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Abstract

Learning neural ODEs often requires solving very stiff ODE systems, primarily using explicit adaptive
step size ODE solvers. These solvers are computationally expensive, requiring the use of tiny step
sizes for numerical stability and accuracy guarantees. This paper considers learning neural ODEs using
implicit ODE solvers of different orders leveraging proximal operators. The proximal implicit solver
consists of inner-outer iterations: the inner iterations approximate each implicit update step using a fast
optimization algorithm, and the outer iterations solve the ODE system over time. The proximal implicit
ODE solver guarantees superiority over explicit solvers in numerical stability and computational efficiency.
We validate the advantages of proximal implicit solvers over existing popular neural ODE solvers on
various challenging benchmark tasks, including learning continuous-depth graph neural networks and
continuous normalizing flows.

1 Introduction

Neural ODEs [11] are a class of continuous-depth neural networks [12, 44] that are particularly suitable for
learning complex dynamics from irregularly-sampled sequential data, see, e.g., [11, 17, 32, 36, 46]. Neural
ODEs are used in many applications, including image classification and image generation [11], learning
dynamical systems [46], modeling probabilistic distributions of complex data by a change of variables [23, 25,
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59], and scientific computing [4, 18]. Recently, neural ODEs have also been employed for building continuous-
depth graph neural networks (GNNs), achieving remarkable results for deep graph learning [8, 40, 50, 55].
Mathematically, a neural ODE can be formulated by the following first-order ODE:

dh(t)

dt
= f(h(t), t, θ), (1)

where f(h(t), t, θ) ∈ Rd is specified by a neural network parameterized by θ, e.g., a two-layer feed-forward
neural network. Starting from the input h(0), neural ODEs learn the representation of the input and perform
prediction by solving (1) from the initial time t = 0 to the terminal time T using a numerical ODE solver with
a given error tolerance, often with adaptive step size solver or adaptive solver for short [15]. Solving (1) from
t = 0 to T in a single pass with an adaptive solver requires evaluating f(h(t), t, θ) at various timestamps,
with the computational complexity counted by the number of forward function evaluations (forward NFEs),
which is nearly proportional to the computational time, see [11] for details.

The adjoint sensitivity method, or the adjoint method [7], is a memory-efficient algorithm for training
neural ODEs. If we regard the output h(T ) as the prediction and denote the loss between h(T ) and the
ground truth as L := L(h(T )). Let a(t) := ∂L/∂h(t) be the adjoint state, then we have (see e.g., [7, 11] for
details)

dL
dθ

=

∫ T

0

a(t)>
∂f(h(t), t, θ)

∂θ
dt, (2)

with a(t) satisfying the following adjoint ODE

da(t)

dt
= −a(t)>

∂

∂h
f(h(t), t, θ), (3)

which is solved numerically from t = T to 0 and also requires the evaluation of the right-hand side of
(3) at various timestamps, with the computational complexity, or number of evaluation of the function
−a(t)> ∂

∂hf(h(t), t, θ), measured by the backward NFEs.

1.1 Computational bottlenecks of Neural ODEs
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Figure 1: Error tolerance vs. forward and backward NFEs of different adaptive solvers for training the
GRAND model for CoauthorCS graph node classification.

