Point Method (MPM) (Sulsky et al. [83]). Gases are generated
from solid PBX 9501 using a burn model (Long and Wight [58]). Gas-solid inter-
action is accomplished using an Implicit Continuous Eulerian (ICE) multi-material
hydrodynamic code (Guilkey et al. [36]). A single computational grid is used for
all the materials. A brief description of the Material Point Method is given in Ap-
pendix A.

The constitutive response of PBX 9501 is modeled using ViscoSCRAM (Ben-
nett et al. [18]), which is a five element generalized Maxwell model for the vis-
coelastic response coupled with statistical crack mechanics. Solid PBX 9501 is

Fig. 1. Simulation of exploding cylinder.
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progressively converted into a gas with an appropriate equation of state. The tem-
perature and pressure in the gas increase rapidly as the reaction continues. As a
result, the steel container is pressurized, undergoes plastic deformation, and finally
fragments.

The main issues regarding the constitutive modeling of the steel container are
the selection of appropriate models for nonlinear elasticity, plasticity, damage, loss
of material stability, and failure. The numerical simulation of the steel container in-
volves the choice of appropriate algorithms for the integration of balance laws and
constitutive equations, as well as the methodology for fracture simulation. Mod-
els and simulation methods for the steel container are required to be temperature
sensitive and valid for large distortions, large rotations, and a range of strain rates
(quasistatic at the beginning of the simulation to approximately108 s−1 at fracture).

The approach chosen in UINTAH is to assume an additive decomposition of the
spatial rate of deformation tensor into elastic and plastic parts. The Cauchy stress is
decomposed into a volumetric and a deviatoric part. The volumetric stress is com-
puted using a Mie-Gr̈uneisen equation of state. The deviatoric part of the stress is
computed using a hypoelastic model in conjunction with a von Mises yield condi-
tion and a plasticity model. Hypoelastic materials are known not to conserve energy
in a loading-unloading cycle. However, we justify our choice with the assumption
that elastic strains are expected to be small for the problem under consideration and
unlikely to affect the results significantly. A description of the stress update algo-
rithm (Nemat-Nasser [65], Maudlin and Schiferl [61], Zocher et al. [101]) used in
our calculations can be found Appendix B.

The effect of porosity on the yield surface is not discussed in this paper and
neither is failure of the impact specimens. A discussion of these effects on the
Taylor impact test will be presented in a future publication.

3 Models

One of the aims of our validation exercise has been to determine the plasticity
model that is best suited for fire-container-explosive simulations. For the sake of
completeness, we present below some of the strain-rate, strain, and temperature
dependent models for metals that have been used in our simulations.

3.1 Equation of State

The hydrostatic pressure (p) is calculated using a temperature-corrected Mie-Grüneisen
equation of state of the form used by Zocher et al. [101] (see also Wilkins [94], p.
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61)

p =
ρ0C

2
0(η − 1)

[
η − Γ0

2
(η − 1)

]
[η − Sα(η − 1)]2

+ Γ0E; η =
ρ

ρ0

(1)

whereC0 is the bulk speed of sound,ρ0 is the initial density,ρ is the current density,
Γ0 is the Gr̈uneisen’s gamma at reference state,Sα = dUs/dUp is a linear Hugoniot
slope coefficient,Us is the shock wave velocity,Up is the particle velocity, andE
is the internal energy per unit reference specific volume. The internal energy is
computed using

E =
1

V0

∫
CvdT ≈ Cv(T − T0)

V0

(2)

whereV0 = 1/ρ0 is the reference specific volume at temperatureT = T0, andCv

is the specific heat at constant volume.

3.2 Melting Temperature

We use a pressure dependent relation to determine the melting temperature (Tm).
The Steinberg-Cochran-Guinan (SCG) melt model (Steinberg et al. [81]) has been
used for our simulations of copper. This model is based on a modified Lindemann
law and has the form

Tm(ρ) = Tm0 exp

[
2a

(
1− 1

η

)]
η2(Γ0−a−1/3); η =

ρ

ρ0

(3)

whereTm0 is the melt temperature atη = 1, a is the coefficient of the first order
volume correction to Gr̈uneisen’s gamma (Γ0).

An alternative melting relation that is based on dislocation-mediated phase tran-
sitions - the Burakovsky-Preston-Silbar (BPS) model (Burakovsky et al. [22]) can
also be used. This model has been used to determine the melt temperature for 4340
steel. The BPS model has the form

Tm(p) = Tm(0)

[
1

η
+

1

η4/3

µ
′
0

µ0

p

]
; η =

(
1 +

K
′
0

K0

p

)1/K
′
0

(4)

Tm(0) =
κλµ0 vWS

8π ln(z − 1) kb

ln

(
α2

4 b2ρc(Tm)

)
(5)

wherep is the pressure,η = ρ/ρ0 is the compression,µ0 is the shear modulus at
room temperature and zero pressure,µ

′
0 = ∂µ/∂p is the derivative of the shear

modulus at zero pressure,K0 is the bulk modulus at room temperature and zero
pressure,K

′
0 = ∂K/∂p is the derivative of the bulk modulus at zero pressure,κ is

a constant,λ = b3/vWS whereb is the magnitude of the Burgers’ vector,vWS is the
Wigner-Seitz volume,z is the coordination number,α is a constant,ρc(Tm) is the
critical density of dislocations, andkb is the Boltzmann constant.

5



3.3 Shear Modulus

Three models for the shear modulus (µ) have been tested in our simulations. The
first has been associated with the Mechanical Threshold Stress (MTS) model and
we call it the MTS shear model. The second is the model used by Steinberg-
Cochran-Guinan and we call it the SCG shear model while the third is a model
developed by Nadal and Le Poac that we call the NP shear model.

3.3.1 MTS Shear Modulus Model

The simplest model is of the form suggested by Varshni [89] (Chen and Gray [25])

µ(T ) = µ0 −
D

exp(T0/T )− 1
(6)

whereµ0 is the shear modulus at 0K, andD, T0 are material constants.

3.3.2 SCG Shear Modulus Model

The Steinberg-Cochran-Guinan (SCG) shear modulus model (Steinberg et al. [81],
Zocher et al. [101]) is pressure dependent and has the form

µ(p, T ) = µ0 +
∂µ

∂p

p

η1/3
+

∂µ

∂T
(T − 300); η = ρ/ρ0 (7)

where,µ0 is the shear modulus at the reference state(T = 300 K,p = 0, η = 1), p
is the pressure, andT is the temperature. When the temperature is aboveTm, the
shear modulus is instantaneously set to zero in this model.

3.3.3 NP Shear Modulus Model

A modified version of the SCG model has been developed by Nadal and Le Poac
[64] that attempts to capture the sudden drop in the shear modulus close to the
melting temperature in a smooth manner. The Nadal-LePoac (NP) shear modulus
model has the form

µ(p, T ) =
1

J (T̂ )

[(
µ0 +

∂µ

∂p

p

η1/3

)
(1− T̂ ) +

ρ

Cm
kb T

]
; C :=

(6π2)2/3

3
f 2

(8)
where

J (T̂ ) := 1 + exp

[
−

1 + 1/ζ

1 + ζ/(1− T̂ )

]
for T̂ :=

T

Tm

∈ [0, 1 + ζ], (9)
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µ0 is the shear modulus at 0 K and ambient pressure,ζ is a material parameter,kb

is the Boltzmann constant,m is the atomic mass, andf is the Lindemann constant.

3.4 Flow Stress

We have explored five temperature and strain rate dependent models that can be
used to compute the flow stress:

(1) the Johnson-Cook (JC) model
(2) the Steinberg-Cochran-Guinan-Lund (SCG) model.
(3) the Zerilli-Armstrong (ZA) model.
(4) the Mechanical Threshold Stress (MTS) model.
(5) the Preston-Tonks-Wallace (PTW) model.

3.4.1 JC Flow Stress Model

The Johnson-Cook (JC) model (Johnson and Cook [49]) is purely empirical and
gives the following relation for the flow stress (σy)

σy(εp, ε̇p, T ) = [A + B(εp)
n]
[
1 + C ln(ε̇∗p)

]
[1− (T ∗)m] (10)

whereεp is the equivalent plastic strain,ε̇p is the plastic strain rate, A, B, C, n, m
are material constants,

ε̇∗p =
ε̇p

ε̇p0

; T ∗ =
(T − T0)

(Tm − T0)
, (11)

ε̇p0 is a user defined plastic strain rate,T0 is a reference temperature, andTm is the
melt temperature. For conditions whereT ∗ < 0, we assume thatm = 1.

3.4.2 SCG Flow Stress Model

The Steinberg-Cochran-Guinan-Lund (SCG) model is a semi-empirical model that
was developed by Steinberg et al. [81] for high strain rate situations and extended
to low strain rates and bcc materials by Steinberg and Lund [82]. The flow stress in
this model is given by

σy(εp, ε̇p, T ) = [σaf(εp) + σt(ε̇p, T )]
µ(p, T )

µ0

(12)

whereσa is the athermal component of the flow stress,f(εp) is a function that rep-
resents strain hardening,σt is the thermally activated component of the flow stress,
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µ(p, T ) is the shear modulus, andµ0 is the shear modulus at standard temperature
and pressure. The strain hardening function has the form

f(εp) = [1 + β(εp + εpi)]
n; σaf(εp) ≤ σmax (13)

whereβ, n are work hardening parameters, andεpi is the initial equivalent plastic
strain. The thermal componentσt is computed using a bisection algorithm from the
following equation (based on the work of Hoge and Mukherjee [46])

ε̇p =

 1

C1

exp

 2Uk

kb T

(
1− σt

σp

)2
+

C2

σt

−1

; σt ≤ σp (14)

where2Uk is the energy to form a kink-pair in a dislocation segment of lengthLd,
kb is the Boltzmann constant,σp is the Peierls stress. The constantsC1, C2 are given
by the relations

C1 :=
ρdLdab2ν

2w2
; C2 :=

D

ρdb2
(15)

whereρd is the dislocation density,Ld is the length of a dislocation segment,a is
the distance between Peierls valleys,b is the magnitude of the Burgers’ vector,ν is
the Debye frequency,w is the width of a kink loop, andD is the drag coefficient.

3.4.3 ZA Flow Stress Model

The Zerilli-Armstrong (ZA) model (Zerilli and Armstrong [99, 100], Zerilli [98])
is based on simplified dislocation mechanics. The general form of the equation for
the flow stress is

σy(εp, ε̇p, T ) = σa + B exp(−β(ε̇p)T ) + B0
√

εp exp(−α(ε̇p)T ) (16)

whereσa is the athermal component of the flow stress given by

σa := σg +
kh√

l
+ Kεn

p , (17)

σg is the contribution due to solutes and initial dislocation density,kh is the mi-
crostructural stress intensity,l is the average grain diameter,K is zero for fcc ma-
terials,B, B0 are material constants. The functional forms of the exponentsα and
β are

α = α0 − α1 ln(ε̇p); β = β0 − β1 ln(ε̇p); (18)

whereα0, α1, β0, β1 are material parameters that depend on the type of material
(fcc, bcc, hcp, alloys). The Zerilli-Armstrong model has been modified by Abed
and Voyiadjis [1] for better performance at high temperatures. However, we have
not used the modified equations in our computations.
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3.4.4 MTS Flow Stress Model

The Mechanical Threshold Stress (MTS) model (Follansbee and Kocks [32], Goto
et al. [35], Kocks [55]) gives the following form for the flow stress

σy(εp, ε̇p, T ) = σa + (Siσi + Seσe)
µ(p, T )

µ0

(19)

whereσa is the athermal component of mechanical threshold stress,µ0 is the shear
modulus at 0 K and ambient pressure,σi is the component of the flow stress due to
intrinsic barriers to thermally activated dislocation motion and dislocation-dislocation
interactions,σe is the component of the flow stress due to microstructural evolution
with increasing deformation (strain hardening), (Si, Se) are temperature and strain
rate dependent scaling factors. The scaling factors take the Arrhenius form

Si =

1− (
kb T

g0ib3µ(p, T )
ln

ε̇p0i

ε̇p

)1/qi
1/pi

(20)

Se =

1− (
kb T

g0eb3µ(p, T )
ln

ε̇p0e

ε̇p

)1/qe
1/pe

(21)

wherekb is the Boltzmann constant,b is the magnitude of the Burgers’ vector,
(g0i, g0e) are normalized activation energies, (ε̇p0i, ε̇p0e) are constant reference strain
rates, and (qi, pi, qe, pe) are constants. The strain hardening component of the me-
chanical threshold stress (σe) is given by a modified Voce law

dσe

dεp

= θ(σe) (22)

where

θ(σe) = θ0[1− F (σe)] + θIV F (σe) (23)

θ0 = a0 + a1 ln ε̇p + a2

√
ε̇p − a3T (24)

F (σe) =

tanh

(
α

σe

σes

)
tanh(α)

(25)

ln(
σes

σ0es

) =

(
kT

g0esb3µ(p, T )

)
ln

(
ε̇p

ε̇p0es

)
(26)

andθ0 is the hardening due to dislocation accumulation,θIV is the contribution due
to stage-IV hardening, (a0, a1, a2, a3, α) are constants,σes is the stress at zero strain
hardening rate,σ0es is the saturation threshold stress for deformation at 0 K,g0es is
a constant, anḋεp0es is the maximum strain rate. Note that the maximum strain rate
is usually limited to about107/s.
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3.4.5 PTW Flow Stress Model

The Preston-Tonks-Wallace (PTW) model (Preston et al. [72]) attempts to provide
a model for the flow stress for extreme strain rates (up to1011/s) and temperatures
up to melt. The flow stress is given by

σy(εp, ε̇p, T ) =


2

[
τs + α ln

[
1− ϕ exp

(
−β −

θεp

αϕ

)]]
µ(p, T ) thermal regime

2τsµ(p, T ) shock regime
(27)

with
α :=

s0 − τy

d
; β :=

τs − τy

α
; ϕ := exp(β)− 1 (28)

whereτs is a normalized work-hardening saturation stress,s0 is the value ofτs at
0K, τy is a normalized yield stress,θ is the hardening constant in the Voce hardening
law, andd is a dimensionless material parameter that modifies the Voce hardening
law. The saturation stress and the yield stress are given by

τs = max

s0 − (s0 − s∞)erf

κT̂ ln

γξ̇

ε̇p

 , s0

(
ε̇p

γξ̇

)s1
 (29)

τy = max

y0 − (y0 − y∞)erf

κT̂ ln

γξ̇

ε̇p

 , min

{
y1

(
ε̇p

γξ̇

)y2

, s0

(
ε̇p

γξ̇

)s1}
(30)

wheres∞ is the value ofτs close to the melt temperature, (y0, y∞) are the values of
τy at 0K and close to melt, respectively,(κ, γ) are material constants,̂T = T/Tm,
(s1, y1, y2) are material parameters for the high strain rate regime, and

ξ̇ =
1

2

(
4πρ

3M

)1/3 (
µ(p, T )

ρ

)1/2

(31)

whereρ is the density, andM is the atomic mass.

