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Abstract

Polymer bonded explosives are particulate composites containing a high volume fraction of stiff elastic explosive

particles in a compliant viscoelastic binder. Since the volume fraction of particles can be greater than 0.9 and the

modulus contrast greater than 20 000, rigorous bounds on the elastic moduli of the composite are an order of

magnitude different from experimentally determined values. Analytical solutions are also observed to provide

inaccurate estimates of effective elastic properties. Direct finite element approximations of effective properties require

large computational resources because of the complexity of the microstructure of these composites. An alternative

approach, the recursive cells method (RCM) is also explored in this work. Results show that the degree of discretization

and the microstructures used in finite element models of PBXs can significantly affect the estimated Young’s moduli.

r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Mechanical properties of polymer bonded ex-
plosives (PBXs) have traditionally been deter-
mined experimentally. However, the hazardous
nature of these materials makes mechanical testing
expensive. With improvement in computational
power, numerical determination of mechanical
properties of PBXs has become feasible. Elastic
properties of a composite can be obtained using
micromechanics-based methods if the elastic prop-
erties of the components are known from mole-
cular dynamics simulations. In this work, rigorous
bounds, effective medium approximations and
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finite element approximations of elastic properties
are explored. A less computationally intensive
approach, called the recursive cells method (RCM)
is also investigated. The properties predicted by
these approaches are compared with experimental
data for PBX 9501.
2. PBX materials and PBX 9501

PBXs are particulate composites composed of
explosive particles and a rubbery binder. PBX
9501 contains 92% by volume of HMX (high-
melting explosive) particles and 8% by volume of
binder. The HMX particles are monoclinic and
linear elastic. The experimentally determined value
d.
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of Young’s modulus of HMX is around 15:3 GPa
[1] while that from molecular dynamics (MD)
simulations is around 17:7 GPa [2]. The Poisson’s
ratio from experiments is 0.32 and that from
MD simulations is 0.21. The binder is a 1:1
mixture of the rubber Estane 5703 and a plasticizer
(BDNPA/F). The mechanical behavior of the
binder is strain rate and temperature dependent.
As a result, the response of PBX 9501 also depends
on strain rate and temperature. At or near room
temperature and at low strain rate, the Young’s
modulus of the binder is around 0:7 MPa and the
Poisson’s ratio is 0.49 [3,4]. The Young’s modulus
of PBX 9501 under these conditions is around
1 GPa and the Poisson’s ratio is 0.35. The modulus
contrast between HMX and the binder is 15 000–
20 000 under these conditions.
3. Micromechanics approaches

3.1. Third-order bounds

Third-order bounds [5] on the effective proper-
ties of two-component polydisperse particulate
composites can be written as
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where f is a volume fraction, K is a bulk modulus
and G is a shear modulus. The subscripts p, b, and
c denote the particle, binder, and composite,
respectively. The superscripts U and L denote
the upper and lower bounds, respectively. For
any quantity a; /aS ¼ apfp þ abfb; g/aS/aS ¼ apfbþ
abfp; /aSz¼ apzp þ abzb; and /aSZ ¼ apZpþ
abZb: The quantities zp and Zp for polydisperse
composites are given by zp ¼ 1� zb ¼ 0:5fp and
Zp ¼ 1� Zb ¼ 0:5fp: Also, X ¼ ð10/KS2/1=KSzþ
5/GS/3Gþ2KS/1=GSzþ/3K þGS2/1=GSZÞ=
/9Kþ8GS2 andY¼ð10/GS2/KSzþ5/GS/3Gþ
2KS/GSz þ/3K þ GS2/GSZ=/K þ 2GS2:

3.2. Differential effective medium approximation

Effective elastic moduli can be calculated using
the differential effective medium approximation
(DEM) [6] from the equations
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where the same symbols are used as in Eqs. (1)–(4)
and jc ¼ Gc=6� ð9Kc þ 8GcÞ=ðKc þ 2GcÞ:

3.3. Finite element approximation

Finite element (FEM) approximations of two-
dimensional effective elastic moduli of a composite
can be obtained by determining the average
stresses and strains in a representative volume
element (RVE) under normal and shear displace-
ment boundary conditions using Eq. (7)
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where /eiiS; /siiS are the volume averaged
normal strains and stresses; /g12S;/t12S are the
volume averaged shear strain and stress; Ec

ii;G
c
12; n

c
ij

are the two-dimensional effective Young’s moduli,
shear modulus, and Poisson’s ratios, respectively.
These two-dimensional moduli are converted to
three-dimensional moduli using the relations
n3Deff ¼ n2Deff =ð1þ n2Deff Þ and E3D

eff ¼ E2D
eff ½1� ðn3Deff Þ

2�:

3.4. Recursive cells method

In the recursive cells method (RCM) the RVE is
divided into a regular grid of subcells. Instead of
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determining the effective properties of the whole
RVE at a time, smaller blocks of subcells are
homogenized and the procedure is repeated
recursively until the effective property of the
RVE is obtained as shown in Fig. 1. This approach
is similar to real-space renormalization techniques
used to predict effective conductivities of random
composites [7]. The current implementation of
RCM uses finite element analyses to determine the
effective properties of a block of subcells.
Fig. 1. Schematic of the recursive cells method.