The computational bottlenecks of solving the neural ODE (1) and its adjoint ODE (3) come from the
numerical stability and numerical accuracy guarantees. Since f(h(t), t, θ) is usually high dimensional; direct
application of implicit ODE solvers requires solving a system of high dimensional nonlinear equations, which
is computationally inefficient, see Section 4.1 for an illustration. As such, explicit solvers — especially the
explicit adaptive solvers, e.g., the Dormand-Prince method [15] — are the current default numerical solvers
for neural ODE training, test, and inference; see Appendix A for a brief review of explicit adaptive neural
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ODE solvers. On the one hand, to guarantee numerical accuracy, we have to employ very small step sizes
to discretize the neural ODE and its adjoint ODE. On the other hand, both ODEs involved in learning
neural ODEs are usually very stiff, which further constrains the step size. Intuitively, a stiff ODE system has
very different eigenvalues that reveal dramatically different scales of dynamics. To resolve these dynamics
accurately, we have to accommodate for dynamics at significantly different scales, resulting in the use of
very small step sizes. To demonstrate this issue, we consider training a recently proposed neural ODE-based
GNN, named graph neural diffusion (GRAND) [8], for the benchmark CoauthorCS graph node classification;
the detailed experimental settings can be found in Section 4.3. GRAND parametrizes the right-hand side
of (1) with the Laplacian operator, resulting in a class of diffusion models. The diffusion model is very
stiff from the numerical ODE viewpoint since the ratio between the magnitude of the largest and smallest
eigenvalues is infinite. Figure 1 plots the error tolerance of the adaptive solver vs. forward and backward
NFEs of different adaptive solvers — including adaptive Heun [49] and two Dormand-Prince methods [15]
(DOPRI5 and DOPRI8) — for training GRAND for CoauthorCS node classification. We see that 1) all
three adaptive solvers require significant NFEs in solving both neural ODE and its adjoint ODE; as the error
tolerance reduces both forward and backward NFEs increase very rapidly. And 2) the higher-order scheme,
e.g., DOPRI8 requires more NFEs than the lower-order scheme, indicating that the stability is a dominating
factor in choosing the step size. Moreover, it is worth mentioning that both DOPRI5 and DOPRI8 often
fail to solve the adjoint ODE when a large error tolerance is used, based on our experiments.

The fundamental issues of learning stiff neural ODEs using explicit solvers due to stability concerns
and the high computational cost of direct application of implicit solvers motivate us to study the following
question:

Can we modify or relax the implicit solvers to make them suitable for learning neural ODEs with signifi-
cantly reduced computational costs than existing benchmark solvers?

1.2 Our contribution

We answer the above question affirmatively by considering learning neural ODE-style models using the proxy
of a few celebrated implicit ODE solvers — including backward Euler, backward differentiation formulas
(BDFs), and Crank-Nicolson — leveraging the proximal operator [38]. These proximal solvers reformulate
implicit ODE solvers as variational problems. Each solver contains inner-outer iterations, where the inner
iterations approximate a one-step update of the implicit solver, and the outer iterations solve the ODE over
time. Leveraging fast optimization algorithms for solving the inner optimization problem, these proximal
solvers are remarkably faster than explicit adaptive ODE solvers in learning stiff neural ODEs. We summarize
the major benefits of proximal solvers below:

• Due to the implicit nature of proximal algorithms, they are much less encumbered by the numerical
stability issue than explicit solvers. Therefore, the proximal algorithms allow the use of very large step
sizes for neural ODEs training, test, and inference.

• To achieve the same numerical accuracy in solving stiff neural ODEs, proximal algorithms can save
significant NFEs in both forward and backward propagation.

• Training neural ODE-style models using proximal algorithms maintains the generalization accuracy of
the model compared to using benchmark adaptive solvers.

1.3 More related works

In this part, we discuss several related works in three directions: reducing NFEs in learning neural ODEs,
advances of proximal algorithms, and the development of algorithms for learning neural ODEs.

Reducing NFEs in learning neural ODEs by model design and regularization. Several algorithms
have been developed to reduce the NFEs for learning neural ODEs. They can be classified into three
categories: 1. Improving the ODE model and neural network architecture, and notable works in this direction
include augmented neural ODEs [17], higher-order neural ODEs [36], heavy-ball neural ODEs [56], and neural
ODEs with depth variance [32]. These models can reduce the forward NFEs significantly, and heavy-ball
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neural ODEs can also reduce the backward NFEs remarkably. 2. Learning neural ODEs with regularization,
including weight decay [23], regularizing ODE solvers and learning dynamics [19, 22, 26, 37, 41]. And 3.
Input augmentation [17] and data control [32]. Our work focuses on accelerating learning neural ODEs using
the proximal form of implicit solvers.