3.5 Adiabatic Heating and Specific Heat

A part of the plastic work done is converted into heat and used to update the tem-
perature of a particle. The increase in temperature (∆T ) due to an increment in
plastic strain (∆εp) is given by the equation

∆T =
χσy

ρCp

∆εp (32)

whereχ is the Taylor-Quinney coefficient, andCp is the specific heat. The value
of the Taylor-Quinney coefficient is taken to be 0.9 in all our simulations (see
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Ravichandran et al. [76] for more details on the variation ofχ with strain and strain
rate).

A relation for the dependence ofCp upon temperature is used for the steel
(Lederman et al. [56]).

Cp =

A1 + B1 t + C1 |t|−α if T < Tc

A2 + B2 t + C2 t−α
′

if T > Tc

(33)

t =
T

Tc

− 1 (34)

whereTc is the critical temperature at which the phase transformation from theα
to theγ phase takes place, andA1, A2, B1, B2, α, α

′
are constants.

The heat generated at a material point is conducted away at the end of a time
step using the transient heat equation. The effect of conduction on material point
temperature is negligible (but non-zero) for the high strain-rate problems simulated
using Uintah.

4 MATERIALS

Though the primary metal of interest in the UINTAH simulations is 4340 steel,
we discuss simulations of the deformation of three metals in this paper - high pu-
rity copper, 6061-T6 aluminum alloy, and 4340 steel alloy. The copper and alu-
minum alloy are face-centered cubic (fcc) materials while the 4340 steel alloy is
body-centered cubic (bcc). The interstitials and solutes play a significant role in the
plastic deformation of these alloys.

4.1 Copper

We have considered oxygen-free high conductivity (OFHC) copper and electrolytic
tough pitch (ETP) copper - both under initial annealed conditions. Copper shows
significant strain hardening, strain-rate sensitivity, and temperature dependence of
plastic flow behavior. In addition, a large amount of experimental data is available
for this material in the open literature. Hence it is invaluable for testing the accuracy
of plasticity models and validating codes that simulate plasticity.

4.1.1 Specific heat of copper

The specific heat is used in the computation of the rate of increase of temperature
due to plastic work (which feeds into the transient heat equation) and in the esti-
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mation of the change in internal energy required by the Mie-Grüneisen equation of
state. A constant specific heat (usually assumed to be 414 J/kg-K) is not appropriate
at temperatures below 250 K and temperatures above 700 K, as can be seen from
Figure 2.

A cubic curve was fit to the data for temperatures lower than 270 K. A linear curve
was fit to the data for temperatures greater than 270 K. The specific heat predicted
by the resulting model is shown by a solid line in Figure 2. The specific heat (Cp)
versus temperature (T ) model used in our copper simulations is given below. The
units ofCp are J/kg-K.

Cp =

0.0000416 T 3 − 0.027 T 2 + 6.21 T − 142.6 for T < 270K

0.1009 T + 358.4 for T ≥ 270K
(35)

4.1.2 Equation of state of copper

The Mie-Gr̈uneisen equation of state is used to compute the volumetric part of the
Cauchy stress tensor. The bulk speed of sound (C0) and the slope of the linear fit
to the Hugoniot (Sα) for copper have been obtained from Mitchell and Nellis [63].
The values of these parameters are 3933 m/s and 1.5, respectively. The value of the
Grüneisen gamma (Γ0) has been obtained from MacDonald and MacDonald [59].
We have chosen to use a value of 1.99 which is the value ofΓ0 at 100 K. An value
of 2.12 can be used as an alternative for temperatures of 700 K and higher.

Figure 3 shows plots of the pressure predicted by the Mie-Grüneisen equation of
state (continuous lines) at three different temperatures. The reference temperature
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K
) 

Osborne and Kirby (1977)
MacDonald and MacDonald (1981)
Dobrosavljevic and Maglic (1991)
Model

Fig. 2. Variation of the specific heat of copper with temperature. The solid line shows the
values predicted by the model. Symbols show experimental data from Osborne and Kirby
[69], MacDonald and MacDonald [59], and Dobrosavljevic and Maglic [30].
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Fig. 3. The pressure predicted by the Mie-Grüneisen equation of state for copper as a func-
tion of density. The continuous lines show the values predicted by the model for three
temperatures. The symbols show experimental data obtained from McQueen et al. [62],
Marsh [60], Mitchell and Nellis [63], and Wang et al. [92]. The original sources of the
experimental data can be found in the above citations.

for these calculations is 300 K. The predictions of the model are compared with
pressures obtained from shock Hugoniot data. The model equation of state per-
forms well for compressions less than 1.3 and the pressures are underestimated at
higher compression. Since we do not achieve compressions greater than 1.2 in our
simulations, the model that we have used is acceptable.

4.1.3 Melting temperature of copper

A melting temperature model is used to determine the pressure-dependent melt-
ing temperature of copper. The melting temperature is used to determine both
the value of the shear modulus close to melting and as a flag which determines
when a particle switches from solid to liquid state. Figure 4 shows a comparison
of two melting temperature models - the Steinberg-Cochran-Guinan (SCG) model
and the Burakovsky-Preston-Silbar (BPS) model. The melting curves predicted by
the models are shown as continuous curves. Experimental data presented by Bu-
rakovsky et al. [22] are shown as open circles.

Table 1 shows the parameters used in the melting temperature models of copper.
The parameterTm0 used in the SCG model has been obtained from Guinan and
Steinberg [38]. The value ofΓ0 is from MacDonald and MacDonald [59] and the
value ofa has been chosen so as to fit the experimental data. The values of the
initial bulk and shear moduli, and their derivatives that are used in the BPS model
have been obtained from Guinan and Steinberg [38]. The remaining parameters for
the BPS model are from Burakovsky and Preston [21] and Burakovsky et al. [23].
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Fig. 4. The melting temperature of copper as a function of pressure. The lines show values
predicted by the SCG and BPS models. The open circles show experimental data obtained
from Burakovsky et al. [22]. The original sources of the experimental data can be found in
the above citation.

An initial densityρ0 of 8930 kg/m3 has been used in the model calculations.

Both models predict the melting temperature quite accurately for pressures below
50 GPa. The SCG model appears to predict melting temperatures that are close
to experimental values at higher pressures. However, the data at those pressures
are sparse and should probably be augmented before conclusions regarding the
models can be made. In any case, the pressures observed in our computations are
usually less than 100 GPa and hence either of the models would suffice. We have
chosen to use the SCG model for our copper simulations because the model is more
computationally efficient.

Table 1
Parameters used in melting temperature models for 4340 steel.

Steinberg-Cochran-Guinan (SCG) model

Tm0 (K) Γ0 a

1356.5 1.99 1.5

Burakovsky-Preston-Silbar (BPS) model

K0 (GPa) K
′
0 µ0 (GPa) µ

′
0 κ z b2ρc(Tm) α λ vWS a (nm)

137 5.48 47.7 1.4 1.25 12 0.64 2.9 1.41a3/4 3.6147
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4.1.4 Shear modulus of copper

The shear modulus of copper decreases with temperature and is also pressure-
dependent. For high temperature simulations, using the room temperature value
of shear modulus may lead to inaccuracies in radial return algorithms for elastic-
plastic simulations. If the pressure-dependence of the shear modulus is neglected,
modeling errors can accumulate for simulations involving shocks.

The shear modulus model that has been associated with the MTS plasticity model
( Chen and Gray [25], Goto et al. [34]) is referred to as the MTS shear modulus
model in this work. The shortcoming of this model is that it does not include any
pressure-dependence of the shear modulus and is probably not applicable for high
pressure applications.

The SCG shear modulus model has been used in conjunction with the SCG plastic-
ity model and includes both temperature- and pressure-dependence. The NP shear
modulus model is similar to the SCG model except for the temperature-dependent
part and the smooth transition to zero shear modulus at melt. However, the SCG
and NP shear modulus models do not reflect the flattening of the curve at low tem-
peratures that is observed in experiments.

Figure 5(a) shows the shear modulus predicted by the MTS shear modulus model at
zero hydrostatic pressure. The symbols show experimental data from Overton and
Gaffney [70] and Nadal and Le Poac [64]. The parameters used in the model are
given in Table 2. It can be seen that the model fits the low temperature data quite
well. The shear moduli predicted by the SCG and NP shear models are shown in
Figure 5(b) and Figure 5(c), respectively. The SCG shear model predicts slightly
different moduli than the NP model at different values of compression. Both mod-
els fit the experimental data quite well except at very low temperatures (at which
the MTS model performs best). We have not be able to validate the pressure depen-
dence of the shear modulus at high temperatures due to lack of experimental data.
An initial density of 8930 kg/m3 has been used in the model calculations.

4.1.5 Yield stress of copper

In this section, we discuss the yield stresses of copper predicted by the five flow
stress models for one-dimensional tension and compression tests. The high rate
tests have been simulated with the explicit Material Point Method [84] and the
stress update algorithm discussed in Appendix B. The quasistatic tests have been
simulated with a fully implicit version of the Material Point Method (Guilkey and
Weiss [37]) with an implicit stress update (Simo and Hughes [80]). Heat conduction
is performed at all strain rates. However, as expected, we obtain nearly isothermal
conditions quasistatic tests and nearly adiabatic conditions for high strain rate tests.

Experimental data for annealed OFHC copper from [66] (p. 241-242) and [72] are
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Fig. 5. Shear modulus of copper as a function of temperature and pressure. The experimen-
tal data are from Overton and Gaffney [70] and Nadal and Le Poac [64]. The lines show
values of the shear modulus at different compressions (η = ρ/ρ0).

compared with the predicted values of yield stress. The data are presented in form
of true stress versus true strain. Note that detailed verification has been performed to
confirm the correct implementation of the models withing the UINTAH code. Also
note that the high strain rate experimental data are suspect for strains less than 0.1.
This is because the initial strain rate fluctuates substantially in Kolsky-Hopkinson
bar experiments.

4.1.5.1 Johnson-Cook Model. For the one-dimensional simulations using the
Johnson-Cook model, we use the following submodels: the Mie-Grüneisen equa-
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Table 2
Parameters used in shear modulus models for copper.

MTS shear modulus model

µ0 (GPa) D (GPa) T0 (K)

51.3 3.0 165

SCG shear modulus model

µ0 (GPa) ∂µ/∂p ∂µ/∂T (GPa/K)

47.7 1.3356 0.018126

NP shear modulus model

µ0 (GPa) ∂µ/∂p ζ C m (amu)

50.7 1.3356 0.04 0.057 63.55

Table 3
Parameters used in the Johnson-Cook model for copper.

A (MPa) B (MPa) C n m ε̇p0 (/s) T0 (K) Tm (K)

90 292 0.025 0.31 1.09 1.0 294 1356

tion of state, the specific heat model for copper, the Nadal-LePoac shear mod-
ulus model, and the Steinberg-Cochran-Guinan melting temperature model. The
Johnson-Cook model is independent of pressure. Hence, the predicted yield stress
is the same in compression and tension. The use of a variable specific heat model
leads to a reduced yield stress at low temperature (77 K) for high strain rates. How-
ever, the effect is relatively small. At high temperatures, the effect of a high specific
heat is to reduce the rate of increase of temperature with increase in plastic strain.
This effect is also small. The temperature dependence of the shear modulus does
not affect the yield stress. However, it has an effect on the plastic strain rate which
is smaller than experimental error.

The solid lines in Figures 6(a) and (b) show predicted values of the yield stress for
various strain rates and temperatures. The symbols show the experimental data. The
Johnson-Cook model overestimates the initial yield stress for the quasistatic (0.1/s
strain rate), room temperature (296 K), test. The rate of hardening is underestimated
by the model for the room temperature test at 8000/s. The strain-rate dependence
of the yield stress is underestimated at high temperature (see the data at 1173 K in
Figure 6(a)). For the tests at a strain rate of 4000/s (Figure 6(b)), the yield stress is
consistently underestimated by the Johnson-Cook model. The parameters used for
the Johnson-Cook model are from Johnson and Cook [50]. These parameters are
listed in Table 3.
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OFHC Copper (Johnson−Cook)
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Fig. 6. Predicted values of yield stress from the Johnson-Cook model. The experimental
data at 873 K, 1023 K, and 1173 K are from Samanta [78] and represent compression tests.
The remaining experimental data are from tension tests in Nemat-Nasser [66]. The solid
lines are the predicted values.

4.1.5.2 Steinberg-Cochran-Guinan-Lund Model. We have used the Steinberg-
Cochran-Guinan (SCG) shear modulus model for the one-dimensional simulations
that use the Steinberg-Cochran-Guinan-Lund (SCGL) flow stress model. We could
alternatively have used the Nadal-LePoac shear modulus model. However, we use
the former to point out a problem with the assumption of the equivalence of the
dependence on temperature of the shear modulus and the yield stress that is used
by the SCGL flow stress model. The remaining models are the same as those used
in conjunction with the Johnson-Cook flow stress model. A bisection algorithm is
used to determine the thermally activated part of the flow stress for low strain rate
conditions (less than 1000/s).
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Fig. 7. Predicted values of yield stress from the Steinberg-Cochran-Guinan-Lund model.
Please see the caption of Figure 6 for the sources of the experimental data.

The solid lines in Figures 7(a) and (b) show the flow stresses predicted by the SCGL
model. Clearly, the softening associated with increasing temperature is underesti-
mated by the SCGL model. The parameters used in the SCGL model of OFHC
copper are listed in Table 4.

Table 4
Parameters used in the Steinberg-Cochran-Guinan-Lund model for copper. The parameters
for the athermal part of the SCGL model are from Steinberg et al. [81]. The parameters for
the thermally activated part of the model are from a number of sources. The estimate for
the Peierls stress is based on Hobart [45].

σa (MPa) σmax (MPa) β εpi (/s) n C1 (/s) Uk (eV) σp (MPa) C2 (MPa-s)

125 640 36 0.0 0.45 0.71×106 0.31 20 0.012
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As we see from Figure 7(a), at 296 K, the quasistatic yield stress is overestimated by
around 50%; and the yield stress at 8000/s is predicted reasonably well. However, at
1023 K, the yield stress for 1800/s is overestimated by 70% at small strains to more
than 150% at large strains. At 1173 K, the quasistatic yield stress is overestimated
by 400% at small strains to 1000% at large strains. The high strain rate (960/s)
yield stress is overestimated by 100% at small strains and by almost 200% at large
strains.

For the tests at 4000/s shown in Figure 7(b), the SCGL modes performs progressive
worse with increasing temperature. However, the errors are contained to around
100%.

Overall, at low temperatures, the high strain rate predictions from the SCGL model
match the experimental data best. This is not surprising since the original model
by Steinberg et al. [81] (SCG) was rate independent and designed for high strain
rate applications. However, the low strain rate extension by Steinberg and Lund
[82] does not lead to good predictions of the yield stress of OFHC copper at low
temperatures.

