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Abstract

[Summary] We propose an extrinsic, continuous-Galerkin (CG), extended finite
element method (XFEM) that generalizes the work of Hansbo and Hansbo to
allow multiple Heaviside enrichments within a single element in a hierarchical
manner. This approach enables complex, evolving XFEM surfaces in 3D that
cannot be captured using existing CG-XFEM approaches. We describe an im-
plementation of the method for 3D static elasticity with linearized strain for
modeling open cracks as a salient step towards modeling progressive fracture.
The implementation includes a description of the finite element model, hybrid
implicit /explicit representation of enrichments, numerical integration method,
and novel degree-of-freedom (DoF') enumeration algorithm. This algorithm sup-
ports an arbitrary number of enrichments within an element, while simultane-
ously maintaining a CG solution across elements. Additionally, our approach
easily allows an implementation suitable for distributed computing systems. En-
abled by the DoF enumeration algorithm, the proposed method lays the ground-
work for a computational tool that efficiently models progressive fracture. To
facilitate a discussion of the complex enrichment hierarchies, we develop enrich-
ment diagrams to succinctly describe and visualize the relationships between the
enrichments (and the fields they create) within an element. This also provides
a unified language for discussing extrinsic XFEM methods in the literature. We
compare several methods, relying on the enrichment diagrams to highlight their
nuanced differences.
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1. Introduction

Researchers have proposed numerous computational methods for modeling
the fracture of solids. Each method has its advantages for individual scenarios,
but due to the complexity of fracture, no single method has won out over the
others for general use. One significant difference between approaches lies in the
choice of a damage model. Damage models treat damage as either a discrete
process that localizes to a surface, or as a continuum process that affects the
response of a finite volume of material. While both methods capture the far field
influence of damage, discretely modeling damage yields more accurate stress
fields near fracture surfaces. In this paper, we address discrete modeling of
damage, for which there are a variety of methods in the literature. However, the
genre of continuous-Galerkin (CG), extended finite element methods (XFEM)
have not been capable of modeling some complex crack interactions. This paper
proposes an extension of CG-XFEM for handling such situations.

To understand where this contribution fits within the larger community of
discrete damage modeling, we provide a review of the literature. For most prob-
lems of interest to the community, the crack path is not known a priori. Most
computational methods suitable for modeling crack propagation with solution-
dependent paths broadly fall into the following categories:

1. Remeshing methods, which modify the mesh throughout the analysis to
conform to inserted cracks,

2. Meshless/mesh-free methods, which only require the enrichment of a node-
based mesh upon which to solve the governing equations,

3. Generalized/extended finite element methods, which account for cracks
without requiring a conformal mesh by enriching the approximation func-
tions,

4. Augmented finite element methods, which account for the displacement
jump without introducing new degrees of freedom through a static con-
densation technique,

5. Embedded discontinuity approaches, which introduce surface elements
within the volume elements to account for the discontinuity and consider
the coupling between the two, and

6. Boundary element methods, which only require a boundary mesh (includ-
ing surfaces of cracks) instead of a volume mesh upon which to solve the
governing equations.

Remeshing methods combined with the classical finite element method (FEM)
were some of the first methods developed for numerically predicting crack prop-
agation. Since the mesh must conform to the crack as it grows, one approach is
to remesh the entire domain whenever cracks are modified, but this strategy is
costly.[1, 2] Some methods effectively remesh at the element level by replacing
elements cut by a crack extension with new elements, but it can be difficult to
insert standard elements that conform to both the original element boundaries
and the crack surface. Polyhedral finite element methods (PFEM) extend the
element library to include polyhedral elements, allowing a standard element to



be cut by an arbitrary crack and replaced by two polyhedrons (or polygons in
2D).[3, 4, 5, 6, 7]

Outside PFEM, requiring the mesh to conform to any surfaces that intro-
duce discontinuities is very restrictive when dealing with complex geometries and
large analyses. Meshless (sometimes referred to as mesh-free) methods emerged
to avoid the need for a mesh altogether, based on the early development of
smoothed-particle hydrodynamics.[8, 9] While mesh-based methods construct
the trial space used to approximate the solution on a mesh, meshless methods
construct the trial space only on nodes.[10] These methods are well-suited for
situations where very large deformations are expected, which would result in
extreme mesh distortion, or where discontinuities would move through the do-
main, such as moving phase boundaries or crack propagation.[9, 11] Meshless
methods can solve a broad class of problems that are difficult for mesh-based
methods and still receive attention in the recent literature.[12, 13]

Babuska et al. [14] developed the partition of unity finite element method
(PUFEM) within the genre of meshless methods to allow special functions to
be used in the approximation based on a priori knowledge, building on the
work of Duarte and Oden in h-p adaptive methods.[15] Borrowing concepts
from meshless methods, especially PUFEM, Belytschko et al. used analytical
solutions of simple fracture problems to enrich the approximation functions,
while maintaining partition of unity. This extended finite element method
(XFEM) could accommodate the presence of a crack with minimal remesh-
ing during crack propagation.[16] The XFEM community continued to develop
methods that used local enrichment with a focus on modeling cracks and other
discontinuities.[17, 18] In parallel, Babuska and collaborators at the University
of Texas similarly developed the generalized finite element method (GFEM).[19,
20, 21] Though early developments of GFEM focused on global enrichment, the
two categories of methods began to converge and were considered equivalent by
Belytschko.[18] Within the XFEM community, methods fall into two subgenres.
First, extrinsic methods account for enrichment by introducing additional de-
grees of freedom (DoF's) into the global system of equations, and the majority
of XFEM variants fall into this category.[18, 22] Second, intrinsic methods avoid
introducing additional DoF's by basing the approximation functions on moving
least squares functions instead of standard polynomial shape functions.[22, 23]

An early XFEM development especially pertinent to this work is that of
Hansbo and Hansbo.[24] They used a generalized Heaviside function to en-
rich the approximation for the presence of a crack surface, which takes the
value of 1 on one side of the crack surface and 0 on the other side. Previ-
ously, the XFEM/GFEM community proposed simply adding terms involving
the Heaviside function to the approximation function and introducing addi-
tional DoF's, but this causes the original DoF's to no longer directly represent
displacements.[25] Hansbo and Hansbo restructured the approximation function
to let the original DoF's represent the displacement field on one side of the crack,
and let the new DoF's represent the displacement field on the other side. This
is mathematically equivalent to the classical XFEM approach [25], but greatly
simplifies the hierarchical view of fields that this work proposes.



Taking a different approach to extend standard FEM to account for discon-
tinuities, the augmented finite element method (AFEM) effectively considers a
remeshed element that conforms to a discontinuity and statically condenses the
additional DoFs at the element level. This results in an element-local algorithm
with great computational efficiency, but introduces nonphysical discontinuities
that can lead to significant error near a crack.[26, 27, 28] This strategy has many
advantages from the viewpoint of economy, providing algorithms that are easy
to parallelize and avoiding the need to modify the global system of equations,
but it also creates artifacts that can significantly degrade accuracy and requires
careful estimation of the error introduced. Highlighting and ameliorating this
issue, Ma et al. recently proposed conforming-AFEM (C-AFEM), which ap-
proaches the problem as a local-global analysis and requires iterative solutions
at both crack and global levels until convergence is achieved.[29] C-AFEM is
a significant improvement for the AFEM community, though the nonlocal and
multiscale nature of the algorithms makes parallel implementation more diffi-
cult, and the similarities to intrinsic XFEM should be noted.

In parallel to GFEM, embedded discontinuity methods were developed, ac-
counting for the presence of a discontinuity by introducing DoF's that correspond
to the response of the surface and coupling the equations with those governing
the volume element.[30] Early on, Bolzon [31] developed a method that accounts
for discontinuities for meshes that employ constant strain triangular elements.
Soon after, Alfaiate et al. [32] proposed two different strategies for inserting
interfacial elements within a volume element. The first strategy statically con-
densed the DoFs corresponding to the displacement jump, which is very similar
to classical AFEM. The second strategy introduces new DoF's at the interface,
which is similar to XFEM but with fewer DoF's, resulting in additional error for
the displacement field. Linder et al. [33] generalized Bolzon’s first strategy by
introducing DoF's and subsequently eliminating them from the system of equa-
tions through static condensation. Meanwhile, Dias et al. [34] generalized the
second strategy, calling it the discrete strong discontinuity approach (DSDA),
by keeping the additional DoFs in the system of equations. Finally, Dias et
al. [35] developed the generalized strong discontinuity approach (GSDA) by
borrowing concepts from both Linder et al. [33] and Dias et al.,[34] but weakly
enforcing continuity of tractions between elements. GSDA has many similarities
to XFEM approaches, but the primary difference is that GSDA introduces fewer
DoF's into an element to capture the presence of a discontinuity, resulting in a
discontinuous displacement field across elements.