Advances of proximal algorithms. Proximal algorithms have been the workhorse for solving nonsmooth,
large-scale, or distributed optimization problems [38]. The core matter is the evaluation of proximal operators
[5]. The proximal algorithms are widely used in statistical computing and machine learning [42], channel
pruning of neural networks [14, 58], image processing [6], matrix completion [31, 61], computational optimal
transport [39, 47], game theory and optimal control [3], etc. Proximal operators can be viewed as backward
Euler method, see Section 2 for a brief mathematical introduction. From an implicit solver viewpoint, a
proximal formulation of the backward Euler method has been applied to the stochastic gradient descent
training of neural networks [9, 10].

Developments of efficient neural ODE learning algorithms. Solving an ODE is required in both
forward and backward propagation of learning neural ODEs. The default numerical solvers are explicit
adaptive Runge-Kutta schemes [11, 43], especially the Dormand-Prince method [15]. To solve both forward
and backward ODEs accurately, the adaptive solvers will evaluate the right-hand side of ODEs at many
intermediate timestamps, causing tremendous computational burden. Checkpoint schemes have been pro-
posed to reduce the computational cost [21, 62], often reducing computational cost by compromising memory
efficiency. Recently, the symplectic adjoint method has been proposed [33], which solves neural ODEs us-
ing a symplectic integrator and obtains the exact gradient (up to rounding error) with memory efficiency.
Approximate gradients using interpolation instead of adjoint method [13] has also been used to accelerate
learning neural ODEs. Our proposed proximal solvers can be integrated with these new adjoint methods for
training neural ODEs.

1.4 Notation

We denote scalars by lower or upper case letters; vectors and matrices by lower and upper case boldface
letters, respectively. We denote the magnitude of a complex number z as |z|. For a vector x = (x1, . . . , xd)

> ∈
Rd, we use ‖x‖ := (

∑d
i=1 |xi|2)1/2 to denote its `2-norm. We denote the vector whose entries are all 0s as

0. For two vectors a and b, we denote their inner product as 〈a, b〉. For a matrix A, we use A> and
A−1 to denote its transpose and inverse, respectively. We denote the identity matrix as I. For a function
f(x) : Rd → R, we denote ∇f(x) and ∇2f(x) as its gradient and Hessian, respectively. We denote a = O(b),
if there is a constant C such that a ≤ Cb.

1.5 Organization

We organize the paper as follows: In Section 2, we present the proximal form of a few celebrated implicit
ODE solvers for learning neural ODEs. We analyze the numerical stability and convergence of proximal
solvers and contrast them with explicit solvers in Section 3. We verify the efficacy of proximal solvers in
Section 4, followed by concluding remarks. Technical proofs and more experimental details are provided in
the appendix.

2 Proximal Algorithms for Neural ODEs

In this section, we formulate the proximal version of several celebrated implicit ODE solvers, including
backward Euler, Crank-Nicolson, BDFs, and a class of single-step multi-stage schemes.
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2.1 A proximal viewpoint of the backward Euler solver

We first consider solving a neural ODE (1) using the proximal backward Euler solver. Directly discretizing
(1) using the backward Euler scheme with a constant step size s gives

hk+1 = hk + sf(hk+1). (4)

Equation (4) is a system of nonlinear equations, which can be solved efficiently by Newton’s method. But
when the dimension of f is very high, solving (4) can be computationally infeasible. Nevertheless, if f(z)
is the gradient of a function −F (z), we can reformulate the update in (4) using the proximal operator as
follows

hk+1 = arg min
z∈A

{ 1

2s
‖z − hk‖22 + F (z)

}
, (5)

where f(z) = −∇F (z), and A is the admissible domain of z, which is considered to be the whole space in
this work; we omit A in the following discussion. To see why (5) is equivalent to (4), we note that hk+1 is a
stationary point of G(z) = 1

2‖z − hk‖22 + sF (z), resulting in

d

dz

( 1

2s
‖z − hk‖22 + F (z)

)∣∣∣
z=hk+1

= 0,

replacing z with hk+1 in the above equation, we get the backward Euler solver (4) (note ∇F (z) = −f(z)).
Based on the proximal formulation of the backward Euler method (4), we can solve the neural ODE (1)
using an inner-outer iteration scheme. The outer iterations perform backward Euler iterations over time,
and the inner iterations solve the optimization problem formulated in (5). We summarize the inner-outer
iteration scheme for the proximal backward Euler solver in Algorithm 1.