The high temperature response of the SCGL model is dominated by the shear mod-
ulus model; in particular, the derivative of the shear modulus with respect to tem-
perature. From Figure 5(b) we can see that a value of -0.018126 GPa/K for∂µ/∂T
matches the experimental data quite well. Steinberg et al. [81] assume that the val-
ues of(∂σy/∂T )/σy0 and(∂µ/∂T )/µ0 (-3.8×10−4 /K) are comparable. That does
not appear to be the case for OFHC copper.

If we extract the yield stresses at a strain of 0.2 from the experimental data shown in
Figure 7(b), we get the following values of temperature and yield stress for a strain
rate of 4000/s: (77 K, 380 MPa); (496 K, 300 MPa); (696 K, 230 MPa); (896 K,
180 MPa); (1096 K, 130 MPa). A straight line fit to the data shows that the value of
∂σy/∂T is -0.25 MPa/K. The yield stress at 300 K can be calculated from the fit to
be approximately 330 MPa. This gives a value of -7.6×10−4 /K for (∂σy/∂T )/σy0;
approximately double the slope of the shear modulus versus temperature curve.
Hence, a shear modulus derived from a shear modulus model cannot be used as a
multiplier to the yield stress in equation (12). Instead, the original form of the SCG
model (Steinberg et al. [81]) must be used, with the term(∂µ/∂T )/µ0 replaced by
(∂σy/∂T )/σy0 in the expression for yield stress.

Figures 8(a) and (b) show the predicted yield stresses from the modified SCGL
model. These plots show that there is a considerable improvement in the predic-
tion of the temperature dependence of yield stress if the value of(∂σy/∂T )/σy0 is
used instead of(∂µ/∂T )/µ0. However, the strain rate dependence of OFHC copper
continues to be poorly modeled by the SCGL model.
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Fig. 8. Predicted values of yield stress from the modified Steinberg-Cochran-Guinan-Lund
model. Please see the caption of Figure 6 for the sources of the experimental data.

4.1.5.3 Zerilli-Armstrong Model. In contrast to the Johnson-Cook and the Steinberg-
Cochran-Guinan models, the Zerilli-Armstrong (ZA) model for yield stress is based
on dislocation mechanics and hence has some physical basis. We have used the
Nadal-LePoac shear modulus model in conjunction with our simulations that use
the ZA flow stress model.

Figures 9(a) and (b) show the yield stresses predicted by the ZA model. As in the
previous sections, the symbols in the plots represent experimental data while the
solid lines represented the computed stress-strain curves. The parameters used for
the Zerilli-Armstrong model have been obtained from Zerilli and Armstrong [99]
and are listed in Table 5.
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Fig. 9. Predicted values of yield stress from the Zerilli-Armstrong model. Please see the
caption of Figure 6 for the sources of the experimental data.

Table 5
Parameters used in the Zerilli-Armstrong model for copper (Zerilli and Armstrong [99]).

σg (MPa) kh (MPa-mm1/2) l (mm) K (MPa) n

46.5 5.0 0.073 0.0 0.5

B (MPa) β0 (/K) β1 (s/K) B0 (MPa) α0 (/K) α1 (s/K)

0.0 0.0 0.0 890 0.0028 0.000115
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From Figure 9(a), we can see that the ZA model predicts the quasistatic, room tem-
perature yield stress quite accurately. However, the room temperature yield stress
at 8000/s is underestimated. The initial yield stress is overestimated at high tem-
peratures; as are the saturation stresses.

Stress-strain curves at 4000/s are shown in Figure 9(b). In this case, the ZA model
predicts reasonable initial yield stresses. However, the decrease in yield stress with
increasing temperature is overestimated. We notice that the predicted yield stress at
496 K overlaps the experimental data for 696 K, while the predicted stress at 696
K overlaps the experimental data at 896 K.

4.1.5.4 Mechanical Threshold Stress Model. The Mechanical Threshold Stress
(MTS) model is different from the three previous models in that the internal vari-
able that evolves in time is a stress (σe). The value of the internal variable is calcu-
lated for each value of plastic strain by integrating equation (22) along a constant
temperature and strain rate path. A unconditionally stable and second-order ac-
curate midpoint integration scheme has been used to determine the value ofσe.
Alternatively, an incremental update of the internal variable could be done using
quantities from the previous timestep. The integration of the evolution equation is
no longer along a constant temperature and strain rate path in that case. We have
found that two alternatives give us similar values ofσe in the simulations that we
have performed. The incremental update of the value ofσe is considerably faster
than the full update along a constant temperature and strain rate path.

We have used the pressure-independent MTS shear modulus model in the simu-
lations that use the MTS flow stress model. The reason for this choice is that the
parameters of the model have been fit with such a shear modulus model. If the shear
modulus model is changed, certain parameters of the model will have to be changed
to reflect the difference. The SCG melting temperature model, the variable specific
heat model, and the Mie-Grüneisen equation of state for copper have been used; as
has been done with the previous models.

Figures 10(a) and (b) show the experimental values of yield stress for OFHC copper
versus those computed with the MTS model. The solid lines show the computed
stresses. The symbols represent the experimental data. The parameters used in the
MTS model have been obtained from Follansbee and Kocks [32] and are shown in
Table 6.

From Figure 10(a), we can see that the yield stress predicted by the MTS model
almost exactly matches the experimental data at 296 K for a strain rate of 0.1/s. The
yield stress for the test conducted at 296 K and at 8000/s is underestimated by the
MTS model. The MTS model predicts reasonably good values of yield stress for the
test at 1023 K and 1800/s. However, saturation appears earlier in the experimental
stress-strain curve than predicted by the MTS model. The same is true for the test
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Fig. 10. Predicted values of yield stress from the Mechanical Threshold Stress model.
Please see the caption of Figure 6 for the sources of the experimental data.

Table 6
Parameters used in the Mechanical Threshold Stress model for copper (Follansbee and
Kocks [32]).

σa (MPa) b (nm) σi (MPa) g0i ε̇p0i (/s) pi qi

40 0.256 0 1 1 1 1

g0e ε̇p0e (/s) pe qe σ0es (MPa) g0es ε̇p0es (/s)

1.6 1.0×107 2/3 1 770 0.2625 1.0×107

α a0 (MPa) a1 (MPa-log(s)) a2 (MPa-s1/2) a3 (MPa/K) θIV (MPa)

2 2390 12 1.696 0 0
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at 873 at 2300 /s. The yield stress predicted by the MTS model for the quasistatic
test at 1173 K is is higher than that observed experimentally. However, the higher
rate test at the same temperature matches the experiments quite well except for a
higher amount of strain hardening at large strains.

The variation of yield stress with temperature at a strain rate of 4000/s is shown in
Figure 10(b). From the figure, we can see that the yield stress is underestimated by
the MTS model at 77K. However, the predictions improve with increase in temper-
ature. The MTS model predicts the yield stress quite accurately at 696K, 896 K,
and 1096 K. From the experimental data we can observe a certain amount of stage
III or stage IV hardening. This effect is not captured by the MTS model; probably
because of early saturation of the amount of hardening.

4.1.5.5 Preston-Tonks-Wallace Model. The Preston-Tonks-Wallace (PTW) model
attempts to provide a single approach to model both thermally activated glide and
overdriven shock regimes. The overdriven shock regime includes strain rates greater
than 107. The PTW model, therefore, extends the possibility of modeling plasticity
beyond the range of validity of the MTS model. We have not conducted a sim-
ulations of overdriven shocks in this paper. However, the PTW model explicitly
accounts for the rapid increase in yield stress at strain rates above 1000 /s. Hence
the model is a good candidate for the range of strain rates and temperatures of
interest to us. We use the Nadal-LePoac shear modulus model in all simulations
involving the PTW yield stress model.

Experimental yield stresses and those predicted by the PTW model are shown in
Figures 11(a) and (b). The solid lines in the figure are the predicted values while the
symbols represent experimental data. The model parameters used in the simulations
are shown in Table 7.

From Figure 11(a) we can see that the predicted yield stress at 0.1/s and 296 K
matches the experimental data quite well. The error in the predicted yield stress
at 296 K and 8000/s is also smaller than that for the MTS flow stress model. The
experimental data at 873 K, 1023 K, and 1173 K are were used by Preston et al.
[72] to fit the model parameters. Hence it is not surprising that the predicted yield
stresses match the experimental data better than any other model.

The temperature dependent yield stresses at 4000/s are shown in Figure 11(b). In
this case, the predicted values at 77 K are lower than the experimental values. How-
ever, for higher temperatures, the predicted values match the experimental data
quite well for strains less than 0.4. At higher strains, the predicted yield stress sat-
urates while the experimental data continues to show a significant amount of hard-
ening. The PTW model predicts better values of yield stress for the compression
tests while the MTS model performs better for the tension tests.
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Fig. 11. Predicted values of yield stress from the Preston-Tonks-Wallace model. Please see
the caption of Figure 6 for the sources of the experimental data.

Table 7
Parameters used in the Preston-Tonks-Wallace yield stress model for copper (Preston et al.
[72]).

s0 s∞ y0 y∞ d κ γ θ

0.0085 0.00055 0.0001 0.0001 2 0.11 0.00001 0.025

M (amu) s1 y1 y2

63.546 0.25 0.094 0.575
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4.1.5.6 Comparisons between the various flow stress models.In this section,
we use the difference between the predicted and the experimental values of the
flow stress as a metric to compare the various flow stress models. First, we show
the difference between the predicted and the experimental values of yield stress in
the form of plots of error in true stress versus true strain. The error in the true strain
is calculated as shown in equation 36.

Errorσ =

(
σpredicted

σexpt.
− 1

)
× 100 (36)

Figures 12(a) and (b) show the percentage difference between the values of yield
stress predicted by the Johnson-Cook model and the experimental data. If we ignore
the high strain rate data for strains less than 0.1, it is observed that the difference
between the predicted and the experimental values is around 20% to 50% (with the
largest errors at high temperatures). The quasistatic, room-temperature prediction
shows large errors at low strains. However, at larger strains, the quasistatic predic-
tions are within 5% of experiment. The errors in the predicted values for the test at
0.066 /s and 1173 K are quite large (almost 100% at large strains). This indicates
that the Johnson-Cook model severely overestimates yield stresses low strain rates
and high temperatures. A recalibration of the model parameters is needed before it
can be used to simulate such conditions.

Differences between the predicted and the experimental values for the Steinberg-
Cochran-Guinan-Lund model are shown in Figures 12(c) and (d). The best fit to the
experimental data is obtained for a strain rate of 8000 /s at room temperature. The
quasistatic test at the same temperature overestimates the yield stress by 50%. The
error in the predicted value of yield stress at 1173 K and 960 /s is small at a strain
of 0.2 and increases to 50% at a strain of 0.6. In comparison, the quasistatic yield
stress at that temperature is overestimated by 150% to 450%. Clearly, the SCGL
model is not appropriate (even with the modification by Steinberg and Lund) for
quasistatic problems. The high strain rate (4000 /s) predictions are considerably
better and the error varies from 10% to 20%.

The Zerilli-Armstrong model errors are shown in Figures 12(e) and (f). In this
case, the room temperature, quasistatic, predicted yield stresses are within 10%
of the experimental values. The high temperature, quasistatic, yield stresses are
however quite different from the experimental values - 120% to 160%. The room
temperature, high strain rate, predictions differ by 10% to 20% from experiment.
Similar ranges of errors are observed for the high temperature data at various strain
rates. An average error of around 20% is observed for the tests conducted at 4000/s.

Figures 13(a) and (b) show the errors in the yield stresses predicted by the Me-
chanical Threshold Stress model. At room temperature and quasistatic conditions,
the error in the yield stress predicted by the MTS model is close to zero. The qua-
sistatic, high temperature, yield stress is overestimated by around 100%. The high
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Fig. 12. Difference between the predicted values of yield stress and the experimen-
tal data as a percentage of the experimental values for the Johnson-Cook, Stein-
berg-Cochran-Guinan-Lund, and Zerilli-Armstrong models.
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Fig. 13. Difference between the predicted values of yield stress and the experimental data
as a percentage of the experimental values for the Mechanical Threshold Stress and Pre-
ston-Tonks-Wallace models.

strain rate yield stress at 296 K is underestimated by around 20%. For the high tem-
perature compression tests at 960 /s, 1800 /s, and 2300 /s, the error in the predicted
values is around 5% at small strains and increases to about 20% at large strains. The
error in the predicted stresses for a strain rate of 4000/s and various temperatures
varies between 5% to 20%.

The Preston-Tonks-Wallace predicts the yield stresses for the quasistatic and the
compression tests the best, with errors ranging between 1% to 10% (see Figure 13(c)).
For the tension tests at 4000 /s (Figure 13(d)), the average error is around 15% for
strains less than 0.5. For larger strains, the error increases because of premature
saturation of the yield stress.

To quantify these errors and as an aid in determining the best model for the range
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of conditions under consideration, we have listed some error statistics in Tables 8
and 9. Only true strains greater than 0.1 have been considered in the generation of
these statistics.

The statistics in Tables 8 and 9 show that none of the models consistently performs
better than the other models. To simplify these statistics, we can consider as a met-
ric the absolute mean error plus one standard deviation of the error. A comparison
of this “maximum” absolute error metric for various sets of conditions might allow
for a better quantification of the range of applicability of each model. Some such
comparisons are shown in Table 10. The quantities shown in the table are the av-
erage of the “maximum” absolute (MA) errors for the set of tests that satisfy the
conditions listed in the table.

From Table 10 we observe that the least average MA error for all the tests is 17%
while the greatest average MA error is 64%. The PTW model performs best while
the SCGL model performs worst. In order of increasing error, the models may be
arranged as PTW, MTS, ZA, JC, and SCGL. Considering only the tension tests, the
MTS model performs best with an average MA error of 14%. The Johnson-Cook
model does the worst at 25% error. For the compression tests, the PTW model does
best with an error of 10% compared to the next best, the MTS model with a 35%
error. The SCGL error shows an average MA error of 126% for these tests. For the
high strain rate tests, the MTS model performs better than the PTW model with
an average MA error of 15% (compared to 18% for PTW). The low strain rate
tests are predicted best by the PTW model (5 %) and worst by the SCGL model
(219 %). Note that this average error is based on two tests at 296 K and 1173
K and may not be representative for intermediate temperatures. The PTW model
shows an average MA error of 16% for the high temperature tests compared to
27% for the MTS model. The SCGL model again performs the worst. Finally, the
low temperature tests (< 800 K) are predicted best by the PTW model. The other
models also perform reasonably well under these conditions.

From the above comparisons, the Preston-Tonks-Wallace and the Mechanical Thresh-
old Stress models clearly stand out as the ones that are reasonably accurate over a
large range of strain rates and temperatures. A caveat regarding such a conclusion
that the parameters of the models can be changed to give a better fit to the exper-
imental data that we have used for our comparisons. However, it is more likely
that an user of such models in computational codes will use parameters that are
already available in the literature. The implicit assumption is that published param-
eters provide the best possible fit to experimental data. Our aim here has been to
compare the models under a specific condition - where the parameters are known
and unchanged. Of course, better statistics can be generated if the number of one-
dimensional tests is increased. Instead, to further quantify the range of applicability
of the models, we perform a similar comparison with Taylor impact test data.
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Table 8
Comparison of the error in the yield stress predicted by the five flow stress models at various
strain rates and temperatures.