Analyses conducted by engineers for design often seek information about the
region with the highest stresses, ignoring the stress state for much of the volume.
When modeling fracture, the highest stresses generally develop near material
boundaries, especially crack fronts. Consequently, for decades, researchers have
been developing boundary element methods (BEM) to target such problems.
When the response is linear, this genre of methods only requires a boundary
mesh, without modeling the volume, and results in a more dense system of
equations compared to sparse systems encountered in FEM. When nonlinearities
are introduced, only the portion of the volume experiencing nonlinearity needs



to be modeled.[36]

It should be noted that there are many other methods that do not strictly fall
into the categories of methods suitable for either continuum damage models or
discrete damage models. For example, variational methods have been developed
to connect the two disciplines.[37] A genre of variational methods of particular
note is phase-field models (PFM), which solve two sets of partial differential
equations: one that governs the elastic response of the continuum, and one
that governs the intensity of a second phase-field. Phase-field models were
originally developed to model moving weak boundaries, but researchers have
applied them to fracture by treating cracks as a phase-field and minimizing
the total potential energy, which is an extension of Griffith’s theory.[38, 39,
40] Peridynamics is another approach outside the traditional categories, which
restructures the governing equations in terms of integral quantities and thus
avoids the singularities emerging in formulations that rely on partial differential
equations.[41, 42, 43]

Despite the wide variety of computational methods for discretely modeling
fracture, no method stands out as well-suited for problems involving the combi-
nation of complex networks of interacting cracks, nonlinear materials, and com-
plex domains. Additionally, many problems that fall into this category require
modeling a large domain and/or with fine discretization near crack networks,
making a distributed implementation crucial. Therefore, it is greatly beneficial
to develop a method that easily lends itself to a distributed implementation.

Inspired by the work of Hansbo and Hansbo [24] and Tarve [44, 45], this
paper proposes an extrinsic, XFEM approach for modeling discontinuities that
relies on a hierarchical view of Heaviside enrichments in an element, without
introducing the artifacts seen in AFEM. In particular, the approach we offer:

1. Supports an arbitrary number of Heaviside enrichments within an element,
while properly accounting for the interactions between them;

2. Provides a novel DoF enumeration that naturally maintains a continuous-
Galerkin (CG) solution across elements and can be quickly updated as
XFEM surfaces evolve; and

3. Prioritizes element locality in all algorithms to ensure an implementation
suitable for distributed computing.

The proposed approach significantly extends the state-of-the-art for model-
ing complex, evolving 3D surfaces within the CG-XFEM community. It serves
as an apropos foundation for modeling progressive fracture in conjunction with
crack models that smear the effect of the crack front, such as the cohesive seg-
ment method. However, a detailed discussion of a crack model implementation
is reserved for a future work.

In addition to the method itself, we also develop a lexicon using enrichment
diagrams for describing and visualizing relationships between enrichments (and
the fields they create) both in a single element and between adjacent elements.
This provides a unified language for discussing and comparing extrinsic XFEM
approaches used for modeling fracture that rely on Heaviside enrichments.



The next section discusses the basics of hierarchical Heaviside enrichment
(HHE), which is the basis of the proposed XFEM approach. This initial ex-
planation focuses on defining the necessary concepts through illustrations. In
Section 3, we introduce the formal notation of enrichment diagrams, which will
be used throughout the paper. In Section 4, we describe the implementation
of HHE, creating a new XFEM approach that is a natural extension of sev-
eral existing methods in the literature. Section 5 provides several examples,
which verify the implementation and showcase the capabilities of the method.
In Section 6, we use the enrichment diagram lexicon to compare several XFEM
methods in the literature, highlighting key differences between them. Finally,
we conclude with a delineation of the strengths and shortcomings of our method
and planned future work.

2. Hierarchical Heaviside Enrichment (HHE)

As discussed in the introduction, researchers have already successfully used
Heaviside enrichments to model discontinuities and bi-material interfaces that
do not conform to faces of elements in the mesh, and our approach extensively
uses the concept of a hierarchy of enrichments in an element. Additionally, we
require that Heaviside enrichments:

1. Do not move once inserted,

2. Extend to the boundary of an element or the surface of another enrichment
in the same element, and

3. Do not lie entirely along a face, edge, or node of an element.

Since the literature does not use consistent terminology for delineating ex-
trinsic XFEM approaches, we define terms related to a hierarchical view of
Heaviside enrichments for the remainder of this section. We borrow concepts
from the method proposed in Hansbo and Hansbo [24] and the phantom-node
method. [46] Namely, a Heaviside enrichment introduces a second set of degrees
of freedom for the element conforming to the original element support, such
that each set represents the solution for a half-space on either side of the enrich-
ment. Let a field refer to the solution defined by one set of DoF's in the element.
Though a field extends over the entire element, it only “physically” represents
a subdomain of the element, referred to as the physical domain of the field. A
field may be similarly divided into two new fields with a second enrichment.
This binary property of Heaviside enrichment (under the above assumptions)
makes it natural to describe the creation of fields within an element as a full
binary tree. Each node of the tree represents a field, which can have either 0 or
2 children, and an enrichment exists where a node forks into two branches. The
term enrichment tree refers to the binary tree view of fields and enrichments in
an element.

For the simplest case, consider a 2D quadrilateral element enriched to ac-
count for a planar discontinuity or material interface. Figure la shows the
enrichment tree. The shaded regions in the figure indicate the physical domain



of each field. We use + and — to distinguish between sides of the enrichment.
The choice is arbitrary, but enforcement of interelement compatibilities requires
the convention. The enrichment trees shown in this paper will always place the
field that represents the negative side of an enrichment on the left side, removing
the need to label the normal vector explicitly.

Field for the original
element
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firstenrichment
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element

Field for - side of
firstenrichment

Forkin tree

-~ indicates an
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enrichment
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enrichment
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(a) Single Heaviside enrichment (b) Two Heaviside enrichments

Figure 1: Enrichment tree for a quadrilateral element.

The enrichment tree acknowledges the original field of the element, but only
the fields that are leaves in the binary tree have degrees of freedom associated
with them. Due to this important difference, fields can be separated into two
categories: basal fields, which are the leaves in the enrichment tree, and aggre-
gate fields, which are interior nodes in the tree and calculated via an aggregation
Sfunction of their descendent fields, which is defined in Section 4.1. In the enrich-
ment tree, only basal fields can be enriched, and a new enrichment creates two
new basal fields and changes the enriched field into an aggregate field. If both
sides of an existing enrichment should be enriched, then two enrichments must
be introduced, one for each basal field on either side of the existing enrichment.
This is important for modeling phenomena like the fracture of solids, since a
crack terminates at an existing crack surface or material boundary and may only
“continue” or “jump” to the other side if an initiation criterion is satisfied there.
For example, Figure 1b shows the enrichment tree if the field on the negative
side of the first enrichment in Figure la is enriched. The resulting enrichment
tree has three basal fields, two aggregate fields, and two enrichments.

In HHE, we can hierarchically introduce Heaviside enrichments ad infinitum
within an element, each one further dividing a physical domain of a field. Up
to this point, the discussion has only considered a single element. For multiple



elements, compatibility of fields across adjacent elements requires special atten-
tion. Let an enrichment surface refer to a contiguous collection of element level
enrichments that compose a physically meaningful surface in the global domain.
Within the context of fracture modeling, an enrichment surface could model a
crack or a bi-material interface in the domain. For CG-XFEM, the solution
should be continuous throughout the global domain, except across enrichment
surfaces that represent discontinuities. The front of the enrichment surface ex-
ists where an enrichment surface terminates interior to the global domain and
is capable of growth. Thus, an enrichment in an element that terminates at
another enrichment surface is not considered part of the front. The front re-
quires a strategy to maintain proper continuity of fields depending on what the
enrichment surface models. For example, the cohesive segment method allows
a partially closed cohesive zone to exist along the surface’s front, and when the
cohesive zone begins to open at the front, the cohesive surface grows.

The idea of hierarchically considering Heaviside enrichments is not novel to
this work. In the field of topology optimization, Noel et al.[47] developed an
immersed boundary method using hierarchical B-splines to define Heaviside en-
richments along material boundaries, including a strategy for adaptively refining
the background mesh. Recently, Jahn developed an XFEM method based on
hierarchical level-sets to define material boundaries for multi-phase problems,
including problems with moving phase boundaries.[48] Advancing the interface-
enriched generalized finite element method (IGFEM) [49], Soghrati developed
a hierarchical approach for Heaviside enrichment to ameliorate artifacts that
emerge when material boundaries come close together.[50] This is not an ex-
haustive list of authors who have used the concept. However, to our knowledge,
the hierarchical approach as presented here is a novel extension of CG-FEM for
complex 3D cracking.

3. Enrichment Diagram Notation and Terminology

We extend the ideas and notation of the previous section to build a uni-
fied lexicon for discussing hierarchical Heaviside enrichment. With additional
compatibility information, the enrichment trees become enrichment diagrams.
The idea of using diagrams like these is not novel. For example, Chen et al.
extensively used diagrams to illustrate how the floating-node method and the
phantom-node method worked, highlighting the differences between them.[51,
52] However, a formalized language that can efficiently describe methods using
multiple enrichment surfaces is a unique contribution of this work. Table 1 de-
fines the symbol notation for enrichment diagrams that will be used through
the remainder of the paper.