Fig. 2. RVEs containing 10–
4. Results and discussion

Third-order bounds on the Young’s modulus of
PBX 9501 computed using Eqs. (1)–(4) are an
order of magnitude different from the experimen-
tally determined value. A better estimate is
obtained from the DEM approximation—around
1
5
th the experimental Young’s modulus of PBX
9501. Fig. 2 shows 10 two-dimensional RVEs with
particle volume fractions from 0.1 to 0.92, circular
particles, and no particle–particle contact, that
have been used for FEM and RCM calculations.
92% circular particles.

Fig. 3. Comparison of DEM and FEM estimates of Young’s

modulus.
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Fig. 4. Comparisons of FEM and RCM estimates of Young’s modulus. The larger RVE (a) has been used for Vf ¼ 0:80:
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Fig. 3 shows the effective Young’s modulus of
these RVEs calculated by FEM, using about
70 000 six-noded triangular elements, compared
to DEM predictions. The DEM and FEM predic-
tions match closely. However, the FEM estimate
for a volume fraction of 0.92 is only 20% of the
experimental Young’s modulus of PBX 9501.
An increased estimate of the Young’s modulus
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Fig. 5. Error in RCM estimates of Young’s modulus with respect to FEM estimates. The larger RVE (a) has been used for Vf ¼ 0:80:
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requires that stress-bridging be incorporated in a
RVE that models PBX 9501. Stress-bridging can
be simulated by approximating the circular parti-
cles by dividing each RVE into a regular grid
containing 256� 256 subcells/elements. From the
stress-bridging model containing 92% particles,
the FEM estimate of the Young’s modulus of PBX
9501 is 800 MPa: This value of modulus is only
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Fig. 6. Error in RCM estimates of Young’s modulus with respect to FEM estimates. The smaller RVE (b) has been used for Vf ¼ 0:80:

Fig. 7. Microstructures containing circular particles based on the particle size distribution of the dry blend (DB) of PBX 9501 and of

pressed (PP) PBX 9501.
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20% less than the experimentally determined value
of PBX 9501 and therefore a considerable im-
provement over the estimates discussed previously.
However, RCM does not perform as well for the
chosen microstructures.

Fig. 4 shows comparisons of FEM and RCM
calculations on the models using 256� 256 four-
noded square elements. RCM tends to over-
estimate the effective Young’s modulus for all
volume fractions and modulus contrasts. With
increase in the number of subcells in a block, the
RCM estimates converge towards the FEM
solution. Fig. 5 shows the errors in the RCM
estimate with respect to the FEM solution
corresponding to the results shown in Fig. 4. If
the smaller RVE (b) containing 80% particles is
used for the calculations instead of the larger RVE
(a) (as shown in Fig. 2), there is an appreciable
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Fig. 8. FEM and RCM predictions PBX 9501. The FEM predictions correspond to the RCM data for 256 subcells/block.
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deterioration in the RCM estimates for this
volume fraction for the case where 16� 16 subcells
were used to form each RCM block as shown in
Fig. 6. The deterioration is due to the decreased
self similarity at different length scales in the
smaller RVE containing 80% particles.

Models based on the actual size distribution of
PBX 9501 have also been simulated using FEM
and RCM. Eight models (shown in Fig. 7), each
containing about 86% by volume of particles, were
generated and each model was divided into 256�
256 square subcells for RCM and FEM calcula-
tions. Subcells were assigned HMX properties if
they contained more than 50% particles by area.
The binder was ‘dirty’, i.e., effective properties
from DEM were assigned to the binder to bring
the volume fraction of particles up to 92%. FEM
and RCM predictions for these models are shown
in Fig. 8. For these microstructures, the FEM
estimates of Young’s modulus vary from 2 to 6
times the experimental Young’s modulus of PBX
9501. Though the RCM estimates are considerably
higher than the FEM predictions, these converge
to the FEM results with increasing subcells per
block. Acceptable accuracy in the RCM approx-
imation is obtained when blocks of 16� 16
subcells are used for the RCM calculations for
some of the pressed PBX models. However, in
other models the error is quite high even when
64� 64 subcells are used to model each block.
5. Summary and conclusions

Third-order bounds on effective elastic moduli
are too far from the actual moduli of PBX 9501 to
be of use. DEM estimates are close to FEM
estimates on microstructures without particle–
particle contact but underestimate the Young’s
modulus of PBX 9501. RCM approximations
overestimate the effective properties but converge
towards FEM estimates with increase in the
number of subcells per block. FEM estimates can
vary from as low as 1

5
th of the Young’s modulus of

PBX 9501 to as high as 6 times the modulus
depending on the microstructure and the degree of
discretization used in model RVEs for the same
volume fraction of particles. An appropriately
chosen RVE in conjunction with FEM is the best
choice for determining the effective moduli of PBX
materials among the four methods discussed even
though such an approach remains unsatisfactory
from a numerical prediction perspective.
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