Temp. (K) Strain Rate (/s) Error JC (%) SCGL (%) ZA (%) MTS (%) PTW (%)

296 0.1 Max. 32 55 3 2 3

Min. -4 31 -10 -4 -6

Mean 0.2 41 -4 0.2 0.5

Median -3 41 -5 0.6 1.1

Std. Dev. 6 7 4 1.3 2.3

296 8000 Max. 1.1 3 -10 -12 -6

Min. -22 -12 -21 -29 -29

Mean -17 -6 -17 -19 -14

Median -20 -7 -18 -18 -13

Std. Dev. 6 3 2 3 4

873 2300 Max. -7 49 -3 13 -5

Min. -18 6 -24 -5 -7

Mean -13 26 -15 4 -6

Median -13 25 -16 4 -6

Std. Dev. 4 16 7 7 0.5

1023 1800 Max. -16 53 3 20 -7

Min. -30 -3 -22 -7 -13

Mean -25 17 -13 4 -10

Median -27 11 -17 1.5 -9

Std. Dev. 5 21 9 10 2

1173 0.066 Max. 93 440 149 99 7

Min. 39 186 119 81 3

Mean 64 297 132 90 5

Median 61 275 131 92 6

Std. Dev. 20 93 12 6 1.4

1173 960 Max. -37 50 14 24 -13

Min. -49 -8 -8 -0.1 -17

Mean -45 12 -2 9 -15

Median -47 4 -6 6 -14

Std. Dev. 4 20 8 9 1
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Table 9
Comparison of the error in the yield stress predicted by the five flow stress models for a
strain rate of 4000/s.

Temp. (K) Strain Rate (/s) Error JC (%) SCGL (%) ZA (%) MTS (%) PTW (%)

77 4000 Max. 34 26 24 -5 -8

Min. -28 -8 -9 -22 -17

Mean -14 -8 -2 -18 -15

Median -21 -4 -6 -19 -15

Std. Dev. 16 9 9 5 2

496 4000 Max. -2 11 -17 -11 -8

Min. -24 -7 -27 -26 -29

Mean -17 3 -22 -15 -14

Median -17 5 -21 -14 -13

Std. Dev. 5 5 3 3 5

696 4000 Max. -2 22 -16 -3 -4

Min. -20 -2 -25 -16 -20

Mean -14 13 -20 -6 -9

Median -15 15 -19 -6 -7

Std. Dev. 4 7 3 3 5

896 4000 Max. -16 20 -17 3 -2

Min. -32 -9 -24 -15 -30

Mean -23 13 -20 -3 -13

Median -21 16 -20 -2 -11

Std. Dev. 4 7 2 5 9

1096 4000 Max. -35 17 -8 12 4

Min. -56 -13 -30 -25 -45

Mean -42 7 -15 -1.4 -18

Median -39 9 -12 3 -15

Std. Dev. 7 8 7 12 16

4.2 Aluminum Alloy

The aluminum alloy 6061-T6 is relatively strain-rate insensitive and strain harden-
ing is small. The yield stress is quite sensitive to temperature and hence this material
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Table 10
Comparison of average ”maximum” absolute (MA) errors in yield stresses predicted by the
five flow stress models for various conditions.

Condition Average MA Error (%)

JC SCGL ZA MTS PTW

All Tests 36 64 33 23 17

Tension Tests 25 20 19 14 18

Compression Tests 45 126 50 35 10

High Strain Rate (≥ 100 /s) 29 22 20 15 18

Low Strain Rate (< 100 /s) 45 219 76 49 5

High Temperature (≥ 800 K) 43 90 40 27 16

Low Temperature (< 800 K) 20 20 17 15 14

provides an excellent tool for validating temperature effects in plasticity models. A
large set of experiments at high rates have been performed on this material - par-
ticularly flyer plate experiments. However, under shock loading conditions both
6061-T6 and OFHC copper show a dramatic increase in the strain rate dependence
of yield stress (Lesuer et al. [57], Preston et al. [72]).

Details of the validation of the models for 6061-T6 aluminum alloy can be found
in Bhawalkar [19].

4.3 Steel

The high-strength low-alloy (HSLA) 4340 steel is a material of interest in the UIN-
TAH simulations. The yield stress of this material can vary dramatically depend-
ing on the heat treatment that it has undergone. Hence, purely empirical plasticity
models require to be recalibrated for different levels of hardness of this material.
However, we have assumed a constant hardness (Rockwell C 30 - 40) for all the
simulations in this work.

4.3.1 Melting Temperature Model for 4340 Steel

Figure 14 shows a comparison of the predictions from the SCG (Equation 3) and
BPS (Equation 4) models with experimental data for iron from Burakovsky et al.
[22] (includes data from Williams et al. [96] and Yoo et al. [97]). The BPS model
performs better at high pressures, but both models are within experimental vari-
ability below 100 GPa. The parameters used in the models are shown in Table 11.
The bulk and shear moduli and their derivatives for iron have been obtained from
Guinan and Steinberg [38]. The parameters for the BPS model at zero pressure
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Fig. 14. Comparison of experimental data and model predictions of melting temperature
for 4340 steel as a function of pressure.

have been obtained from Burakovsky and Preston [21] and Burakovsky et al. [23],
and the lattice constant (a) has been taken from Jansen et al. [48]. The SCG model
parameters have been obtained from Gust [40]. An initial densityρ0 of 7830 kg/m3

has been used in the model calculations.

4.3.2 Specific Heat Model for 4340 Steel

The constants for the specific heat model (equation 33) were fit with a least squares
technique using experimental data for iron (Wallace et al. [90], Shacklette [79])
and AISI 3040 steel ([42]). The constants used in the simulations are shown in
Table 12. The variation of specific heat with temperature that is predicted by the
model is compared to the experimental data in Figure 15. The transition from the
bccα phase to the fccγ phase is clearly visible in the figure. However, we do not

Table 11
Parameters used in melting temperature models for 4340 steel.

Steinberg-Cochran-Guinan (SCG) model

Tm0(K) Γ0 a

1793 1.67 1.67

Burakovsky-Preston-Silbar (BPS) model

K0 (GPa) K
′
0 µ0 (GPa) µ

′
0 κ z b2ρc(Tm) α λ vWS (Å3) a (Å)

166 5.29 81.9 1.8 1 8 0.78 2.9 1.30 a3/2 2.865
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Fig. 15. Comparison of experimental data and model prediction of specific heat for 4340
steel as a function of temperature.

consider such a phase change in the melting temperature model and assume that
the iron remains bcc at all pressures.

4.3.3 Equation of State for 4340 Steel

The pressure in the steel is calculated using the Mie-Grüneisen equation of state
(equation 1) assuming a linear Hugoniot relation. The Grüneisen gamma (Γ0) is
assumed to be a constant over the regime of interest. The specific heat at constant
volume is assumed to be the same as that at constant pressure and is calculated using
equation (33). Table 13 shows the parameters used in the pressure calculation. The
bulk speed of sound and the linear Hugoniot slope coefficient have been obtained
from Brown et al. [20] for iron. The Gr̈uneisen gamma value has been interpolated
from the values given by Gust et al. [41]. An initial temperature (T0) of 300 K and
an initial density of 7830 kg/m3 have been used in the model calculations.

Figure 16 compares model predictions with experimental data for iron (Bancroft
et al. [5], McQueen et al. [62], Barker and Hollenbach [15]), mild steel (Katz et al.
[54]), 300 series stainless steels (McQueen et al. [62]), and for AISI 4340 steel

Table 12
Constants used in specific heat model for 4340 steel.

Tc A1 B1 C1 α A2 B2 C2 α
′

(K) (J/kg-K) (J/kg-K) (J/kg-K) (J/kg-K) (J/kg-K) (J/kg-K)

1040 190.14 -273.75 418.30 0.20 465.21 267.52 58.16 0.35
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Fig. 16. Comparison of experimental data with model predictions of equation of state for
4340 steel.

(Gust et al. [41]). The high pressure experimental data are not along isotherms and
show the temperature increase due to compression. The equation of state provides
a reasonable match to the experimental data at compressions below 1.2 which is
reasonable for the simulations of interest in this paper. Improved equations of state
should be used for overdriven shocks.

4.3.4 Shear Modulus Models for 4340 Steel

To determine the model best suited to determine the dependence of the shear mod-
ulus on temperature and pressure, we have compared experimental data on AISI
1010 steel and SAE 304 stainless steel (Fukuhara and Sanpei [33]) to the predic-
tions of the models discussed in Section 3.3.

The parameters used in the shear modulus models are shown in Table 14. The
parameters for the MTS model have been obtained from a least square fit to the data
at a compression of 1. The values ofµ0 and∂µ/∂p for the SCG model are from
Guinan and Steinberg [38]. The derivative with respect to temperature has been
chosen so as to fit the data at a compression of 1. The NP shear model parameters
µ0 andC have also been chosen to fit the data. A value of 0.57 forC is suggested
by Nadal and Le Poac [64]. However, this value leads to a higher value ofµ at high

Table 13
Constants used in the Mie-Grüneisen equation of state for 4340 steel.

C0 (m/s) Sα Γ0

3935 1.578 1.69
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Table 14
Parameters used in shear modulus models for 4340 steel.

MTS shear modulus model

µ0 (GPa) D (GPa) T0 (K)

85.0 10.0 298

SCG shear modulus model

µ0 (GPa) ∂µ/∂p ∂µ/∂T (GPa/K)

81.9 1.8 0.0387

NP shear modulus model

µ0 (GPa) ∂µ/∂p ζ C m (amu)

90.0 1.8 0.04 0.080 55.947

temperatures.

Figure 17 shows the performance of the three models for three values of compres-
sion. The melting temperature is determined using the BPS model discussed earlier.
The initial density is taken to be 7830 kg/m3. The MTS model shows no pressure
dependence of the shear modulus unless the melting temperature is computed as
a function of pressure. However, the model behaves well at low temperatures for
η = 1. Both the SCG and NP shear modulus models are pressure dependent and
provide a good fit to the data. We have used the NP shear modulus model for subse-
quent calculations for 4340 steel because of its smooth transition to zero modulus
at melt.

Details of the validation of the Johnson-Cook and the Mechanical Threshold Stress
models of 4340 steel can be found in Banerjee [10].

5 TAYLOR TEST SIMULATIONS

The attractiveness of the Taylor impact test arises because of the simplicity and
inexpensiveness of the test. A flat-ended cylinder is fired on a target at a relatively
high velocity and the final deformed shape is measured. The drawback of this test
is that intermediate states of the cylinder are relatively difficult to measure.

In this section, we compare the deformed profiles of simulated Taylor cylinders
with experimental profiles. The experimental profiles were scanned at a high res-
olution and digitized using XFig (Sutanthavibul et al. [85]). The digitized curves
were aligned with a grid and scaled to units of length using cues from the digitized
images and their axes (if any were provided). We get errors of around 2% in the
digitized profile during this procedure.
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Fig. 17. Comparison of experimental data with model predictions of shear modulus for
4340 steel.

We have used the Material Point Method for our simulations within the parallel
UINTAH code. The computations were performed for a quarter of the cylinder. We
have used 8 material points per cell (64 material points per cell for simulations at
1235 K), a 8 point interpolation from material points to grid, and a cell spacing
of 0.3 mm. A cell spacing of 0.15 mm gives essentially the same final deformed
profile. The anvil is modeled as a rigid material. Contact between the cylinder and
the anvil is assumed to be frictionless.

Our simulations were run for 150µs - 200µs depending on the problem. These
times were sufficient for the cylinders to rebound from the anvil and to stop under-
going further plastic deformation. However, small elastic deformations continue to
persist as the stress waves reflect from the surfaces of the cylinder.
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We have performed a systematic and extensive set of verification and validation
tests to determine the accuracy of the Material Point Method and its implementation
within UINTAH ( Banerjee [9, 7, 8, 12, 10]). A number of materials and conditions
have been explored in the process. We are, therefore, reasonably confident in the
results of our simulations.

Figures 18(a) shows an experiment that involves very large deformations and fric-
tional contact between the Taylor cylinder and the anvil. The material is mild steel.
To determine if our algorithm could be used to simulate such large deformations,
we ran a Taylor impact test on the problem geometry using the Johnson-Cook plas-
ticity model for 4340 steel. Figure 18(b) shows the predicted profile overlaid on the
experimental profile.

The simulated and experimental profiles are remarkably close to each other. Inter-
estingly, the experiment also shows that the tips of the “mushroom” have broken
off. We did not simulate any fracture and hence we do not see that effect. Note that
the mushrooming of the end appears to be strongly dependent on the coefficient of
friction between the cylinder and the anvil. If there is no friction, then the mush-
rooming effect is much smaller and the radius of curvature of deformed end of the
cylinder is considerably larger. None of the more recent Taylor tests (that we use
to compare the five flow stress models) show the amount of mushrooming seen in
Figure 18(a). It is for this reason that we have chosen to use frictionless contact in
our Taylor impact simulations.

5.1 Validation Metrics

The validation metrics that we consider in this paper are based on the final shape of
the cylinder though other metrics may be considered if measurements of these are
made during the course of an impact test. We note that the Taylor test could also
be used to validate simulations of dynamic fracture though we do not address that
issue in this paper.

(a) Actual profile.
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(b) Computed vs. actual profile.

Fig. 18. Comparison of experimental vs. computed shapes.L0 = 25.37 mm ,D0 = 12.7
mm,V0 = 652.3 m/s. The experimental profile is from Carrington and Gayler [24] (plate 1,
figure 3).
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There is a large literature on the systematic verification and validation of com-
putational codes (see Oberkampf et al. [68], Babuska and Oden [4] and references
therein). It has been suggested that validation metrics be developed that can be used
to compare experimental data and simulation results. The metrics discussed in this
paper are intended to be a step in that direction but are certainly not comprehensive.

The most common metric used in the literature is the “view-graph norm”
(Oberkampf et al. [68]) where a plot of the simulated deformed configuration is su-
perimposed on the experimental data and a visual judgement of accuracy is made.
Examples can be found in Wilkins and Guinan [95], Johnson and Cook [49]. There
is value to this approach and we present some of our data in this form. However,
when the number of Taylor tests is large, it is not possible to present sectional/plan
views for all the tests and numerical metrics are preferable. We believe that a rep-
resentative set of geometrical metrics can provide information that can be used for
quantitative comparisons between simulation and experiment.

Some metrics that have been used to compare Taylor impact tests are:

(1) The final length of the deformed cylinder (Lf ) (Wilkins and Guinan [95], Gust
[40], Jones and Gillis [53], Johnson and Holmquist [51], House et al. [47]).

(2) The diameter of the mushroomed end of the cylinder (Df ) (Johnson and Holmquist
[51], House et al. [47]).

(3) The length of the elastic zone in the cylinder (Xf ) (Jones and Gillis [53],
House et al. [47]).

(4) The bulge at a given distance from the deformed end (Wf ) (Johnson and
Holmquist [51]).