Table 1: Hierarchical enrichment diagram symbols.

Symbdl Definition

A box denotes a field within the enrichment tree, which can be either
an aggregate field or a basal field.

A fork with solid lines denotes an enrichment which
models a crack discontinuity that splits the parent
field, resulting in:

e Two new basal fields, one for each side of the A
enrichment (e.g., B and C)

e The original basal field (e.g., A) becomes an [ e
aggregate field after the division by the new !
enrichment L

A dashed rectangle may be optionally used to refer
to a specific enrichment.

A cohesive connection between two fields (aggregate or basal). The
fields must be in the same element or in adjacent elements.

An enriched cohesive connection between two fields. This connection
indicates that all descendant basal fields on one side are cohesively
connected to all descendent basal fields on the other side, for a total of
N connections. For example, the enriched connection (left) between A

A & B

and B is equivalent to the two connections (right).

A e C

An enrichment for a bi-material interface within the
element. It is very similar to the enrichment for a A
crack, except that the material of each child is differ- —=
ent (e.g. B and C). We omit the dashed rectangle ; i
when the discussion does not refer to the enrich- !
ment. i ———=.-. ————. i

A compatibility between two pairs of

contiguous fields. The fields must be ei- im=== === T
ther in the same element or in adjacent i| A B || ¢ D |i
elements. For example, A is compatible i-———-—-! {L—JL__I:
with C, and B with D.

An incompatibility (or nonphysical dis- _._._._._.__._._ _._._._.__._._._
continuity) between a pair of contiguous ; % i
fields. For example, A is discontinuous i P ;
with C, and B is discontinuous with D. '
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Figure 2: Enrichment diagram for notation.

The remainder of the paper relies heavily on terms that describe the re-
lationships between fields and enrichments within the same enrichment tree.
Relationships between fields directly follow the terminology for binary trees,
while relationships between enrichments are new but borrow concepts from bi-
nary trees. To facilitate a definition of terms, Figure 2 shows an enrichment
diagram with all fields and enrichments labeled. Terms describing relationships
in the enrichment tree are:

field a function which exists over the entire element and represents the solution
on its physical domain.

child field a field that is directly below another field or created by an enrich-
ment (e.g., Field B is a child of Field A and of Enrichment 1).

child enrichment an enrichment directly below another field or enrichment
(e.g., Enrichment 2 is a child of Field B and of Enrichment 1).

descendant fields the set of all fields below a field or enrichment (e.g., Field
B, C, D, and E are the descendant fields of Field A and of Enrichment 1).

descendant enrichments the set of all enrichments below a field or enrich-
ment (e.g., Enrichments 1 and 2 are the descendant enrichments of Field
A; Enrichment 2 is the only descendant enrichment of Field B and of
Enrichment 1).

sibling field one of two fields created by the same enrichment (e.g., Field B is
a sibling field of Field C and vice versa).

basal field a field without any children, i.e., a leaf in the enrichment tree (e.g.,
Fields C, D, and E).

aggregate field a field with children, i.e., an interior node in the tree (e.g.,
Fields A and B)

branch one of two paths stemming from an enrichment (e.g., Enrichment 1
creates two branches, with Field B and its descendants on one branch and
Field C (and any subsequent descendants) on the other).

branch sign the sign (— or +) indicating which branch a field occupies for the
level it exists at. By convention, negative branches will always be on the
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left and positive branches will always be on the right (e.g., Fields B and
D have a — branch sign, while Fields C and E have a 4+ branch sign).

parent field the field one level up from another field or enrichment along the
same branch (e.g., Field A is the parent field of Field B, Field C, and
Enrichment 1).

parent enrichment the enrichment that created a field or the enrichment one
level up from an enrichment on the same branch (e.g., Enrichment 1 is the
parent enrichment of Fields B and C, and of Enrichment 2).

ancestor fields the set of all fields above a field or enrichment along the re-
spective branch, i.e., the recursive set of parent fields (e.g., Fields A and
B are ancestors of Field D, Field E, and Enrichment 2).

ancestor enrichments the set of all enrichments above a field or enrichment
along the respective branch, i.e., the recursive set of parent enrichments
(e.g., Enrichment 1 is an ancestor of Fields B, C, D, and E and of Enrich-
ment 2).

root field a field that does not have any ancestors (e.g., Field A).

4. HHE Implementation

In Section 2, the concepts of hierarchical Heaviside enrichment (HHE) were
discussed at a high level. This section describes our implementation of the HHE
theory in an XFEM formulation for infinitesimal strain elasticity in the context
of fracture. To simplify the discussion in this section, enrichment surfaces will
represent cracks. Additionally, as previously stated, we impose that an enrich-
ment is not allowed to lie along an edge or face of an element nor allowed to
exactly intersect a node of an element. When a situation arises that would
violate this restriction, we move the enrichment slightly to avoid coincidence
with the face, edge, or node. This restriction ensures that the enrichment tree
remains a full binary tree. Note that this paper focuses on the pieces of the
analysis framework needed to account for discontinuities in the solution field.
Therefore, the implementation of a crack model will be left to a future publica-
tion.

4.1. Aggregation of Fields

As discussed in Section 2, degrees of freedom (DoFs) correspond to basal
fields, and an aggregate field is a function of its descendant basal fields. This
section delineates the aggregation function for elasticity for a single enrichment
and then extends to the general case of multiple enrichments. For elasticity,
DoF's correspond to displacements at the nodal positions. Before enrichment,
the displacement field at any location within the element, 4(Z), is given by

N
(@) =Y ¢ (@), (1)
i=1

where overbar denotes a vector quantity, %; denotes the displacement at node
i, ¢; () denotes the element shape function which has value 1 at node i, and
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N is the number of nodes in the element. After Heaviside enrichment, the
element is divided into two half-spaces, each with its own basal field to represent
displacement on its side of the enrichment. Let @~ (Z) refer to the displacement
field on the negative side of the enrichment and 4™ (Z) refer to the displacement
field on the positive side of the enrichment, with these signs assigned based on a
vector normal to the enrichment surface. The displacement fields are calculated
from the respective nodal values using the existing element shape functions via

N
= (Z) = Z@»(f) ;, and (2)

N
at (@)= oie) (3)

Then, the aggregation function yields the aggregate displacement field, @ (),
by

u(z)=H(@)a" (@)+(1-H (@) (1), (4)

where H (Z) is the generalized Heaviside function that takes the value of 0 on
the negative side of the enrichment and 1 on the positive side. Effectively, a
parent field is a convex combination of its two child fields. If a child field itself
is an aggregate field, then the same equation recursively applies down the tree.

For the remainder of this paper, let lowercase Greek letters denote fields,
uppercase script letters denote enrichments, and double stroke letters denote
sets of fields or enrichments. Furthermore, let superscripts denote to which field
or enrichment a function belongs. Finally, let subscripts refer to the containing
element.

In the general case of multiple enrichments, it is useful to have an expression
for @ (z) that does not rely on recursion, which is given by

a(z) =) C(@)a’ (2), ()

BEB.

where B, is the set of basal fields in element e, and the coefficient C° (Z) is a
function of B and all of 3’s ancestor fields, denoted by A?. With A as the parent
enrichment of a, and B as the parent enrichment of 3, C” (7) is given by

c?@ =[] »"(@), where (6)
achfu{s}
1— HA(z), ifaison the negative side of A,
h (z) = { HA(z), if o is on the positive side of A, (7)
1, if « is the root field.

Figure 3 shows the application of these definitions to the situation in Fig-
ure 1b, where @~ (Z) was enriched. The basal field indices for this example are
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B, = {1+,2—,2+}; recall 4!~ (Z) is an aggregate field after enrichment. The
root aggregate displacement field, @ (Z), is given by

u(z) = C* (z)a't (z) + C% (2)u* (z) + C*T (z)u®T (z), where (8)
C'* (z) = H' (7), (9)
C* (z)=(1-H'(z)) (1- H*(z)), and (10)
> (@) = (1- H' (z)) H> (2) (11)

(%) Q¢

Enrichment 1
/\ (defined by H'(%))

nl+

1= (% —1+(—)

a2 Q/1 P P
Enrichment 2

(defined by H2(%)) /\

/ /

(%) | |
0%

72+ (%)

Figure 3: Enrichment diagram from Figure 1b with labeled fields and enrichments.