Algorithm 1 Proximal backward Euler for solving (1)

Require: Step size s > 0, inner iteration number n
for k = 1, 2, . . .

step 1: Let z0 = hk
step 2: Start from z0 solve inner minimization problem

arg min
z

{ 1

2s
‖z − hk‖22 + F (z)

}
,

resulting in a sequence z1, z2, . . . ,zn.
step 3: Let hk+1 = zn.

end for

2.1.1 Solving the inner minimization problem

Another piece of the recipe is how to effectively solve the inner minimization problem of proximal backward
Euler (5), i.e., the following optimization problem

arg min
z
G(z) :=

1

2s
‖z − hk‖22 + F (z). (6)

One of the simple yet efficient algorithms for solving (6) is gradient descent (GD), which updates as follows:
for i = 1, 2, . . . , n− 1, perform

zi+1 = zi − η∇G(zi), η > 0, (7)

where η is the step size and ∇G(zi) = (zi − hk)/s − f(zi). Here, notice that we do not need to know the
exact form of F (z), and the GD update becomes

zi+1 = zi − η

(
zi − hk

s
− f(zi)

)
. (8)
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There are various off-the-shelf acceleration schemes that exist to accelerate the convergence of (8), e.g.,
Nesterov accelerated gradient (NAG) [35], NAG with adaptive restart (Restart) [45], and GD with nonlinear
conjugate gradient style momentum, e.g., Fletcher–Reeves momentum (FR) [20, 53]. In particular, FR,
which will be used in our experiments, updates zi as follows:

pi =

(
zi − hk

s
− f(zi)

)
+ βip

i−1

zi+1 = zi − ηpi,

(9)

where p0 = 0 and the scalar βi is given below

βi =


0 if i = 0,(

(zi−hk)/s−f(zi)
)>(

(zi−hk)/s−f(zi)
)(

(zi−1−hk)/s−f(zi−1)
)>(

(zi−1−hk)/s−f(zi−1)
) if i ≥ 1.

(10)

With the access to the gradient −f(z) we can also employ L-BFGS [29] to solve the inner minimization
problem (6). Based on our testing, GD with FR momentum usually outperforms the other methods listed
above, see Section 4.1 for a comparison of different optimization algorithms for solving the one-dimensional
diffusion problem.

Remark 2.1. The above discussion of gradient-based optimization algorithms assumes the existence of F (z)
whose gradient is −f(z). When such a function F (z) does not exist, we can still use the iteration (8) to
solve the inner minimization problem, which we can regard as a fixed point iteration. Moreover, we can
accelerate the convergence of (8) using the Anderson acceleration [1, 52], and we leave it as future work.
Based on our numerical tests, gradient-based optimization algorithms work quite well in solving the inner
optimization problem (6) across all studied benchmark tasks.

Stopping criterion of inner solvers. Given an error tolerance ε of the inner optimization solver, we
stop the inner iteration if ‖zi+1 − zi‖ ≤ ε.

2.1.2 Explicit vs. proximal solvers

Before presenting more proximal implicit solvers, we compare forward Euler, backward Euler, and the prox-
imal backward Euler for solving the following benchmark one-dimensional ODE, which comes from [2]

dh(t)

dt
= 3h(t)− 2 cos(t)− 4 sin(t) (11)

with initial condition h(0) = 1. We use the integration time step size 0.01 for all the above ODE solvers.
Figure 2 (a) plots the error between numerical and analytic solutions of proximal backward Euler with
different inner solver tolerances and the backward Euler solver. It is evident that the proximal backward
Euler approximates backward Euler quite well, and the approximation becomes more accurate as the accuracy
of the inner solver enhances. Figure 2 (b) contrasts the proximal backward Euler with the forward Euler
solver. We see that with an appropriate tolerance of the inner solver, proximal backward Euler accumulates
error slower than the forward Euler solver as the time increases. These advantages of the proximal backward
Euler solver shed light on improving learning stiff neural ODEs and alleviating error accumulation.