Contours of plastic strain have also been presented in a number of works on Taylor
impact. However, we do not find such contours to be particularly useful in com-
paring simulations with experiments. We note that contours of plastic strain are
useful when the results of simulations with two different numerical techniques are
compared.

We consider some additional geometrical metrics that can be compared with exper-
imental data. These metrics can act as a substitute for detailed pointwise geometri-
cal comparisons between two Taylor test profiles. We also consider metrics such as
the time at which the cylinder rebounds from the anvil and the surface temperature
profile; both of which can be measured during the course of an experiment. The
additional geometric metrics that we compute in our simulations are:

(1) The final length of a axial line on the surface of the cylinder (Laf ).
(2) The area of the cross-sectional profile of the deformed cylinder (Af ).
(3) The volume of the deformed cylinder (Vf ).
(4) The location of the centroid of the deformed cylinder in terms of a orthonor-

mal basis with origin at deformed end (Cxf , Cyf ).
(5) The moments of inertia of the cross section of the deformed cylinder about
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the basal plane (Ixf ) and an axial plane (Iyf ).

Higher order moments should also be computed so that we can dispense with arbi-
trary measures such asWf .

Figure 19 shows the metrics that we have used to compare deformed Taylor cylinder
profiles in this work. The numerical formulas used to compute the area, volume,
centroid, and moments of inertia are given in Appendix C.

5.2 Taylor impact experiments on copper

Figure 20 shows the ratio of the final lengths of Taylor cylinders to their initial
lengths (Lf/L0) for a number of Taylor impact tests. These ratios have been plot-
ted as a function of the sum of the initial kinetic energy density and the initial
internal energy density (relative to a fixed temperature of 294 K). The internal en-
ergy density has been added to shift the data according to temperature. The plot
indicates the following:

(1) The ratio (Lf/L0) is essentially independent of the initial length and diameter
of the cylinder.

(2) There is a linear relationship between the ratio (Lf/L0) and the initial kinetic
energy density.

(3) As temperature increases, the absolute value of the slope of this line increases.
(4) The deformation of OFHC (Oxygen Free High Conductivity) cannot be dis-

tinguished from that of ETP (Electrolytic Tough Pitch) copper from this plot.
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Fig. 19. Geometrical metrics used to compare profiles of Taylor impact specimens.
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Fig. 20. Ratio of final length to initial length of copper Taylor cylinders for various condi-
tions. The data are from Wilkins and Guinan [95], Gust [40], Johnson and Cook [49], Jones
and Gillis [53] and House et al. [47].

We have chosen to do detailed comparisons between experiment and simulation for
the three tests marked with crosses on the figure. These tests represent situations
in which fracture has not been observed in the cylinders and cover the range of
temperatures of interest to us.

The ratio of the diameter of the deformed end to the original diameter (Df/D0) for
some of these tests is plotted as a function of the energy density in Figure 21. A
linear relation similar to that for the length is observed.

The length of the elastic zone at the end of the test is difficult to determine (es-
pecially for high strain rate and high temperature tests) and may not be a suitable
metric for these conditions. This can be seen from the amount of variability in this
metric shown in Figure 22.

Finally, the volume of the cylinder should be preserved during the Taylor test if
isochoric plasticity holds. This metric can be used to determine the error in digi-
tization of the profile of the cylinder if we assume isochoric behavior. Figure 23
shows the ratio of the final volume to the initial volume (Vf/V0) as a function of the
energy density. We can see that the volume is preserved for three of the tests but not
for the rest. It may be possible to attribute the difference to errors in measurement.
One error in the experiments may be quantified with this metric.
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Fig. 21. Ratio of final length to initial length of copper Taylor cylinders for various condi-
tions. The data are from Wilkins and Guinan [95], Gust [40], Johnson and Cook [49] and
House et al. [47].
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Fig. 22. Ratio of the length of the elastic zone to initial length of copper Taylor cylinders
for various conditions. The data are from Wilkins and Guinan [95], Gust [40], Johnson and
Cook [49] and House et al. [47].

5.3 Taylor impact simulations of copper

In this section we present results from simulations of three Taylor tests on copper,
compute validation metrics, and compare these metrics with experimental data.
Table 15 shows the initial dimensions, velocity, and temperature of the specimens
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[49].

Table 15
Initial data for copper simulations.

Test Material Initial Initial Initial Initial Source

Length Diameter Velocity Temperature

(L0 mm) (D0 mm) (V0 m/s) (T0 K)

Cu-1 OFHC Cu 23.47 7.62 210 298 Wilkins and Guinan [95]

Cu-2 ETP Cu 30 6.00 188 718 Gust [40]

Cu-3 ETP Cu 30 6.00 178 1235 Gust [40]

that we have simulated. All specimens were annealed before testing.

5.3.1 Test Cu-1

Figures 24(a), (b), (c), (d), and (e) show the experimental profiles and the profiles
computed by the JC, SCGL, ZA, MTS, and PTW models, respectively, for test
Cu-1. The Johnson-Cook model gives the best match to the experimental data at
this temperature (room temperature) if we consider the final length and the final
mushroom diameter. All the other models underestimate the mushroom diameter
but predict the final length quite well. The MTS model slightly underestimates the
final length.

The time at which the cylinder loses all its kinetic energy (as predicted by the
models) is shown in the energy plot of Figure 25. The predicted times vary from
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Fig. 24. Computed versus experimental profiles for Taylor test Cu-1.
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Fig. 25. Energy a function of time predicted by the five models for Taylor test Cu-1.

approximately 55 micro secs to 60 micro secs but are essentially the same for all the
models. The total energy is conserved relatively well. The slight initial dissipation
is the result of the artificial viscosity in the numerical algorithm that is used to damp
out initial oscillations.

From Figure 23 we can see that the final volume of the cylinder for test Cu-1 is
around 5% larger than the initial volume. We assume that this error is due to errors
in digitization. In that case, we have errors of +1% for measures of length and
errors of +2% for measures of area in the experimental profile. Moments of inertia
of areas are expected to have errors of around 7%.

The error metrics for test Cu-1 are shown in Figure 26. The final length (Lf ) is
predicted to within 3% of the experimental value by all the models. The Johnson-
Cook and Preston-Tonks-Wallace models show the least error.

The length of the deformed surface of the cylinder (Laf ) is predicted best by the
Johnson-Cook and Steinberg-Cochran-Guinan-Lund models. The other models un-
derestimate the length by more than 5%.

The final mushroom diameter (Df ) is underestimated by 5% to 15%. The Johnson-
Cook model does the best for this metric, followed by the Mechanical Threshold
Stress model.

The width of the bulge (Wf ) is underestimated by the Johnson-Cook and SCGL
models and accurately predicted by the ZA, MTS, and PTW models.

The length of the elastic zone (Xf ) is predicted to be zero by the SCGL, ZA, MTS,
and PTW models and 1.5 mm by the Johnson-Cook model. Further, an accurate
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Fig. 26. Comparison of error metrics for the five models for Taylor test Cu-1.

estimate of the length of the zone cannot be made from the experimental profile for
test Cu-1. Therefore we do not consider this metric of utility in our comparisons
for this test.

From Figure 26 we see that the predicted area of the profile (Af ) is within 3% of
the experimental value for all the models. The SCGL model shows the least error
in this metric. If we decrease the experimental area by 2% (in accordance with the
assumed error in digitization), the Johnson-Cook and PTW models show the least
error in this metric.

The predicted final volume of the cylinder is around 0.8% larger than the initial
volume showing that volume is not preserved accurately by our stress update algo-
rithm. The error in digitization is around 5%. That gives us a uniform error of 5%
between the experimental and computed volume (Vf ) as can be seen in Figure 26.

The locations of the centroids (Cxf , Cyf ) provide further geometric information
about the shapes of the profiles. These are the first order moments of the area. The
computed values are within 2% of experiment except for the MTS model which
shows errors of -4% forCxf and +6% forCyf .

The second moments of the area are shown asIxf andIyf in Figure 26. The error in
Ixf tracks and accentuates the error inLf while the error inIyf tracks the error in
Df . The width of the bulge is included in this metric and it can be used the replace
metrics such asLf , Df , andWf for the purpose of comparison. We notice this
tracking behavior when the overall errors are small but not otherwise.

We have also plotted the arithmetic mean of the absolute value of the errors in each
of the metrics to get an idea about which model performs best. The average error
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is the least (2.5%) for the Johnson-Cook model, followed by the ZA and PTW
models (3.5%). The MTS model shows an average error of 4% while the SCGL
model shows the largest error (5%). If we subtract the digitization error from the
experimental values, these errors decrease and lie in the range of 2% to 3%.

In summary, all the models predict profiles that are within the range of experi-
mental variation for the test at room temperature. Additional simulations at higher
strain rates (not presented in this work) have confirmed that all the models do well
for room temperature simulations for strain rates ranging from 500 /s to 8000 /s.
We suggest that the simplest model should be used for such simulations and our
recommendation is the Zerilli-Armstrong model for copper.

As the next sections show, the above conclusion does not hold for high temperature
simulations.

5.3.2 Test Cu-2

Figures 27(a), (b), (c), (d), and (e) show the experimental profiles and the profiles
computed by the JC, SCGL, ZA, MTS, and PTW models, respectively, for test Cu-
2 at 718 K. In this case, the Johnson-Cook model predicts the final length well but
overestimates the mushroom diameter. The SCGL model overestimates the length
but predicts the mushroom diameter well. The ZA model predicts the overall pro-
file remarkably well except for the mushroom diameter. The MTS model slightly
overestimates both the final length and the mushroom diameter. The PTW model
also performs similarly, except that the error is slightly larger than that for the MTS
model.

The energy plot for test Cu-2 is shown in Figure 28. In this case, the time of impact
predicted by the JC and ZA models is around 100 micro secs while that predicted
by the SCGL, MTS, and PTW models is around 90 micro secs.

From Figure 23 we see that the deformed volume computed from the digitized
profile is almost exactly equal to the initial volume for test Cu-2. The digitization
error can be neglected in this case. The error metrics for test Cu-2 are shown in
Figure 29.

The least error in the predicted final length (Lf ) is for the ZA model followed by
the JC model. The SCGL model shows the largest error in this metric (7%). The
MTS and PTW models overestimate the final length by around 6%.

The value ofLaf is predicted to within 2% of the experimental value by the ZA
model. The corresponding errors in the other models vary from 6% (MTS) to 9%
(SCGL).

The mushroom diameter is overestimated by all models. The JC model overesti-

48



−10 −8 −6 −4 −2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

mm

m
m

Expt.
JC

(a) Johnson-Cook.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

mm

m
m

Expt.
SCGL

(b) Steinberg-Cochran-Guinan-Lund.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

mm

m
m

Expt.
ZA

(c) Zerilli-Armstrong

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

mm

m
m

Expt.
MTS

(d) Mechanical Threshold Stress.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

mm

m
m

Expt.
PTW

(e) Preston-Tonks-Wallace.

Fig. 27. Computed versus experimental profiles for Taylor test Cu-2.
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Fig. 29. Comparison of error metrics for the five models for Taylor test Cu-2.

mates this metric by more than 30%. The ZA and PTW models overestimateDf by
17% to 19%. The MTS model overestimatesDf by 12%. The SCGL model does
best with an error of 7%.

The width of the bulge is underestimated by all the models with errors varying
between 5% (ZA) tp 9% (JC).

The final area (Af ) is predicted almost exactly by the JC model. The ZA model
underestimates the area by 1% while the errors in the other models vary from 2%
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to 4%. The error in the final volume is less than 1% for all the models.

The location of the centroid is predicted best by the Johnson-Cook model followed
by the ZA model. Both the MTS and PTW models underestimateCxf by 2% and
overestimateCyf by 5%. The SCGL model shows the largest error for this metric.

For the second order momentsIxf , the smallest error is for the Johnson-Cook model
followed by the ZA model. The largest errors are from the SCGL model. The MTS
and PTW models overestimate this metric my 15%. The PTW model predictsIyf

the best, followed by the MTS model showing that the overall shape of the profile
is best predicted by these models. The Johnson-Cook and SCGL models show the
largest errors in this metric.

On average, the ZA model performs best for test Cu-2 at 718 K with an average
error of 4%. The MTS model shows an average error of 5% while the JC and PTW
models show errors of approximately 6%. The SCGL model, with an average error
of approximately 7%, does the worst.

5.3.3 Test Cu-3

Figures 30(a), (b), (c), (d), and (e) show the the profiles computed by the JC, SCGL,
ZA, MTS, and PTW models, respectively, and the final length of the cylinder for
test Cu-3 at 1235 K. The full profile of the cylinder was not available for this test.
The Johnson-Cook model fails to predict a the deformation of the cylinder at this
temperature and the material appears to flow along the plane of impact. The SCGL
model predicts a reasonably close value of the final length. However, the low strain
rate part of the SCGL model behaves in an unstable manner at some levels of dis-
cretization for this test and should ideally be discarded in high strain rate simula-
tions. The ZA model overestimates the final length as does the MTS model. The
PTW model predicts a final length that is closer to experiment but does not show
the bulge that is characteristic of hardening. This can be seen from the tendency of
the model to saturate prematurely as discussed in the section on one-dimensional
tests.

The energy plot for test Cu-3 is shown in Figure 31. For this test, the JC model
predicts a time of impact greater than 250 micro secs while the rest of the models
predict values between 120 micro secs and 130 micro secs. The reason for the
anomalous behavior of the JC model is that the rate dependence of the yield stress
at high temperature is severely underestimated by the JC model. The nominal strain
rate is around 5000/s for this test at which the yield stress should be considerably
higher than the 50 MPa that is computed by the JC model.

We do not have the final profile of the sample for this test and hence cannot compare
any metrics other than the final length. The final length is predicted most accurately
by the SCGL model with an error of 10%, followed by the PTW model (error 15%)
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(d) Mechanical Threshold Stress.
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Fig. 30. Computed versus experimental profiles for Taylor test Cu-3.
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Fig. 31. Energy a function of time predicted by the five models for Taylor test Cu-3.

and the ZA model (error 20%). The Johnson-Cook model shown an error of more
than 90%.

These three sets of tests show that the performance of the models deteriorates with
increasing temperature. However, on average all the models predict reasonably ac-
curate profiles for the Taylor impact tests. The choice of the model should therefore
be dictated by the required computational efficiency and the conditions expected
during simulations.

5.3.4 Other Taylor impact tests

We have also performed some more Taylor impact tests on copper to explore the
effect of strain rate and friction, and for comparisons with MPM and FEM Some of
these tests are discussed below.

Table 16 shows the initial dimensions, velocity, and temperature of the specimens
(along with the type of copper used and the source of the data) that we have simu-
lated and compared with experimental data. Not all the models have been used in
what follows. For brevity, we do not present results from all the tests.

5.3.4.1 Performance of plasticity models at room temperature. Comparisons
between the computed and experimental profiles of annealed copper specimen Cu-I
are shown in Figure 32. For this test, the MTS model clearly performs better than
the Johnson-Cook model in predicting the final length, mushroom diameter, and
the overall profile. The bulge is slightly underestimated by the MTS model. This
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test reflects what we have observed before, that is, at room temperature both the
Johnson-Cook and the MTS model give good estimates of high strain rate plastic
deformation.