Recall that a basal field can be evaluated at any location within the element,
but the function A* is only nonzero over the physical domain of the field, thus
the coefficient C” () is only nonzero in a subset of the domain of the element,
Q.. Note then that an aggregate field 5 also has a physical domain. In general,
the physical domain of any field 3, 7, is given by

QP cQ. |VreQ. — C%(z)=1. (12)

For the situation depicted in Figure 3, the physical domain of each field is
shaded. For integrals over the element involving @ (Z) or a quantity derived
from @ (), it is convenient to integrate piecewise, since

u(z) =" (z), Ve € QP B €B.. (13)

4.2. Finite Element Model with Enriched Elements

The implementation and theory up to this point hold for any type of physics
for which the solution field contains discontinuities. This section develops HHE
for linearized infinitesimal strain theory. The weak form of the governing equa-
tion for infinitesimal strain elasticity is provided in many textbooks [53]. With-
out body forces, the weak form becomes

/5(5) : 65 (3) dO) = /t‘(gz) 05 (z) dT, (14)
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where 7 (Z) is the rank-2 stress tensor, £ (Z) is the rank-2 strain tensor, and ¢ ()
is the traction vector. For a linear elastic material, stress is linearly related to
strain through a rank-4 tensor that represents the constitutive relation, C', so
Eqn. 14 can be rewritten as

/Ckl (55—.‘]C dQ / (S’LLJ d].—‘7 (15)

where stress, strain, and the constitutive relation use Voigt notation. This holds
for any arbitrary volume, including for a single element, 2.. However, the form
used for classical FEM requires modification for enriched elements. If uf , vf ,
and wf denote the z, y, and z components of @” (%), respectively, evaluated at
node j within an element, then all the nodal values of field 8 in an enriched
element can be arranged as the vector

q’ = [u?, v?, wf, .. u]ﬂv, v]‘i,, wN Vp e B, (16)
where NV is the number of nodes in the element and B, is the set of basal fields
in the element. For a given basal field within the element, %° () is a function of
the nodal displacement vector, g, and a matrix of shape functions, A, where

uf () = Ay ()¢}, and (17)
¢1 (T) 0 0 oo N (T) 0 0
A= 0 ¢ () 0 ... 0 én (Z) 0 |. (18)
0 0 @ ... 0 0 on(T)

The matrix A involves the same shape functions for all fields within an
enriched element. Using this with Eqn. 13 yields the root aggregate displacement
field, @ (Z), in indicial notation

ui (z) = Aij () g}, V2 € QF, B €B.. (19)

Typically, the matrix B denotes the partial derivative of the strain with
respect to the nodal displacement vector, . Like A, the form of B is the same
for both HHE and classical FEM, and it is only a function of the derivatives of
the shape functions for the element. With this, the strain becomes

(z)=B(x)q°, 1€ QP peB.. (20)

Since the displacement and strain within the element are piecewise defined,
the variational form of the governing equation must be piecewise integrated. Let
B, denote the set of basal fields and I'? be the boundary of Q7. Using piecewise
integration and rearranging to separate the variation of the nodal displacements,
the variational form of the governing equation is

5 ([ 51 @) G @) By 9)a024] — [ 00 (3) Ao (@107 )

BEB.
=0, VB e B, (21)
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but §q” is arbitrary and independent of 6q” V~ € B, \ {8}. Therefore, the
expression within the parentheses must be zero for each basal field 3. Notice
that the finite element model forms a block system of equations of size |B,|.
Since enrichments introduce new boundaries into the domain, it is useful to
distinguish between the new boundaries that intersect the boundary of the ele—
ment and those that are internal to the element for each basal field, 5. Let Fem

denote the external boundary of 3, and let Ffm denote the internal boundary,

ie.,
2, =TnT,, v5 € B, and (22)
.= > T¢I}, VBeB.. (23)
vEB.\{B}

Note that the intersection of three or more basal field boundaries is either
an empty set or a single point. Since TY =9 ' UT? .. the finite element model
in Eqn. 21 can be rearranged as

/Bm ) Cra ( )Bzg()deqf— Z / (z) Aj; (z)d (T2 NTY)

v€EB\{B}
—/tj(gf)A () dr®, =0, V8 € B.. (24)

The sum of the integrals over the intersections of basal field boundaries is
important for a crack model and should receive special attention. Section 3
used the term enriched cohesive zone at a conceptual level. Mathematically, an
enriched cohesive zone ensures that the sum of the integrals over the intersec-
tion of basal field boundaries for all combinations of basal fields is accurately
calculated. For this paper, all enrichments are traction-free, so the integrals
over the internal boundaries are all zero.

Under this assumption, the finite element model is rearranged to form the
system of linear equations

K.q. = F.. (25)

The block stiffness matrix, K., for the element becomes block diagonal, with
each diagonal block, K?, defined by

K’ = / B (z B (z)d0°. (26)

The off-diagonal blocks are nonzero only when tractions across internal bound-
aries are nonzero. Additionally, the force vector, F., may be defined via blocks
F£ for each basal field 3, given by

/ AT (z)E(z)dr?,,. (27)

Closed-form solutions for these integrals are generally difficult to obtain, so we
evaluate the expressions using numerical integration, as described in Section 4.4.
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4.8. Enrichment Surface Discretization and Growth

We require a representation of enrichment surfaces to track where the sur-
face lies and define boundaries of the physical domains of the basal fields. A
representation of an enrichment surface can be either implicit (defined by a
function evaluated on the original mesh), or explicit (composed of a collection
of surface elements). Implicit representations benefit from the many established
methods for evolving level-sets, easing the implementation of growth algorithms.
On the other hand, explicit representations are convenient for modeling com-
plex behavior across enrichment surfaces, such as a cohesive law governing the
opening of cracks or oxygen diffusion through a crack network, since explicit rep-
resentations provide a mesh for the required calculations. We implement both
representations, using the implicit representation to determine how an enrich-
ment surface evolves and the explicit representation for numerical integration
and topological checks.

4.3.1. Level-Set Representation

We use the signed distances evaluated at each node of an element to im-
plicitly represent where an enrichment lies within an element via the level-set
method. We interpolate the nodal signed distance values to any point within the
element using a set of basis functions and consider the enrichment to lie along
the 0-isosurface. We restrict the interpolation of the signed distance to linear
polynomials, regardless of the order of the element, in order to avoid multiple
intersections along a single edge. Additionally, we require a signed distance
value at a nodal position to be non-zero, avoiding the possibility of a level-set
exactly going through a node, edge, or face and guaranteeing that the level-set
will cut through some volume within the element. If a signed distance value of
zero occurs at a nodal position, it is slightly perturbed.

To ease a distributed implementation, we give a strong emphasis to the
locality of algorithms within this framework. Consequently, we selected the
element-local level-set method proposed by Duan et al. [54]. While evolving
level-sets, Duan et al. recognized that there is a competition between minimizing
the error between the represented crack surface and the surface predicted by
the fracture model and minimizing the discontinuity between an extension of
the crack front with the existing crack surface. Consequently, they devised a
method to find a level-set within an element through least-squares minimization
of these two competing error terms. The method relies on the fact that the
set of nodal signed distance values is unique to each element, which means
that two adjacent elements can have different signed distance values at their
shared nodes. A weighting parameter is introduced to determine the relative
importance of each of the two errors, and the authors recommended a value of
1 based on a parametric study. This type of level-set method does not enforce
Cy continuity of the surface across adjacent elements that it intersects, but it
does require that the sign of the nodal signed distances match across adjacent
elements.
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4.8.2. Polygonal Discretization

After an implicit representation is created for a new enrichment, we create
the explicit representation based on the intersection of the level-set with the
physical domain of the parent field, which is approximated by a set of bounding
polygons forming a polyhedron. Since the explicit representation is used for
volume integrals over the physical domain of a basal field, the polygons are
expressed in the parametric coordinate system of the element, avoiding the
need to map from the global coordinate system to the parametric coordinate
system of the element during numerical integration. Additionally, we do not
require that the polygons be planar, but they must be a trilinear function in the
element’s parametric coordinate system. Although the implicit representation of
an enrichment extends throughout the entire element, the explicit representation
is bound by the physical domain of the parent field. Furthermore, when a new
enrichment is introduced, all the intersected polygons that bound the basal field
being enriched are cut (or divided) by the new enrichment.

For example, consider an 8-node hexahedron element with a first enrichment
defined by a signed distance function f!(£) = &3, which is the plane {3 = 0, and
a second enrichment defined by the signed distance function f2(£) = & (the
plane & = 0). Figures 4a and 4b show the implicit representations for both
enrichments, respectively, while Figure 4c shows the explicit representations for
both enrichments. Note that the first enrichment restricts the explicit repre-
sentation of the second enrichment. The second enrichment also caused the
first enrichment to be divided into two polygons with vertices {a, f,e,d} and
{f,b,c, e}, respectively.

(a) Implicit representation (b) Implicit representation (c) Explicit representation of
of enrichment 1 defined by of enrichment 2 defined by both enrichments
NGRS O =&

Figure 4: Implicit and explicit representations of two enrichments in a 8-node hexahedron
element.

The polygonal discretization of enrichments (and faces) of an element allows
fast topological queries that are required for growing enrichment surfaces and
finding compatibilities for basal fields and enrichments, which we discuss in
the next section. For each polygon, we store to which enrichment or face it
represents, and for each edge of the polygon, we store to which element edge it
lies along (if any). This information efficiently enables the following queries:

17



Query 1. Whether the level-set for an enrichment in one element intersects
the physical domain of a basal field in an adjacent element through the
shared topology of the two respective elements,

Query 2. Whether the level-set for an enrichment in one element intersects
the shared topology between its parent element and an adjacent element,
and

Query 3. Whether the physical domain of a basal field touches the shared
topology between its parent element and an adjacent element.

Query 1 is critical to the algorithms described later in this paper. Namely,
it is needed when testing if a given enrichment may grow into a given basal field
and when determining if a new enrichment in one element should be compatible
with any existing enrichments in adjacent elements. On the other hand, Queries
2 and 3 serve as filters to short-circuit complex logic involving enrichment tree
traversals for cases when the topological predicate can guarantee that a more
expensive enrichment tree predicate will not be met. Importantly, storing this
topology information alongside the polygonal discretization is not required to
perform any of the three queries mentioned, since they can be based entirely
on the element topology and the signed distance values of all enrichments in
relevant elements. However, storing this information significantly reduces the
computational time required (at the cost of more memory). Thorough profiling
is required to understand the details of this trade-off.

4.3.3. Growth Algorithm

To advance the front of an enrichment surface, we must first determine
the basal fields into which it is topologically permissible for the front to grow.
This determination involves compatibilities between enrichments, which must be
distinguished from compatibilities between basal fields, which was defined earlier
in Table 1. Let a compatibility between an enrichment in one element and an
enrichment in an adjacent element mean that the solution jump should be C°
continuous along the two enrichments across the adjacent elements. Given this
definition, the conditions that must be satisfied to permit an enrichment A that
lies along the front to advance into a basal field 5 are as follows:

Condition 1. The parent element of § is adjacent to the parent element of
Aa

Condition 2. A must intersect the physical domain of S across the shared
edge/face between the two elements (see Query 1 in Section 4.3.2),

Condition 3. A must not be compatible with any enrichment in the set of
ancestor enrichments of 3, A%, and

Condition 4. For each ancestor enrichment in Aé, if there is an enrichment
in A% that is compatible, then A4 and § must both be on the positive side
or both be on negative side of their respective ancestors. There is one
exception, if the two ancestor enrichments have opposite orientations,
which can occur when cracks merge, then they should be on opposite
sides of their respective ancestors.
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If A and 8 meet all conditions, then it is topologically permissible for A to
grow into 5. However, if the surface represents a crack, then there must also be a
physics-based criterion to determine if the front should advance at enrichment A.
The criterion greatly depends on the type of crack model used. For example, for
the cohesive segment method, the criterion might dictate that the front should
advance if the damage parameter in A is greater than a numerical tolerance. As
emphasized in the scope of this paper, we reserve detailed discussion of crack
models for a future publication.

When the physics indicates that A should advance into § and all four condi-
tions above are met, we must determine those enrichments in adjacent elements
with which the new enrichment, B, should be compatible and determine the
values of the signed distance function for B at the nodes of the parent element.
As previously discussed, the element-local level-set method does not require the
signed distance function for two compatible enrichments to exactly match along
the shared topology of the respective parent elements. However, if enrichment B
in element e is to be compatible with some enrichment C in an adjacent element
n, either

sign (fB (a_:ie)) = sign (fc (:Ejn)) VZ;,,%;, | T, = Zj,, or (28)
sign (f (2:,)) = —sign (f€ (z;,)) Vi, 25, | 7:, =5, (29)

must be satisfied, where Z;, denotes the position of node ¢ in element e. There-
fore, the signed distance values affect whether B is permitted to be compatible
with enrichments in adjacent elements, but the list of compatible enrichments
also affects the signed distance function for B, since the signed distance values
must be determined such that either Eqn. 28 or Eqn. 29 is met. To circumvent
the circular dependency, we divide the algorithm into the following steps:

Step 1. Construct a partial list of compatibilities for B that only includes
the subset of enrichments that are compatible with any front enrichment
of the surface to which A belongs and for which the parent element is
adjacent to the parent element of B, thus ensuring the new enrichment
is compatible with the existing surface being advanced.

Step 2. Find a temporary set of signed distance values for B that satisfy
Eqn. 28 or Eqn. 29 based on the partial list of compatibilities from Step
1.

Step 3. Use the temporary set of signed distance values from Step 2 to cre-
ate the complete list of compatible enrichments for B, checking if B
should merge with any other enrichment in an adjacent element based
on whether the difference of the signed distance values at the shared
nodes is within a tolerance along the shared topology between the ele-
ments and any required physics-based criteria.

Step 4. Determine the final signed distance values based on the complete
list of compatible enrichments from Step 3.

To determine either the temporary or final signed distance values, we follow
the strategy proposed by Duan et al.[54], which we will describe here for com-
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pleteness. Given the set of enrichments that should be compatible with B, C5,
let vector b contain a 1 or 0 for each node of the parent element of B (follow-
ing the order of the element’s connectivity) indicating whether the respective
node is shared with the parent element of any enrichment in (Cg. Similarly,
for each node of the parent element of B, let a denote a vector containing the
average signed distance value of all enrichments in (Cg that has a value at the
respective node. For all nodes with a value of 1 in b, the signed distance values
will be weakly constrained to the corresponding value in a. However, as Duan
et al. recognized, CV continuity of the crack surface sometimes competes with
the physics model governing the orientation of the crack surface. Let weog de-
note the relative weight of the C° continuity objective. As w¢q increases, the
level-set for B tends towards C° continuity with the averaged level-sets for C5.
Additionally, a system of equations at the element level can be solved to mini-
mize the error of the weighted objective functions. Let matrix A and vector c
be given by

N R
A = D, O, dQ2e + (weolc) diag (b),; and (30)
o = / aj;A A9 + (woole) ai (31)

respectively, where [, is the cube root of the volume of the element and represents
the characteristic length. Then the signed distance values for B at each node,
B, are given by A~'c. We start with wcg = 1 as recommended by the authors,
but if Eqn. 28 and Eqn. 29 are violated, then wgq is increased by an order of
magnitude and a new f? is determined. This is repeated iteratively until either
Eqn. 28 or Eqn. 29 is satisfied. Since we also restrict the signed distance value
at any node to be larger than a very small tolerance, this iterative procedure is
guaranteed to converge.

4.4. Numerical Integration

In general, piecewise integration over the physical domain of each basal field,
QF, and over the internal and external boundaries of each basal field, Fmt and
Ffmt, respectively, is needed to calculate the integrals appearing in Eqn. 24.
To numerically integrate over Q7 we first apply Delaunay tetrahedralization
to the polyhedron that approximates the physical domain of the field and then
integrate over the tetrahedra.

There are three coordinate systems of interest. Let Z denote a coordinate
in the reference frame of the global coordinate system, £ denote the parametric
coordinate system of the element, and @ denote the parametric coordinate sys-
tem of a reference tetrahedron. Addltlonally, let Q2 denote the physical domain
of field B in Z, let T# denote the physical domain in &, let Tﬂ denote the ap-
proximation of Y# by a polyhedron, and let T be the domain of a tetrahedron
in &. Figure 5 illustrates the three coordinate systems and the maps between
them. Note that there is a @ — £ map for each tetrahedron in the Delaunay
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tetrahedron 1

az

Figure 5: Illustration of coordinate systems and maps between them.

tetrahedralization of each field, denoted by gf for the i*" tetrahedron of field 3,
although the figure only displays the 1st tetrahedron, outlined in blue.
Integrating over Y2, the stiffness matrix appearing in Eqn. 26 becomes

Kﬁ:/BT(g‘)C(g)B(g)‘g—ngereﬁ, (32)

where € is the discretization error arising due to either volumetric (measure)
discretization errors and/or a mismatch between the integration space of our
quadrature rule and the integrand. The volumetric discretization error is nonzero
in elements containing enrichments with level-sets that are not planar in £. For-
tunately, elements with curved edges in the global coordinate system avoid ad-
ditional discretization error, since the edges of the reference element are straight
for the types of elements considered in this work. Finally, we assume €’ is small
and use the Delaunay tetrahedralization of T2 to obtain

M
kI~ Y [B7 (o @) C (o @) B (o (@)

where M denotes the number of tetrahedra for the field.

Depending on the type of element, we select a Gaussian quadrature scheme
for the tetrahedra to exactly integrate the integrand when C is constant through-
out the element. For example, for a linear hexahedron element, the integrand is
quadratic with respect to &, so a 5-point Gaussian quadrature scheme special-
ized for the tetrahedra exactly integrates the integrand in Eqn. 33. We can use
a similar strategy for integrating over Ffm and Ffwt. However, since the verifica-
tion cases shown in this paper only consider traction-free enrichment surfaces,
we will reserve further discussion on integration strategy for these terms for
future work.