5.3.4.2 Performance of plasticity models at high temperatures. At higher
temperatures, the response of the plasticity models is quite different. Comparisons
between the computed and experimental profiles of ETP copper specimen Cu-F
are shown in Figure 33(a), (b), and (c). Those for specimen Cu-G are shown in
Figure 33(d), (e), and (f). The parameters used for these models in these runs are
those given by Gust [40] and Zocher et al. [101].

From the figures, we observe that the JC model does relatively well in predicting
the overall profile at 718 K and 727 K. The MTS model overestimates the length
and underestimates the mushroom diameter. The SCGL model does better than the
JC model in predicting the final length but underestimates the diameter.

5.3.4.3 Effect of friction at the impact surface. If frictional contact at the im-
pact surface is simulated, the final shapes of the specimens Cu-F and Cu-G are as
shown in Figure 34. We have assume a coefficient of friction of 0.0002 between the
Taylor cylinder and the anvil.

In this case, the edge of the deformed surface tends to curl away from the anvil. This
effect is not observed for the zero friction contact case in the previous section. We
are not sure whether the effect is truly physical or due to the effect of incorrectly
computed normals at the corners of the cylinder. Incorrect normals could cause
a fictitious upward force to be created that tends to push the edges away from
the anvil. However, this effect is excepted to be small. The second effect that is
observed is that the deformation of the end is smaller because of friction.

The final lengths of the samples do not appear to be affected significantly by friction
and we see the same behavior as in Figure 33.

5.3.4.4 Comparisons with FEM. To determine how our MPM simulations com-
pare with FEM simulations we have run two high temperature ETP copper im-
pact tests using LS-DYNA (with the coupled structural-thermal option). Figure 35
shows the final deformed shapes for the two cases from the MPM and FEM simu-
lations using Johnson-Cook plasticity.

The FEM simulations overestimate the final length. We were unable to refine the
mesh further without serious spurious modes being generated. We believe the FEM
simulations will be able to match the MPM simulations with further mesh refine-
ment and adaptive remeshing near the base of the cylinder.
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Table 16
Initial data for copper simulations. OFHC = oxygen free high conductivity. ETP = elec-
trolytic tough pitch.

Case Material Initial Initial Initial Initial Source

Length Diameter Velocity Temperature

(L0 mm) (D0 mm) (V0 m/s) (T0 K)

Cu-A OFHC Cu 23.47 7.62 210 298 Wilkins and Guinan [95]

Cu-B OFHC Cu 25.4 7.62 130 298 Johnson and Cook [49]

Cu-C OFHC Cu 25.4 7.62 146 298 Johnson and Cook [49]

Cu-D OFHC Cu 25.4 7.62 190 298 Johnson and Cook [49]

Cu-E ETP Cu 30 6.00 277 295 Gust [40]

Cu-F ETP Cu 30 6.00 188 718 Gust [40]

Cu-G ETP Cu 30 6.00 211 727 Gust [40]

Cu-H ETP Cu 30 6.00 178 1235 Gust [40]

Cu-I OFHC Cu 50.8 7.62 177 298 Zocher et al. [101]
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Fig. 32. Comparison of experimental and computed shapes of annealed copper cylinder
Cu-I using the Johnson-Cook and Mechanical Threshold Stress plasticity models. The axes
are shown in cm units. The circles represent experimental data. The solid lines represent
the simulated profiles.
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Fig. 33. Comparison of experimental and computed shapes of ETP copper cylinders Cu-F
and Cu-G using the Johnson-Cook (JC), Mechanical Threshold Stress (MTS), and Stein-
berg-Cochran-Guinan-Lund (SCGL) plasticity models. The axes are shown in cm units.
The circles represent experimental data. The solid lines represent the simulated profiles.
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Fig. 34. Effect of frictional contact between the cylinder and the anvil. Comparison of ex-
perimental and computed shapes of ETP copper cylinders Cu-F and Cu-G using the John-
son-Cook (JC), Mechanical Threshold Stress (MTS), and Steinberg-Cochran-Guinan-Lund
(SCGL) plasticity models. The axes are shown in cm units. The circles represent experi-
mental data. The solid lines represent the simulated profiles.
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Fig. 35. Comparison of experimental and computed shapes of ETP copper cylinders Cu-F
and Cu-G using MPM and FEM. The axes are in cm. The circles represent experimental
data. The solid lines represent the simulated profiles.

Interestingly, the FEM simulations also show a turned up edge at the base. This
indicates that the effect that we discussed in the previous section may be real and
not an artifact of the contact algorithm.

5.3.4.5 Effect of mesh refinement. Simulations of impact case Cu-I with in-
creasing mesh refinement are shown in Figure 36(a) (with friction) and in Fig-
ure 36(b) (without friction). The coarse mesh has a grid spacing of 0.64 mm, the
medium mesh has a grid spacing of 0.32 mm, and the fine mesh has a spacing of
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0.16 mm. The number of particles per grid cell is 27 and a 27 node GIMP interpo-
lation is used to move information from particles to the grid and vice versa.

We can see that the final length is predicted correctly by the coarse mesh but not the
mushroom diameter. The Medium and fine meshes predict the same final lengths
and mushroom diameters. We take this to mean that we have arrived at a converged
solution with the medium mesh. This is the mesh size that we have used for all our
computations. We have observed the same behavior for simulations at 718 K and
727 K. However, a finer mesh is needed to obtain the converged solution at 1235
K.

5.4 Taylor tests on 6061-T6 aluminum alloy

In this section we present the results from Taylor tests on 6061-T6 aluminum spec-
imens for different initial temperatures and impact velocities. We have chosen to
study this material as it is a well characterized face centered cubic material that has
been utilized by Chhabildas et al. [26] for the validation of high velocity impacts
that formed the basis of the second stage of our validation simulations.

5.4.1 Taylor impact experiments on 6061-T6 Al

Figure 37 shows the ratio of the final lengths of Taylor cylinders to their initial
lengths (Lf/L0) for a number of Taylor impact tests. These ratios have been plot-
ted as a function of the sum of the initial kinetic energy density and the initial
internal energy density (relative to a fixed temperature of 294 K). The internal en-
ergy density has been added to shift the data according to temperature. The plot
indicates the following:

(1) The ratio (Lf/L0) is essentially independent of the initial length and diameter
of the cylinder.

(2) There is a linear relationship between the ratio (Lf/L0) and the initial kinetic
energy density.

(3) As temperature increases, the absolute value of the slope of this line increases.

We have chosen to do detailed comparisons between experiment and simulation for
the three tests marked with crosses on the figure. These tests represent situations
in which fracture has not been observed in the cylinders and cover the range of
temperatures of interest to us.

The ratio of the diameter of the deformed end to the original diameter (Df/D0) for
some of these tests is plotted as a function of the energy density in Figure 38. A
linear relation similar to that for the length is observed.
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Fig. 36. Effect of mesh refinement. Comparison of experimental and computed shapes of
OFHC copper cylinder Cu-I using the Mechanical Threshold Stress (MTS) model. The axes
are in cm. The circles represent experimental data. The solid lines represent the simulated
profiles.

The length of the elastic zone at the end of the test is difficult to determine (es-
pecially for high strain rate and high temperature tests) and may not be a suitable
metric for these conditions. This can be seen from the amount of variability in this
metric shown in Figure 39.
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Finally, the volume of the cylinder should be preserved during the Taylor test if
isochoric plasticity holds. This metric can be used to determine the error in digi-
tization of the profile of the cylinder if we assume isochoric behavior. Figure 40
shows the ratio of the final volume to the initial volume (Vf/V0) as a function of the
energy density. The volume is not preserved in any of the experiments. We attribute
this error of 5% in the final volume to errors during the digitization of the profiles.
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Fig. 37. Ratio of final length to initial length of 6061-T6 aluminum alloy Taylor cylinders
for various conditions. The data are from Wilkins and Guinan [95], Gust [40], and House
et al. [47].
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Fig. 38. Ratio of final length to initial length of 6061-T6 aluminum alloy Taylor cylinders
for various conditions. The data are from Wilkins and Guinan [95], Gust [40], and House
et al. [47].
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Fig. 39. Ratio of the length of the elastic zone to initial length of 6061-T6 aluminum alloy
Taylor cylinders for various conditions. The data are from Wilkins and Guinan [95], Gust
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Fig. 40. Ratio of the final volume to initial volume of 6061-T6 aluminum alloy Taylor
cylinders for various conditions. The data are from Wilkins and Guinan [95] and Gust [40].

Detailed comparisons have been provided for the tests marked with crosses in fig-
ures shown in this section. We have also simulated a few other tests, the details of
which are not discussed in the interest of brevity.
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Table 17
Initial data for 6061-T6 aluminum simulations.

Case Material Initial Initial Initial Initial Source

Length Diameter Velocity Temperature

(L0 mm) (D0 mm) (V0 m/s) (T0 K)

Al-A 6061-T6 Al 23.47 7.62 373 298 Wilkins and Guinan [95]

Al-B 6061-T6 Al 23.47 7.62 603 298 Wilkins and Guinan [95]

Al-C 6061-T6 Al 46.94 7.62 275 298 Wilkins and Guinan [95]

Al-D 6061-T6 Al 46.94 7.62 484 298 Wilkins and Guinan [95]

Al-E 6061-T6 Al 30 6.00 200 295 Gust [40]

Al-F 6061-T6 Al 30 6.00 358 295 Gust [40]

Al-G 6061-T6 Al 30 6.00 194 635 Gust [40]

Al-H 6061-T6 Al 30 6.00 354 655 Gust [40]

5.4.2 Taylor impact simulations of 6061-T6 Al

Table 17 shows the initial dimensions, velocity, and temperature of the specimens
(along with the type of copper used and the source of the data) that we have simu-
lated and compared with experimental data.

5.4.2.1 Comparison of plasticity models at room temperature. Comparisons
between the computed and experimental profiles of 6061T6 aluminum alloy spec-
imen Al-A are shown in Figure 41(a), (b), and (c). Those for specimen Al-C are
shown in Figure 41(d), (e), and (f).

For the short cylinder, the final length is predicted accurately by all three models.
However, the final mushroom diameter is underestimated by all the models. The
difference in the predicted shapes is small and all the models do equally well.

For the long cylinder, the final length is underestimated by all three models while
the mushroom diameter and the bulge are predicted accurately by all three. Once
again, there is no significant difference between the three models.

If frictional contact at the impact surface is included, the final shapes of the speci-
mens Al-A and Al-C are as shown in Figure 42.

The same final length as in the no friction case is predicted by all three models.
However, the diameter of the mushroomed end is closer to the experimental value
for cylinder Al-A. The Johnson-Cook model shows the largest value of the mush-
room diameter while the MTS model predicts the smallest value. However, both
values are larger than that for the simulations without friction. The turned-up ends
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Fig. 41. Comparison of experimental and computed shapes of 6061T6 aluminum cylin-
ders Al-A and Al-C using the Johnson-Cook (JC), Mechanical Threshold Stress (MTS),
and Steinberg-Cochran-Guinan-Lund (SCGL) plasticity models. The axes are shown in cm
units. The circles represent experimental data. The solid lines represent the simulated pro-
files.
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Fig. 42. Effect of frictional contact between the 6061-T6 Al specimen and the anvil. The
plots show the experimental and computed shapes of 6061T6 aluminum cylinders Al-A
and Al-C. The profiles have been computed using the Johnson-Cook (JC), Mechanical
Threshold Stress (MTS), and Steinberg-Cochran-Guinan-Lund (SCGL) plasticity models.
The axes are shown in cm units. The circles represent experimental data. The solid lines
represent the simulated profiles. 65



are also quite prominent for Al-A because of the larger initial velocity. The effect
of friction is much smaller for cylinder Al-C.

We conclude that room temperature experiments can be predicted accurately by all
the models. Hence, in simulations at room temperature, the least expensive model
(the Johnson-Cook model in this case) should be used. Contact friction should also
be included, if appropriate, for more realistic simulations.

5.4.2.2 Comparison of plasticity models at high temperature. At higher tem-
peratures, the response of the three plasticity models is quite different. Comparisons
between the computed and experimental profiles of 6061T6 aluminum alloy spec-
imen Al-G are shown in Figure 43(a), (b), and (c). Those for specimen Al-H are
shown in Figure 43(d), (e), and (f). Note that we have used frictional contact in
these simulations with a coefficient of friction of 0.0002 between the cylinder and
the anvil.

The profile predicted by the Johnson-Cook model for cylinder Al-G shows that:

(1) the final length is predicted accurately,
(2) the mushroom diameter is predicted accurately, and
(3) the bulge is underestimated indicating that the model underestimates strain

hardening at 635 K.

The MTS model overestimates the final length and underestimates the mushroom
diameter. This indicates that the parameters used for the Model (which were for an
aluminum alloy with 1% magnesium) (Puchi-Cabrera et al. [73]) are not accurate
enough to be used to model 6061-T6 Al. Both the MTS model and the SCGL model
underestimate the mushroom diameter - indicating that the predicted yield stress is
too high

For cylinder Al-H, the nominal strain rate is around 12,000 /s (around double that
for cylinder Al-G). In this case, the final length predicted by the Johnson-Cook
model is the closest to experiment. In addition, the JC model shows a pronounced
curvature in the mushroomed end of the cylinder. We cannot decide the accuracy of
the simulation because the final profile for this test is not available for comparison
with the predicted profile.

On the other hand, the final lengths predicted by both the MTS and the SCGL
model are more than 80% larger than the experimental value. This indicates that
the temperature dependence of the yield stress is not modeled accurately by these
models. Recalibration of the models is required if simulations at high temperatures
and high strain rates are to be performed for 6061-T6 Al alloy.
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Fig. 43. High temperature Taylor impact simulations. Comparison of experimental and
computed shapes of 6061T6 aluminum cylinders Al-G and Al-H using the Johnson-Cook
(JC), Mechanical Threshold Stress (MTS), and Steinberg-Cochran-Guinan-Lund (SCGL)
plasticity models. The axes are shown in cm units. The circles represent experimental data.
The solid lines represent the simulated profiles.
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5.4.2.3 Comparisons between MPM and FEM. To determine how our MPM
simulations compare with FEM simulations we have run two high temperature alu-
minum impact tests using LS-DYNA (with the coupled structural-thermal option).
Figure 44 shows the final deformed shapes for the two cases from the MPM and
FEM simulations using Johnson-Cook plasticity. Note that the FEM simulations
have been performed with under-integrated elements and hourglass control.

The FEM simulations overestimate the final length and underestimate the mush-
room diameter for cylinder Al-G. For cylinder Al-H, the final length predicted by
FEM is more than 80% larger than the experimental value. The FEM prediction for
model Al-G can be with adaptive mesh refinement at the highly deformed regions.
It is unlikely that standard displacement or hybrid finite elements are capable of
simulating cylinder Al-H without significant remeshing.