9g! (@)
o4

of (€)
‘8—5 T, (33)

4.5. Degree of Freedom Enumeration via Basal Field Compatibilities

For the continuous-Galerkin (CG) method, the displacement field should
remain continuous everywhere, except across enrichment surfaces that model a
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discontinuity. To enforce continuity of basal fields across elements, we enumerate
the degrees of freedom associated with a basal field in one element with the same
numbers at the shared nodes of the adjacent element. Enumerating the DoF's
this way ensures that all basal fields are continuous across elements without the
need for constraints in the system of equations. However, because we allow the
implicit and explicit representations of enrichment surfaces to be discontinuous
across elements, we cannot always enforce continuity of aggregate fields. In
other words, the aggregated solution may be discontinuous across a face if the
enrichment surface is discontinuous across the two connected elements. We
could ameliorate this by enforcing continuity of the enrichment surfaces at the
cost of artificially constraining how enrichment surfaces can grow. However,
the discontinuity of the enrichment surface across adjacent elements is typically
very small.

When a field is enriched, an additional set of DoFs must be introduced
for the element, resulting in two new basal fields. Rather than update the
DoF enumeration every time an element is enriched, we elect to track new
enrichments that occur and renumber the DoF's for all elements when an updated
solution is needed. However, generating a suitable DoF enumeration directly
from the enrichment trees within all elements is an expensive operation, since
determining the DoF's for a basal field in an element relies on complex logic
involving the enrichment trees of the given element and all of its neighbors.
Instead, we propose storing a graph of compatibilities between basal fields in
adjacent elements, which can be incrementally updated to accommodate new
enrichments. The existence of this compatibility graph allows for an efficient
DoF enumeration of the entire domain when an updated solution is required.

In this section, we describe the algorithm for constructing and updating
the basal field compatibility graph and the DoF enumeration algorithm that
naturally maintains a CG solution across elements, including how the algorithm
is suitable for distributed computing.

4.5.1. Basal Field Compatibility Graph

As discussed in a previous section, a compatibility between a basal field in one
element and a basal field in the adjacent element means that the solution field
should have C° continuity within those basal fields across the two elements.
For the simplest case, consider an enrichment surface that cuts through two
elements. The two basal fields on the positive side of the surface should be
compatible with each other, and separately, the two basal fields on the negative
side should also be compatible with each other. Whether two basal fields should
be compatible can be deduced from the enrichment trees in the two elements,
topological information, and the pairs of compatible enrichments between the
two elements.

First, it is helpful to delineate three types of relationships between a basal
field in one element and the basal fields in an adjacent element. The given
basal field can either be: 1) incompatible with all basal fields in the adjacent
element, 2) compatible with exactly one basal field in the adjacent element, or 3)
compatible with multiple basal fields in the adjacent element. Fig. 6 illustrates a
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situation with all three types. In Fig. 6b-6d, we represent each basal field with a
sphere, which is placed at the centroid of the physical domain of the basal field.
Additionally, we indicate a compatibility between two basal fields with a grey
line connecting the two spheres, and similarly, we represent an incompatibility
between two basal fields with a yellow line. The DoF enumeration will enforce
continuity of the solution across any compatible basal fields in adjacent elements
for which the compatibility appears in the graph. Consequently, there is a
choice of which compatibilities to include. Some crack models weakly enforce
continuity of the solution along the front, including the cohesive segment method
since it requires a closed cohesive element along the front. In this case, only
including compatibilities involving exactly one basal field in one element and
exactly one basal field in the adjacent element, such as those shown in Fig. 6c,
might lead to a more well-conditioned system of equations. However, other
crack models might require the DoF enumeration to create continuity of the
solution along the front, in which case all compatibilities should be included,
but as a reminder, something must be done to address the stress singularity if
the crack model does not smear or regularize the effect of the crack tip. For
the verification cases shown later in this paper, the choice is irrelevant since
we will restrict the verification to situations where the front only terminates
at another enrichment surface or the boundary of the model, which precludes
the possibility of compatibilities involving one basal field in one element and
multiple basal fields in the adjacent element, such as those shown in Fig. 6d.
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(a) Orthogonal enrichment surfaces illustrat- (b) Some of the incompatibilities between
ing compatibility cases. basal fields across adjacent elements.

-~

(c) One-to-one compatibilities between basal (d) Many-to-one compatibilities between
fields across adjacent elements. basal fields across adjacent elements.

Figure 6: Illustration of all three cases pertaining to compatibilities of basal fields.
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Storing compatibilities between basal fields in adjacent elements in a graph
is convenient for a computer implementation, and before any enrichments are
introduced, the compatibility graph is equivalent to the element adjacency list.
For example, Fig. 7a shows a 3x3x1 grid and the graph of compatibilities be-
tween basal fields. When a new enrichment is introduced in an element, the
compatibilities between basal fields in the neighborhood of the enriched element
are disrupted and must be updated. However, all compatibilities involving el-
ements not adjacent to any enriched element remain unaffected. This allows
the compatibility graph to be updated only in the neighborhood of new enrich-
ments when an updated DoF enumeration is required. For example, when the
enrichment surface shown in Fig. 7b is inserted, then compatibilities involving
the enriched elements are removed from the graph, as illustrated in Fig. 7c. Af-
ter all enrichments have been inserted and a new DoF enumeration is required,
the correct compatibilities are added back using an algorithm that requires two
passes. In the first pass, a partial compatibility graph is constructed based on
the element topology and enrichment tree information. This partial compatibil-
ity graph may exclude some corner cases. Consequently, in the second pass, the
element topology and partial compatibility graph are used to find a complete
compatibility graph.

To create the partial compatibility graph, a compatibility should be added
between basal fields § and ~ if:

1. The parent element of 5 is adjacent to the parent element of ~,

2.  Both § and v touch the shared edge (if the two elements share an edge)
or the shared face (if the two element share a face), and

3.  For each ancestor enrichment in A%, if there is an enrichment in A},
that is compatible, then S and v must both be on the positive side or
both be on negative side of their respective ancestors. There is one
exception, if the two ancestor enrichments have opposite orientations,
which can occur when cracks merge, then they should be on opposite
sides of their respective ancestors.

Note that the above conditions describe the relationship between two basal
fields. While similar, these conditions differ from the enrichment growth condi-
tions in Section 4.3.3, which relate an enrichment to an adjacent basal field.

As previously discussed, one might elect to exclude compatibilities for a
basal field involving multiple basal fields in the adjacent element, and whether
a basal field is compatible with a single basal field or multiple basal fields in the
adjacent element can be trivially deduced from the compatibility graph after
the fact. However, based on the information available before the compatibility
graph is updated, 8 can be guaranteed to only be compatible with v out of the
set of basal fields in the parent element of v and vice versa if all of the following
are met in addition to the three conditions above:

1. No enrichment in A% is compatible with multiple enrichments in A7,
2. No enrichment in A7, is compatible with multiple enrichments in A%,
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3.  Any enrichment in A% that intersects the shared topology between the
adjacent elements is compatible with an enrichment in A}, and

4.  Any enrichment in A}, that intersects the shared topology between the
adjacent elements is compatible with an enrichment in A%.

By testing these conditions, we can construct a partial compatibility graph,
such as the one shown in Fig. 7d. However, as mentioned, this partial compati-
bility graph excludes a corner case, namely, a compatibility between the labelled
fields A and B. The compatibility is not included automatically because the
element topology and enrichment tree information are insufficient. Note that
the compatibility between D and E is found because the two fields touch the
shared topology between the respective parent elements. However, A and B
are compatible through a basal field, C', that lies in an element adjacent to the
parents of both A and B, and this type of compatibility cannot be deduced from
the enrichment trees of the two elements alone. After the partial compatibility
graph is constructed, a second pass over the elements and basal fields is per-
formed to ensure that a compatibility exists between any pair of basal fields, 8
and ~, that lie in adjacent elements for which there is an « that is compatible
with both 8 and 7. For example, Fig. 7 shows the complete compatibility graph
after the second pass. As it is difficult to visually distinguish, we present this
graph in two parts, one for each side of the enrichment surface (Fig. 7e and 7f).
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(e) Updated compatibility graph (part 1). (f) Updated compatibility graph (part 2).

Figure 7: Illustration of initial compatibility graph map and the steps update the graph to
account for new enrichments.
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Importantly, this algorithm for creating the basal field compatibility graph
is embarrassingly parallel. In a multithreaded paradigm, each thread can be
assigned a subset of elements and fill in the compatibility graph for the assigned
elements, although adjacent elements assigned to different threads will be visited
multiple times. Storing the graph within an adjacency list ensures thread-safety
if each thread only modifies the list of compatibilities for the assigned elements.