5.4.2.4 Taylor impact simulations with particle erosion. Since the MTS and
SCG model predicted very stiff responses for the cylinders, we thought that it was
possible that the cylinders were actually failing. This section presents simulations
that include failure of MPM particles. The approach and models used to simulate
particle failure are discussed in Appendix D.

Figure 45 shows Taylor impact profiles for cases Al-G and Al-H with particle ero-
sion. If we compare these profiles with the simulated profiles without failure (Fig-
ure 43), we notice that there is essentially no difference for cylinder Al-G. However,
we do notice some differences in the computed profiles for cylinder Al-H.

The profile predicted by the Johnson-Cook model for cylinder Al-H shows some
necking of the mushroomed end that is not present in the simulation without fail-
ure. Interestingly, failure of particles does not cause the diameter of the mushroom
to increase - instead we see a significant decrease in the final mushroom diameter.
Finally, the deformed length of the cylinder does not appear to be affected by par-
ticle failure which occurs mostly at the highly strained region near the center of the
base.

We conclude that it is the material model rather than failure that gives us stiffer
responses for cylinder Al-H that experiments suggest. The models need to be recal-
ibrated for the regime of strain rates and temperatures involved in this test.

5.4.2.5 Effect of mesh refinement. It could be suggested that the stiff response
of the MTS and SCGL models are due to lack of convergence and that further mesh
refinement is required. In this section we show the effect of mesh refinement on the
response of cylinder Al-H with the Johnson-Cook model. Similar effects have been
observed for the MTS and SCGL models and the conclusions are similar (though
the mesh dependence is not as pronounced for these models).
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Fig. 44. Comparison of experimental and computed shapes of 6061T6 aluminum cylinders
Al-G and Al-H using MPM and FEM and the Johnson-Cook plasticity model. The axes
are in cm. The circles represent experimental data. The solid lines represent the simulated
profiles. 69



−1 0 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(a) JC (Al-G).

−1 0 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(b) MTS (Al-G).

−1 0 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(c) SCGL (Al-G).

−1 0 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(a) JC (Al-H).

−1 0 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(b) MTS (Al-H).

−1 0 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(c) SCGL (Al-H).

Fig. 45. Effect of including particle failure. Comparison of experimental and computed
shapes of 6061T6 aluminum cylinders using the Johnson-Cook (JC), Mechanical Thresh-
old Stress (MTS), and Steinberg-Cochran-Guinan (SCG) plasticity models with particle
erosion. The axes are shown in cm units. The circles represent experimental data. The solid
lines represent the simulated profiles.
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Fig. 46. Effect of mesh refinement. Comparison of experimental and computed shapes of
6061T6 aluminum cylinder Al-H using the Johnson-Cook (JC) model with increasing mesh
refinement. The axes are in cm. The circles represent experimental data. The solid lines (and
dots) represent the simulated profiles.

The coarse mesh has a grid spacing of 0.64 mm, the medium mesh has a grid
spacing of 0.32 mm, and the fine mesh has a spacing of 0.16 mm. The number
of particles per grid cell is 27 and a 27 node GIMP interpolation is used to move
information from particles to the grid and vice versa.

Simulations of impact case Al-H with increasing mesh refinement are shown in Fig-
ure 46. We show both simulations with friction (Figure 46(a)) and without friction
(Figure 46(b)) between the cylinder and the anvil.

If we look at the simulations with friction, we notice that as the mesh is refined the
final length of the cylinder decreases and the mushroom shape changes (becomes
thinner). The reason for this mesh dependence becomes obvious when we look at
the spacing between particles. Due to the large deformation at the base, the particle
spacing becomes larger than the zone of influence of the GIMP interpolation func-
tions. Particles cease to see nearby neighbors at this stage. As the number of parti-
cles increases with mesh refinement, particles continue to interact with neighbors
up to a late stage in the simulation. A solution to this problem is adaptive particle
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addition in highly deformed regions so that particles do not cease to interact via the
grid. Further work is needed to resolve this issue.

The same holds for the simulations without friction, except that the deformed end
of the cylinder tends to flow along the surface of the anvil instead of rebounding
back in the form of a true mushroom.

Our overall observations from the tests on 6061-T6 Al alloy are:

(1) All three models perform well at room temperature. The Johnson-Cook model
is preferable at these temperatures because of the computational efficiency of
the model.

(2) At high temperatures, the MTS and SCGL models predict a stiffer response
than experiments suggest. These models have to be recalibrated for these tem-
peratures.

(3) There is some mesh dependence for the Johnson-Cook model at high temper-
atures due to excessive deformation of the Taylor cylinder. Adaptive particle
addition may be required (in highly deformed zones) to resolve this issue.

5.5 Taylor tests on 4340 steel

In this section we present the results from Taylor tests on 4340 steel specimens for
different initial temperatures and impact velocities. More detailed comparisons for
4340 steel can be found elsewhere (Banerjee [10]).

5.5.1 Taylor impact experiments on 4340 steel

Figure 47 shows the ratio of the final lengths of Taylor cylinders to their initial
lengths (Lf/L0) for a number of Taylor impact tests. These ratios have been plot-
ted as a function of the sum of the initial kinetic energy density and the initial
internal energy density (relative to a fixed temperature of 294 K). The internal en-
ergy density has been added to shift the data according to temperature. The plot
indicates the following:

(1) The ratio (Lf/L0) is essentially independent of the initial length and diameter
of the cylinder.

(2) There is a linear relationship between the ratio (Lf/L0) and the initial kinetic
energy density.

(3) As temperature increases, the absolute value of the slope of this line increases.

We have chosen to do detailed comparisons between experiment and simulation for
the three tests marked with crosses on the figure. These tests represent situations
in which fracture has not been observed in the cylinders and cover the range of
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temperatures of interest to us.

The ratio of the diameter of the deformed end to the original diameter (Df/D0) for
some of these tests is plotted as a function of the energy density in Figure 48. A
linear relation similar to that for the length is observed.
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Fig. 47. Ratio of final length to initial length of 4340 steel Taylor cylinders for various
conditions. The data are from Gust [40], Johnson and Cook [49], Jones and Gillis [53], and
House et al. [47].
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Fig. 48. Ratio of final length to initial length of 4340 steel Taylor cylinders for various
conditions. The data are from Johnson and Cook [49], and House et al. [47].
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Fig. 49. Ratio of the length of the elastic zone to initial length of 4340 steel Taylor cylinders
for various conditions. The data are from Johnson and Cook [49], Jones and Gillis [53], and
House et al. [47].

The length of the elastic zone at the end of the test is difficult to determine (es-
pecially for high strain rate and high temperature tests) and may not be a suitable
metric for these conditions. This can be seen from the amount of variability in this
metric shown in Figure 49.

Finally, the volume of the cylinder should be preserved during the Taylor test if
isochoric plasticity holds. This metric can be used to determine the error in digi-
tization of the profile of the cylinder if we assume isochoric behavior. Figure 50
shows the ratio of the final volume to the initial volume (Vf/V0) as a function of the
energy density. The volume is not preserved in any of the experiments. We attribute
this error to inaccuracies in the digitization of the profiles.

Detailed comparisons have been provided for the tests marked with crosses in fig-
ures shown in this section. We have also simulated a few other tests, the details of
which are not discussed in the interest of brevity.

5.5.2 Taylor impact simulations of 4340 steel

Table 18 shows the initial dimensions, velocity, and temperature of the specimens
(along with the type of copper used and the source of the data) that we have simu-
lated and compared with experimental data.

5.5.2.1 Performance of plasticity models at room temperature. Figure 51
shows the simulated profile of case St-G without friction. The Johnson-Cook model
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Fig. 50. Ratio of the final volume to initial volume of 4340 steel Taylor cylinders for various
conditions. The data are from Wilkins and Guinan [95] and Gust [40].

predicts the profile quite accurately. We have observed the same behavior for the
SCGL model for this case. Similar behavior is observed for the other room tem-
perature simulations. We conclude that room temperature deformations are quite
accurately modeled by both models.

Table 18
Initial data for 4340 steel simulations.

Case Hardness Initial Initial Initial Initial Source

Length Diameter Velocity Temperature

(L0 mm) (D0 mm) (V0 m/s) (T0 K)

St-A Rc = 40 30 6.00 158 295 Gust [40]

St-B Rc = 40 30 6.00 232 295 Gust [40]

St-C Rc = 40 30 6.00 183 715 Gust [40]

St-D Rc = 40 30 6.00 312 725 Gust [40]

St-E Rc = 40 30 6.00 136 1285 Gust [40]

St-F Rc = 40 30 6.00 160 1285 Gust [40]

St-G Rc = 30 25.4 7.62 208 298 Johnson and Cook [49]

St-H Rc = 30 12.7 7.62 282 298 Johnson and Cook [49]

St-I Rc = 30 8.1 7.62 343 298 Johnson and Cook [49]
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Fig. 51. Comparison of experimental and computed shapes of 4340 steel cylinder St-G
without friction. The profile has been computed with the Johnson-Cook (JC) model. The
Steinberg-Cochran-Guinan-Lund (SCGL) model gives the same profile. The axes are in cm.
The circles represent experimental data. The solid lines represent the simulated profiles.

5.5.2.2 Performance of plasticity models at high temperatures. Figure 52
shows the simulated profile of cases St-D and St-F (with friction). Sample St-D has
an initial temperature of 718 K while sample St-F has an initial temperature of 1285
K. The nominal strain rate for sample St-D is almost twice that of sample St-F.

The Johnson-Cook model predicts the final length of St-D quite accurately. How-
ever, the SCGL model predicts an extremely low value of the yield stress at this
temperature and the cylinder flows until the ends deflect from the walls of the com-
putational domain. This indicates that the strain rate dependence of the steel at high
temperatures is not predicted accurately by the SCGL model for 4340 steel (source
[40]).

On the other hand, the SCGL model predicts the correct final length of the cylinder
St-F while the JC model overestimates the length by 15%. In this case, it is the JC
model that has to be recalibrated.

These observations are true for the other tests at high temperatures.

5.5.2.3 Taylor impact simulations with particle failure. Figure 53 shows Tay-
lor impact simulations for cases St-D and St-F with particle failure. We see that
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Fig. 52. Comparison of experimental and computed shapes of 4340 steel cylinders St-D and
St-F with friction. The profiles have been computed with the Johnson-Cook (JC) and the
Steinberg-Cochran-Guinan-Lund (SCGL) models. The axes are in cm. The circles represent
experimental data. The solid lines represent the simulated profiles.
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particle failure does not significantly affect the final length or the overall behavior
of the cylinders in these experiments. We expect to observe more complex failure
behavior at higher velocity impacts. However, we have not simulated any such tests.

In summary:

(1) Both models have to be recalibrated for high temperature-high strain rate sim-
ulations.

(2) The Johnson-Cook model parameters (Johnson and Cook [49]) for 4340 steel
are accurate at room temperature. At high temperatures, the strain rate depen-
dence of softening of the steel is not represented adequately by the JC model.
However, the Johnson-Cook model performs better at high strain rates than
the SCG model (at high temperatures).

(3) The lack of rate dependence at high strain rates that is assumed by the SCGL
model is a weakness that shows up in the simulation of cylinder St-D.

6 Final Remarks

We have performed detailed validation experiments for copper, 6061-T6 aluminum,
and 4340 steel to determine how the models implemented in the UINTAH code per-
form at high temperatures and high strain rates. We observe that all the plasticity
models predict similar stress-strain behavior at room temperature and this is re-
flected in the Taylor impact test profiles.

At high temperatures and relatively low strain rates, all models perform well pro-
vided that they are calibrated for those conditions. None of the models do well
when the conditions include very high temperatures and strain rates greater that
105 /s when simulating three-dimensional problems.

We suggest that care be exercised when choosing one of the models discussed in
this paper and that the models be recalibrated for the range of conditions of interest.
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A The Material Point Method

The Material Point Method (MPM) Sulsky et al. [83] is a particle method for struc-
tural mechanics simulations. In this method, the state variables of the material are
described on Lagrangian particles or “material points”. In addition, a regular, struc-
tured Eulerian grid is used as a computational scratch pad to compute spatial gradi-
ents and to solve the governing conservation equations. An explicit time-stepping
version of the Material Point Method has been used in the simulations presented in
this paper. The MPM algorithm is summarized below Sulsky et al. [84] for the sake
of completeness.

It is assumed that an particle state at the beginning of a time step is known. The
mass (m), external force (fext), and velocity (v) of the particles are interpolated to
the grid using the relations

mg =
∑
p

Sgp mp , vg = (1/mg)
∑
p

Sgp mp vp , fext
g =

∑
p

Sgp fext
p (A.1)

where the subscript (g) indicates a quantity at a grid node and a subscript (p) indi-
cates a quantity on a particle. The symbol

∑
p indicates a summation over all par-

ticles. The quantity (Sgp) is the interpolation function of node (g) evaluated at the
position of particle (p). Details of the interpolants used can be found elsewhere Bar-
denhagen and Kober [14].

Next, the velocity gradient at each particle is computed using the grid velocities
using the relation

∇vp =
∑
g

Ggpvg (A.2)

whereGgp is the gradient of the shape function of node (g) evaluated at the posi-
tion of particle (p). The velocity gradient at each particle is used to determine the
Cauchy stress (σp) at the particle using a stress update algorithm.

The internal force at the grid nodes (f int
g ) is calculated from the divergence of

the stress using
f int

g =
∑
p

Ggp σp Vp (A.3)

whereVp is the particle volume.

The equation for the conservation of linear momentum is next solved on the

86



grid. This equation can be cast in the form

mg ag = fext
g − f int

g (A.4)

whereag is the acceleration vector at grid node (g).

The velocity vector at node (g) is updated using an explicit (forward Euler)
time integration, and the particle velocity and position are then updated using grid
quantities. The relevant equations are

vg(t + ∆t) = vg(t) + ag ∆t (A.5)

vp(t + ∆t) = vp(t) +
∑
g

Sgp ag ∆t ; xp(t + ∆t) = xp(t) +
∑
g

Sgp vg ∆t

(A.6)

The above sequence of steps is repeated for each time step. The above algorithm
leads to particularly simple mechanisms for handling contact. Details of these con-
tact algorithms can be found elsewhere Bardenhagen et al. [13].

B Stress Update Algorithm

A modified form of a hypoelastic-plastic, semi-implicit elastic-plastic stress update
algorithm (Nemat-Nasser [65], Nemat-Nasser and Chung [67], Wang and Atluri
[91], Maudlin and Schiferl [61], Zocher et al. [101]) has been used for the stress
update in the simulations presented in this paper. An additive decomposition of
the rate of deformation tensor into elastic and plastic parts has been assumed. One
advantage of this approach is that it can be used for both low and high strain rates.
Another advantage is that many strain-rate and temperature-dependent plasticity
and damage models are based on the assumption of additive decomposition of strain
rates, making their implementation straightforward.