Within a distributed paradigm combined with domain decomposition, the
mesh is partitioned, with each element and each node assigned to a particular
rank. Each rank may only have access to the subset of the mesh that contains
all owned elements and any element containing an owned node. Let a ghost
element or node refer to an element or node that is accessible in a partition
of the mesh but is not owned. As long as each rank has the topological and
enrichment tree information for each ghost element in its partition, then no
communication between ranks is required for each rank to build a compatibility
graph for its partition.
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4.5.2. Degree of Freedom Enumeration

In our proposed XFEM approach, each degree of freedom (DoF) corresponds
to a component of the solution vector at a particular nodal position and receives
a number indicating the corresponding row in the global system of equations.
Consequently, it is convenient to store a map that takes an element, basal field,
and nodal position and returns the DoF numbers. In turn, the DoF map can
be used to efficiently assemble element level matrices/vectors into global ma-
trices/vectors. In our implementation, the DoF map is stored as an array of
DoF numbers ordered first by element, then by basal field, and then by nodal
position relative to the respective element’s connectivity. To maintain a CG
solution, the DoF enumeration must ensure that every basal field has the same
DoF number at a nodal position as another compatible basal field at the same
nodal position. Of course, there are many enumerations that would satisfy
this requirement. We propose an algorithm for cheaply creating an admissible
DoF enumeration given the basal field compatibility graph. The resulting enu-
meration can then be combined with one of the many established methods for
permuting the enumeration to improve solver performance, such as METIS[55].

Our approach for cheaply creating an admissible DoF enumeration is to loop
over the elements and the basal fields within the element, assigning a DoF index
to each nodal position following

de. 1] = dln,v,j],  if dn,v,j] is initialized | v € C5 and 7;, = %;, ,
o new index, otherwise,
(34)

where d[e, §,i] denotes the DoF index for basal field § in element e at nodal
position ¢ and (C?, denotes the set of basal fields compatible with g in any
adjacent element n.

Similar to the compatibility graph, this enumeration algorithm is easily par-
allelized through domain decomposition. If the mesh is partitioned with each
element and each node assigned to a particular rank. A local, admissible DoF
enumeration within a rank can be created in the following two steps:

1. Loop over the elements (both ghost and owned) and the basal fields within
each element, assigning DoF indices per Eqn. 34 for owned and ghost nodal
positions separately with each range starting at 0, and then

2. Revisit positions of the DoF map corresponding to a ghost nodal position
and increment the index by the largest index at any owned nodal position.

Importantly, the indices for DoF's corresponding to the owned nodal positions
will appear at the front of the local enumeration, followed by those corresponding
to ghost nodal positions. Next, a local-to-global map can be constructed by each
rank as follows:

1. Perform a parallel prefix sum (scan) of the number of DoFs assigned to
owned nodal positions, which each rank can use to determine their starting
global index,
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2. Populate the first section of the local-to-global map that corresponds to
the owned nodal positions with increasing integers starting at the starting
global index for the rank,

3. Send the global indices for any owned nodal position that appears as a
ghost node on another rank to that rank, and

4. Complete the local-to-global map using the list of global indices for all
ghost nodal positions that were received in the previous step.

The only communication required to create a compatibility graph and DoF
enumeration occurs in steps 1 and 3. Step 1 is a collective operation that is
known to run in O(log n) time, while step 3 involves communication between
each rank and the other ranks whose partition borders its own partition. A
deeper discussion of the details of a parallel implementation and a characteri-
zation of its scalability will be reserved for a future article.

5. Verification

Thus far, we described the algorithms and implementation of our CG-XFEM
approach. In this section, we verify our complete FEA implementation via a
few linear elastic analyses, focusing on certain challenging cases. For the re-
mainder of this section, we will model open cracks using enrichment surfaces.
In many applications, a cohesive crack model would allow crack fronts to exist
within the domain without introducing stress singularities. However, since co-
hesive crack models and surface integration techniques are outside the scope of
this paper, we only consider verification cases where enrichment surfaces evolve
until the fronts of the surfaces encounter a mesh boundary, encounter another
enrichment surface, or create a closed manifold. As a consequence of this choice,
enrichment surfaces divide the computational domain into multiple disconnected
pieces. We visualize the solutions using a custom ParaView[56] plugin tailored
for XFEM data. The verification cases were selected to highlight two features
of our method. First, they show that our DoF enumeration algorithm correctly
allows a discontinuity in the displacement field along enrichment surfaces and
maintains a continuous displacement field elsewhere. Second, they illustrate
that our method is not restricted to uniform grids and hexahedral elements.

5.1. Intersection of Curved Enrichment Surfaces Within a Mized-Element Mesh

For this verification case, we consider two intersecting curved enrichment
surfaces within a mixed-element mesh, consisting of a combination of pyramid,
wedge, hexahedron, and tetrahedron elements. Figure 8 shows the mesh, which
has a side length L, and a view of the elements belonging to each type.

First, we insert a surface to form a spherical manifold centered in the grid
with a radius of 0.37L, as shown in Figure 9a. Since the surface is traction-
free, it disconnects the material inside the sphere from the material outside
the sphere. Second, we insert a surface corresponding to a sphere with center
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Figure 8: Mixed-element mesh used for the verification case of intersecting curved enrichment

surfaces.

(0, 0, 2.71L), a radius of 2.37L, and terminating where it intersects the first

surface and the boundary of the grid, as shown in Figure 9b.
To fully test our implementation, we prescribe boundary conditions to dis-
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tinctly separate each disconnected region of the domain, i.e.,

Ui (07127353) = U2 ($1707$3) = ug (IIZl,LEQ,O) = 07 (35)
us (0.5L, 0.5L, 0.5L) = 0.5L, and (36)
us (1171, o, L) =L. (37)

An implementation error would likely result in a nonzero displacement gradi-
ent within each disconnected piece of the domain. Figure 9c shows the deformed
configuration with contours based on the magnitude of the displacement vector,
|@|. As expected from a correct implementation, |i| is constant in each of the
three pieces of the domain. Furthermore, the bottom piece correctly experiences
no deformation, the sphere correctly translates along x3 by 0.5L, and the top
piece correctly translates along x3 by L. This case also illustrates the ability of
our method to evolve enrichment surfaces through a mixed-element mesh.

(a) First enrichment surface (shown in (b) Second enrichment surface (shown
red) in green)

(c) Deformed configuration

Figure 9: Enrichment surfaces and results for the verification case of intersecting curved
enrichment surfaces with a mixed-element mesh.
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5.2. Intersection of Enrichment Surface Fronts

In this verification case, we consider two enrichment surfaces whose fronts
intersect within a uniform grid with side length, L. First, we insert and grow two
enrichment surfaces up to the point where the surfaces intersect (Figure 10a).
The first enrichment surface (red) now lies in the x3 = 0.45L plane, while the
second enrichment surface (green) lies in the x1 = 0.45L plane. Next, we grow
the red enrichment surface with the normal vector, 1, specified by

e (3) = { 0.6j +Fk, if e < 0.45L, (38)
0.6 + k, otherwise,

where ;, 57 and k are unit vectors along the x1, x2, and x3 axes, respectively.
Figure 10b shows enrichment surfaces after the red surface has grown to the
boundary of the grid. Next, we grow the green enrichment surface with normal
vector, g, specified by
i () = {f +0.45], i 2y < 0.45L, 39)
i — 0.45j, otherwise.

Figure 10c shows enrichment surfaces after the green surface has grown to the
boundary of the grid. Finally, we prescribe the following boundary conditions:

uy (0,22, 23) = up (21,0, 23) = uz (x1,22,0) =0, (40)
uy (L, x2,23) = L, and (41)
us (1'17332,[/) = L, (42)

where the same global coordinate system shown in Figure 8a is used. Figure 10d
shows the deformed configuration with contours based on the magnitude of
the displacement vector, |@|. As expected, |@| is constant in each piece of the
domain, with Piece 1 experiencing no deformation, Piece 2 translating along z3
by L, Piece 3 translating along z1 by L, and Piece 4 translating by Li + Lk.
Both of these simulations show that our implementation properly supports the
operations needed to enable complex growth of enrichment fronts in 3D.
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6. Comparison of XFEM Fracture Models in the Literature

To understand how this work compares to other XFEM approaches for
progressive fracture, this section provides enrichment diagrams for several ap-
proaches in the literature, illustrating how they would fit within the HHE frame-
work. The enrichment diagrams developed in Section 3 provide a concise, clear
way of communicating some of the key similarities and differences between meth-
ods. They do not communicate enough information to fully characterize a given
XFEM approach as many methods differ at a level of detail not revealed by
the diagrams. However, the diagrams do illustrate compatibilities or incompat-
ibilities that exist for a given method, which is often difficult to discern in the
literature.

For a comparison of the methods, consider a crack orthogonally intersecting
a bi-material interface, which can delaminate via a cohesive connection. Al-
though the methods extend to 3D, the comparison will use a 2D situation for
simplicity. The figures below show the material above the bi-material interface
in light blue and below in green. As some methods cannot support an embedded
bi-material interface, the bi-material interface will lie on an element boundary
when necessary. The comparison of approaches pays special attention to the
compatibilities of fields across enriched elements and the type of cohesive con-
nections between elements on each side of the bi-material interface. There is a
strong interaction between the opening of the embedded crack and the delami-
nation of the bi-material interface. Fang et al. showed that an enriched cohesive
zone is necessary to properly capture this interaction, although they used the
term “augmented cohesive zone” since the work was within the context of the
augmented finite element method [57]. Additionally, Chen et al. highlighted
the same issue and arrived at the same conclusion [52]. Thus, methods that
support an enriched cohesive zone across the bi-material interface will yield a
more accurate solution, although each of these methods are useful within the
proper context.