The stress update is performed in a co-rotational frame which is equivalent
to using the Green-Naghdi objective stress rate. The accuracy of model is good if
elastic strains are small compared to plastic strains and the material is not unloaded
completely from a plastic state. It is also assumed that the stress tensor can be
divided into a volumetric and a deviatoric component. The plasticity model is used
to update only the deviatoric component of stress assuming isochoric behavior. The
hydrostatic component of stress is updated using a solid equation of state.

In the general case, a particle is tagged as “failed” when its temperature is
greater than the melting point of the material at the applied pressure. An additional
condition for failure is when the porosity of a particle increases beyond a criti-
cal limit. A final condition for failure is when a bifurcation condition such as the
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Drucker stability postulate is satisfied. Upon failure, a particle is either removed
from the computation by setting the stress to zero or is converted into a material
with a different velocity field which interacts with the remaining particles via con-
tact. Either approach leads to the simulation of a newly created surface. However,
this option was turned off in the simulations discussed in this paper.

In the parallel implementation of the stress update algorithm, sockets have been
added to allow for the incorporation of a variety of plasticity, damage, yield, and
bifurcation models without requiring any change in the stress update code. The
algorithm is shown in Algorithm 1. The equation of state, plasticity model, yield
condition, damage model, and the stability criterion are all polymorphic objects
created using a factory idiom in C++ (Coplien [28]).

The elastic-plastic stress update process is discussed below. Following Maudlin
and Schiferl [61], the rotated spatial rate of deformation tensor (d) is decomposed
into an elastic part (de) and a plastic part (dp)

d = de + dp (B.1)

If we assume plastic incompressibility ( tr(dp) = 0), we get

η = ηe + ηp (B.2)

whereη, ηe, andηp are the deviatoric parts ofd, de, anddp, respectively. For
isotropic materials, the hypoelastic constitutive equation for deviatoric stress is

ṡ = 2µ(η − ηp) (B.3)

wheres is the deviatoric part of the stress tensor andµ is the shear modulus. We
assume that the flow stress obeys the Huber-von Mises yield condition

f :=

√
3

2
‖s‖ − σy ≤ 0 or, F :=

3

2
s : s− σ2

y ≤ 0 (B.4)

whereσy is the flow stress. Assuming an associated flow rule, and noting thatdp =
ηp, we have

ηp = dp = λ
∂f

∂σ
= Λ

∂F

∂σ
= 3Λs (B.5)

whereσ is the stress. Letu be a tensor proportional to the plastic straining direc-
tion, and defineγ as

u =
√

3
s

‖s‖
; γ :=

√
3Λ‖s‖ =⇒ γu = 3Λs (B.6)

Therefore, we have
ηp = γu; ṡ = 2µ(η − γu) (B.7)
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Algorithm 1. Stress Update Algorithm

Persistent:Initial moduli, temperature, porosity,
scalar damage, equation of state, plasticity model,
yield condition, stability criterion, damage model

Temporary:Particle state at timet
Output: Particle state at timet + ∆t

For all the patches in the domain
Read the particle data and initialize updated data storage
For all the particles in the patch

Compute the velocity gradient and the rate of deformation tensor
Compute the deformation gradient and the rotation tensor
Rotate the Cauchy stress and the rate of deformation tensor

to the material configuration
Compute the current shear modulus and melting temperature
Compute the pressure using the equation of state,

update the hydrostatic stress, and
compute the trial deviatoric stress

Compute the flow stress using the plasticity model
Evaluate the yield function
If particle is elastic

Update the elastic deviatoric stress from the trial stress
Rotate the stress back to laboratory coordinates
Update the particle state

Else
Compute the elastic-plastic deviatoric stress
Compute updated porosity, scalar damage, and

temperature increase due to plastic work
Compute elastic-plastic tangent modulus and evaluate stability condition
Rotate the stress back to laboratory coordinates
Update the particle state

End If
If Temperature> Melt Temperatureor Porosity> Critical Porosityor Unstable

Tag particle as failed
End If
Convert failed particles into a material with a different velocity field

End For
End For

From the consistency condition, if we assume that the deviatoric stress remains
constant over a timestep, we get

γ =
s : η

s : u
(B.8)
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which provides an initial estimate of the plastic strain rate. To obtain a semi-implicit
update of the stress using equation (B.7), we define

τ 2 :=
3

2
s : s = σ2

y (B.9)

Taking a time derivative of equation (B.9) gives us

√
2τ̇ =

√
3
s : ṡ

‖s‖
(B.10)

Plugging equation (B.10) into equation (B.7)2 we get

τ̇ =
√

2µ(u : η − γu : u) =
√

2µ(d− 3γ) (B.11)

whered = u : η. If the initial estimate of the plastic strain rate is that all of
the deviatoric strain rate is plastic, then we get an approximation toγ, and the
corresponding error (γer) given by

γapprox =
d

3
; γer = γapprox− γ =

d

3
− γ (B.12)

The incremental form of the above equation is

∆γ =
d∗∆t

3
−∆γer (B.13)

Integrating equation (B.11) from timetn to timetn+1 = tn+∆t, and using equation
(B.13) we get

τn+1 = τn +
√

2µ(d∗∆t− 3∆γ) = τn + 3
√

2µ∆γer (B.14)

whered∗ is the average value ofd over the timestep. Solving for∆γer gives

∆γer =
τn+1 − τn

3
√

2µ
=

√
2σy −

√
3‖sn‖

6µ
(B.15)

The direction of the total strain rate (uη) and the direction of the plastic strain rate
(us) are given by

uη =
η

‖η‖
; us =

s

‖s‖
(B.16)

Let θ be the fraction of the time increment that sees elastic straining. Then

θ =
d∗ − 3γn

d∗
(B.17)

whereγn = dn/3 is the value ofγ at the beginning of the timestep. We also assume
that

d∗ =
√

3η : [(1− θ)uη +
θ

2
(uη + us)] (B.18)
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Plugging equation (B.17) into equation (B.18) we get a quadratic equation that can
be solved ford∗ as follows

2√
3
(d∗)2 − (η : us + ‖η‖)d∗ + 3γn(η : us − ‖η‖) = 0 (B.19)

The real positive root of the above quadratic equation is taken as the estimate ford.
The value of∆γ can now be calculated using equations (B.13) and (B.15). A semi-
implicit estimate of the deviatoric stress can be obtained at this stage by integrating
equation (B.7)2

s̃n+1 = sn + 2µ

(
η∆t−

√
3∆γ

s̃n+1

‖sn+1‖

)
(B.20)

= sn + 2µ

(
η∆t− 3√

2
∆γ

s̃n+1

σy

)
(B.21)

Solving for s̃n+1, we get

s̃n+1 =
strial

n+1

1 + 3
√

2µ
∆γ

σy

(B.22)

wherestrial
n+1 = sn + 2µ∆tη. A final radial return adjustment is used to move the

stress to the yield surface

sn+1 =

√
2

3
σy

s̃n+1

‖s̃n+1‖
(B.23)

A pathological situation arises ifγn = un : ηn is less than or equal to zero or
∆γer ≥ d∗

3
∆t. This can occur is the rate of plastic deformation is small compared

to the rate of elastic deformation or if the timestep size is too small (see Nemat-
Nasser and Chung [67]). In such situations, we use a locally implicit stress update
that uses Newton iterations (as discussed in Simo and Hughes [80], page 124) to
computẽs.

Since the material in the container may unload locally after fracture, the hypoelastic-
plastic stress update may not work accurately under certain circumstances. An im-
provement would be to use a hyperelastic-plastic stress update algorithm. Also,
the plasticity models are temperature dependent. Hence there is the issue of severe
mesh dependence due to change of the governing equations from hyperbolic to el-
liptic in the softening regime (Hill and Hutchinson [44], Bazant and Belytschko
[16], Tvergaard and Needleman [88]). Viscoplastic stress update models or nonlo-
cal/gradient plasticity models (Ramaswamy and Aravas [74], Hao et al. [43]) can
be used to eliminate some of these effects and are currently under investigation.
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C Computation of Metrics

The length of the elastic zone after deformation (Xf ) is determined by checking
the deformed diameter with the original diameter of the cylinder. If the difference
is greater than 0.003 mm, plastic deformation is assumed to have taken place. The
value ofXf is the distance from the free end of the cylinder to the first point from
the free end where the above criterion is met.

Let the closed polygon representing the final profile of the Taylor cylinder be given
by P = p1, p2, p3, ...., pn, pn+1 = p1, wheren is the number of vertices of the poly-
gon. We assume that the points are ordered in the counter-clockwise direction. Each
pointpi has a pair of coordinates (xi, yi).

Then, the area of the profile (Af ) is given by

Af =
1

2

n∑
i=1

(xi yi+1 − xi+1 yi) . (C.1)

The centroid of the profile is given by

Cxf =
1

6Af

n∑
i=1

(xi yi+1 − xi+1 yi)(xi + xi+1) (C.2)

Cyf =
1

6Af

n∑
i=1

(xi yi+1 − xi+1 yi)(yi + yi+1) . (C.3)

The volume of the deformed cylinder is given by the Pappus theorem. The formula
for the volume is

Vf = 2πCxfAf . (C.4)

The moments of inertia are computed by converting the volume integral into a
surface integral over the boundary of the profile. The resulting formulas for the
moments of inertia are

Ixf = −
1

12

n∑
i=1

(xi+1 − xi)(yi+1 + yi)(y
2
i+1 + y2

i ) (C.5)

Iyf =
1

12

n∑
i=1

(yi+1 − yi)(xi+1 + xi)(x
2
i+1 + x2

i ) . (C.6)
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D Approach and models for simulating particle erosion

A particle is tagged as “failed” when its temperature is greater than the melting
point of the material at the applied pressure. An additional condition for failure
is when the porosity of a particle increases beyond a critical limit and the strain
exceeds the fracture strain of the material. Another condition for failure is when
a material bifurcation condition such as the Drucker stability postulate is satisfied.
Upon failure, a particle is either removed from the computation by setting the stress
to zero or is converted into a material with a different velocity field which interacts
with the remaining particles via contact. Either approach leads to the simulation of
a newly created surface. More details of the approach can be found in Banerjee
[6, 7, 11].

When failure is to be simulated we use the Gurson-Tvergaard-Needleman yield
condition instead of the von Mises condition. The Gurson-Tvergaard-Needleman
(GTN) yield condition [39, 87] depends on porosity. An associated flow rule is used
to determine the plastic rate parameter in either case. The GTN yield condition can
be written as

Φ =

(
σeq

σf

)2

+ 2q1f∗ cosh

(
q2

Tr(σ)

2σf

)
− (1 + q3f

2
∗ ) = 0 (D.1)

whereq1, q2, q3 are material constants andf∗ is the porosity (damage) function
given by

f∗ =

f for f ≤ fc,

fc + k(f − fc) for f > fc

(D.2)

wherek is a constant andf is the porosity (void volume fraction). The flow stress
in the matrix material is computed using either of the two plasticity models dis-
cussed earlier. Note that the flow stress in the matrix material also remains on the
undamaged matrix yield surface and uses an associated flow rule.

The evolution of porosity is calculated as the sum of the rate of growth and the rate
of nucleation [75]. The rate of growth of porosity and the void nucleation rate are
given by the following equations [27]

ḟ = ḟnucl + ḟgrow (D.3)

ḟgrow = (1− f)Tr(Dp) (D.4)

ḟnucl =
fn

(sn

√
2π)

exp

[
−1

2

(εp − εn)2

s2
n

]
ε̇p (D.5)

whereDp is the rate of plastic deformation tensor,fn is the volume fraction of void
nucleating particles ,εn is the mean of the distribution of nucleation strains, andsn

is the standard deviation of the distribution.
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Under normal conditions, the heat generated at a material point is conducted away
at the end of a time step using the heat equation. If special adiabatic conditions
apply (such as in impact problems), the heat is accumulated at a material point and
is not conducted to the surrounding particles. This localized heating can be used to
determine whether a material point has melted.

After the stress state has been determined on the basis of the yield condition and the
associated flow rule, a scalar damage state in each material point can be calculated
using the Johnson-Cook model [50]. The Johnson-Cook model has an explicit
dependence on temperature, plastic strain, ans strain rate.

The damage evolution rule for the Johnson-Cook damage model can be written as

Ḋ =
ε̇p

εf
p

; εf
p =

[
D1 + D2 exp

(
D3

3
σ∗
)]

[1 + D4 ln(ε̇p
∗)] [1 + D5T

∗] ; σ∗ =
Tr(σ)

σeq

;

(D.6)
whereD is the damage variable which has a value of 0 for virgin material and a
value of 1 at fracture,εf

p is the fracture strain,D1, D2, D3, D4, D5 are constants,
σ is the Cauchy stress, andT ∗ is the scaled temperature as in the Johnson-Cook
plasticity model.

The determination of whether a particle has failed can be made on the basis of
either or all of the following conditions:

• The particle temperature exceeds the melting temperature.
• The TEPLA-F fracture condition [52] is satisfied. This condition can be written

as
(f/fc)

2 + (εp/ε
f
p)

2 = 1 (D.7)

wheref is the current porosity,fc is the maximum allowable porosity,εp is the
current plastic strain, andεf

p is the plastic strain at fracture.
• An alternative to ad-hoc damage criteria is to use the concept of bifurcation to

determine whether a particle has failed or not. Two stability criteria have been
explored in this paper - the Drucker stability postulate [31] and the loss of hy-
perbolicity criterion (using the determinant of the acoustic tensor) [77, 71].

The simplest criterion that can be used is the Drucker stability postulate [31] which
states that time rate of change of the rate of work done by a material cannot be
negative. Therefore, the material is assumed to become unstable (and a particle
fails) when

σ̇ : Dp ≤ 0 (D.8)

Another stability criterion that is less restrictive is the acoustic tensor criterion
which states that the material loses stability if the determinant of the acoustic tensor
changes sign [77, 71]. Determination of the acoustic tensor requires a search for a
normal vector around the material point and is therefore computationally expensive.
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A simplification of this criterion is a check which assumes that the direction of
instability lies in the plane of the maximum and minimum principal stress [17]. In
this approach, we assume that the strain is localized in a band with normaln, and
the magnitude of the velocity difference across the band isg. Then the bifurcation
condition leads to the relation

Rijgj = 0 ; Rij = Mikjlnknl + Milkjnknl − σiknjnk (D.9)

whereMijkl are the components of the co-rotational tangent modulus tensor andσij

are the components of the co-rotational stress tensor. Ifdet(Rij) ≤ 0, thengj can
be arbitrary and there is a possibility of strain localization. If this condition for loss
of hyperbolicity is met, then a particle deforms in an unstable manner and failure
can be assumed to have occurred at that particle. We use a combination of these
criteria to simulate failure.

Since the material in the container may unload locally after fracture, the hypoelastic-
plastic stress update may not work accurately under certain circumstances. An im-
provement would be to use a hyperelastic-plastic stress update algorithm. Also,
the plasticity models are temperature dependent. Hence there is the issue of severe
mesh dependence due to change of the governing equations from hyperbolic to el-
liptic in the softening regime [44, 16, 88]. Viscoplastic stress update models or
nonlocal/gradient plasticity models [74, 43] can be used to eliminate some of these
effects and are currently under investigation.
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