First, consider the regularized-XFEM (RXFEM) method developed by Iarve
et al. [45, 58]. For this approach, the bi-material interface must lie along element
boundaries to allow intersections between cracks and bi-material interfaces. Fig-
ure 1la illustrates the locations of elements (solid black lines), the bi-material
interface (dashed red line), and the embedded crack (solid blue line). Figure 11b
shows the corresponding enrichment diagram for RXFEM, though regularization
of the crack is an important detail of RXFEM not captured by these diagrams.
Note that RXFEM maintains compatibility of the fields across elements 2 and
3, which is physically correct. Additionally, RXFEM correctly uses an enriched
cohesive connection between elements 1 and 2, across the bi-material interface.
This results in a cohesive law that independently governs the opening, firstly,
between element 1 and the field on the negative side of the crack in element
2 and, secondly, between element 1 and the field on the positive side of the
crack in element 2. RXFEM correctly maintains compatibilities and captures
the interaction between the embedded crack and delamination of the bi-material
interface; additionally, it is implemented for 3D in BSAM, through a joint effort
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of AFRL, UDRI, and UTARI [45, 59]. However, the approach currently re-
quires cohesive bi-material interfaces to lie along element boundaries and does
not allow cracks to intersect.

o ———0
Bi-material interface along Element 1
element boundary (Material 1)
2
® \ ® Element 1 |<=| Element2 Element 3
-side of crack | +side of crack | Element2
(Material 2)
[—— . [ < 1
Embedded ! . ! .
matrix crack Element 3 1 le—>} — — 1
{Material 2} 1 1 1
*— 0 e e e e L !
(a) Illustration of mesh (b) Enrichment diagram

and cracks

Figure 11: Enrichment diagram of a crack intersecting a bi-material interface for RXFEM.

Figure 12 shows the case of a bi-material interface embedded within an el-
ement and the corresponding enrichment diagrams for both the phantom-node
method (PNM) [46] and floating-node method (FNM) [51, 52]. As shown in
the enrichment diagram, PNM maintains compatibility of the connected fields
across elements 1 and 2, which is physically correct. However, PNM does not
use an enriched cohesive connection across the bi-material interface in element
1, which effectively uses the aggregate field for the cohesive connection. Con-
sequently, PNM would not capture the interaction between the crack opening
and delamination of the bi-material interface.

Next, consider FNM, which has also been referred to as the extended phantom-
node method.[51, 52] Like PNM, FNM correctly maintains compatibility of con-
nected fields across elements, but unlike PNM, FNM uses an enriched cohesive
zone to govern the delamination of the bi-material interface. FNM has been
extended to 3D but restricts the number of cracks that can enter a single ele-
ment to one.[60] The enrichment diagram does not show some other differences
between FNM and PNM, such as the method used to integrate over the physical
domain of each field and where the “phantom” or “floating” nodes are located.
PNM places “phantom” nodes at the original locations of nodes in the element
that lie on the opposite side of the enrichment for a given field. However, FNM
places “floating” nodes where the enrichment intersects the element boundaries.
Chen et al. discussed this difference in detail. [52]

Finally, consider the collection of approaches derived from the augmented fi-
nite element method (AFEM), which fall into three categories: classical AFEM,
AFEM with augmented cohesive zones (ACZ-AFEM), and conforming-AFEM
(C-AFEM). Implementations of AFEM in the literature have focused on embed-
ding discontinuities and have required bi-material interfaces to lie along element
boundaries, but in theory, it would not require much effort to alleviate this re-
striction. Additionally, all AFEM implementations have been for 3D. Figure 13a
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Figure 12: Enrichment diagram of a crack intersecting a bi-material interface for the phantom-
node method (PNM) and floating-node method (FNM).
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Figure 13: Enrichment diagram of a crack intersecting a bi-material interface for augmented
finite element methods.

illustrates the locations of elements, the bi-material interface, which lies between
elements 1 and 2, and the crack, which is embedded in elements 2 and 3. For the
situation depicted in Figure 13a, Figure 13b shows the corresponding enrich-
ment diagrams for these AFEM models. Classical AFEM was developed based
on Hansbo and Hansbo and PNM to account for the existence of embedded dis-
continuities that do not conform to the mesh, but the major modification was
statically condensing additional degrees of freedom[26]. In this sense, AFEM
may not fall into the genre of extrinsic XFEM. However, the element level static
condensation introduces interelement incompatibilities. In the example shown,
this strategy results in the field on the negative side of the crack not being
continuous across the boundary of elements 2 and 3, which is not physical, as
shown in Figure 13b. Similarly, the field on the positive side of the crack is not
continuous across the same element boundary. This nonphysical artifact of the
method will result in unrealistic stresses near the boundary between elements 2
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and 3. Additionally, classical AFEM employs a standard cohesive zone between
elements 1 and 2, which misses the proper coupling between the cohesive zone
along the crack and along the interface. To capture the coupling between in-
tersecting cohesive zones, Fang et al. developed the augmented cohesive zone,
which this work generally refers to as an enriched cohesive zone, and the corre-
sponding extension of AFEM (ACZ-AFEM)[57]. Finally, very recently, Ma et
al. amended the incompatibility introduced across elements in AFEM in what
is called conforming-AFEM (C-AFEM)[29]. To maintain compatibility across
elements, Ma et al. proposed solving a PDE at the level of an enrichment
surface and then solving the global PDE, similar to a local-global approach.
This strategy still avoids the need to introduce additional degrees of freedom
into the system, which can reduce the computational cost compared to extrinsic
XFEM approaches, but a distributed implementation becomes more complex.
Figure 13b shows the corresponding enrichment diagram for all three methods.

7. Discussion and Conclusions

In this article, we presented an extrinsic, continuous-Galerkin extended finite
element method for accounting for discontinuities in the solution field. Like the
CG-XFEM methods developed by Hansbo and Hansbo [24] and Iarve [58, 45], we
account for discontinuities within elements by introducing a new set of DoF's for
the enriched elements. However, we generalize the method proposed by Hansbo
and Hansbo to support an arbitrary number of Heaviside enrichments within
a single element in a hierarchical fashion without introducing artifacts as seen
in the Phantom-Node Method and Augmented Finite Element Method. This
hierarchical view naturally allows for representing element-wise enrichments as
a binary tree and enables visual description via enrichment diagrams. The
purpose of this work was to lay the groundwork for a CG-XFEM approach that
can accommodate evolving, complex enrichment surfaces, which is a significant
step towards a method for modeling progressive fracture. Towards this end, we
made the following novel contributions to the community:

1. We carefully crafted a set of terminology and a lexicon for enrichment di-
agrams to describe hierarchical Heaviside enrichment (HHE) that clarifies
the nuanced concepts within HHE.

2. We introduced a method to construct a basal field compatibility graph and
an algorithm to incrementally update the graph as enrichment surfaces
evolve.

3. We developed a DoF enumeration algorithm that naturally maintains a
CG solution across elements and allows cheap updates to the enumeration
based on the information in the basal field compatibility graph.

4. We described the structure of enrichments in an element using enrichment
diagrams for several existing extrinsic, XFEM methods in the literature
to highlight several subtle differences between the various methods.

We described a derivation of a finite element model for HHE, a hybrid im-
plicit /explicit representation of enrichments, an algorithm to evolve enrichment
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surfaces, a numerical integration method suitable for volume integrals, an algo-
rithm for constructing a basal field compatibility graph, and a degree-of-freedom
enumeration algorithm. Finally, we provided two verification problems to illus-
trate that the method allows enrichment surfaces to separate as expected for two
situations that are challenging for CG-XFEM, including a case demonstrating
that the method supports unstructured, mixed-element meshes.

Since this work aims to lay the foundation for a progressive fracture model,
we restricted the discussion in this paper to modeling open cracks within the
context of static 3D linear elasticity. We intend to follow this work with a de-
scription of how cohesive crack models may be implemented within our proposed
framework and how enrichment surfaces may be used to model bi-material inter-
faces in heterogeneous materials. Subsequently, we plan to apply the framework
to modeling complex materials for which it is often difficult to obtain conforming
meshes, such as 3D textile composites. Additionally, we intend to simulate the
progressive failure of other composites that are known to develop complex net-
works of cracks, such as ceramic-matrix composites. Our algorithms inherently
preserve locality, making them ideally suited to both distributed and shared
memory parallelization. We expect to present the details of such a paralleliza-
tion soon, which will be needed to tackle problems involving progressive fracture
in advanced composite materials. Though not described in this paper, our strat-
egy synergizes well with ongoing work in matrix-free methods for linear systems
arising from FEM discretizations, enabling very efficient updates of the element
contributions to the system of equations as cracks evolve.[61, 62]
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