2.2 High-order implicit schemes via proximal operators

A natural extension of the backward Euler scheme is the single-step, multi-stage schemes whose proximal
form are proposed in [60], and we formulated those schemes in Algorithm 2.

Clearly, the 1-stage scheme is the backward Euler scheme. The authors of [60] give conditions on the
coefficient γm,i. However, it is quite tedious to get those coefficients. For example, a second-order uncon-
ditionally stable scheme can be constructed by taking the matrix Λ — whose entries are {γm,i}3m,i=1 that
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Figure 2: (a) Time vs. numerical errors of the backward Euler method and the proximal backward Euler
(Prox) with different inner error tolerances for solving the one-dimensional ODE (11). As the error of the
inner solver decreases, the proximal backward Euler approaches the backward Euler. (b) Comparison of
proximal backward Euler using different inner solver accuracy against the forward Euler for solving the same
problem in (a). We see that the proximal backward Euler method accumulates error more slowly than the
forward Euler scheme.

Algorithm 2 Proximal single-step, multi-stage scheme for solving (1)

Require: Step size s > 0, stage M
for k = 1, 2, . . .

step 1: Let z0 = hk
for m = 1, . . . ,M solve the inner problem

zm = arg min
z

{
m−1∑
i=0

γm,i
2s
‖z − zi‖2 + F (z)

}
,

resulting in a sequence z1, z2, . . . ,zM .
step 3: Let hk+1 = zM .

end for

appeared in Algorithm 2 — as follows γ1,0 0 0
γ2,0 γ2,1 0
γ3,0 γ3,1 γ3,2

 =

 5 0 0
−2 6 0
−2 3

14
44
7

 .

Furthermore, the matrix Λ of a third-order scheme is
11.17 0 0 0 0 0
−7.5 19.43 0 0 0 0
−1.05 −4.75 13.98 0 0 0

1.8 0.05 −7.83 13.8 0 0
6.2 −7.17 −1.33 1.63 11.52 0
−2.83 4.69 2.46 −11.55 6.68 11.95


The main drawback of these multi-stage algorithms for training neural ODEs lies in the computational

inefficiency. Note that for an M -stage scheme, one need to solve M optimization problems in each iteration.
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2.3 Proximal form of Crank-Nicolson

Another single-step, second-order extension for the backward Euler is the Crank-Nicolson scheme, given by

hk+1 = hk +
s

2
(f (hk+1) + f (hk)).

The Crank-Nicolson scheme is also known as an implicit Runge–Kutta method or trapezoidal rule, which
can be formulated in the following proximal form [16]

hk+1 = arg min
z

{
‖z − hk‖2

s
+ F (z) + 〈z − hk,∇F (hk)〉

}
(12)

2.4 The proximal viewpoint of BDF methods

The backward Euler scheme has first-order accuracy, i.e., discretizing the ODE (1) using (4) with step size
s has error O(s). Backward differentiation formulas (BDFs) are higher-order multi-step methods that can
be formulated as follows

ashk+1 −As(hk,hk−1, . . .)

s
= −f(hk+1),

where as is a constant, and As is an operator acts on hk,hk−1, . . .. The backward Euler method corresponds
to the case when s = 1, and as = 1 and A1(hk) = hk. The second-order BDF2 scheme can be constructed
by taking as = 3

2 and A2(hk,hk−1) = 2hk − 1
2hk−1. Furthermore, the BDF2 scheme can be written in the

following proximal form [16, 34]

hk+1 = arg min
z

{
‖z − hk‖2

s
− ‖z − hk−1‖2

4s
+ F (z)

}
,

if there exists F (z) such that f(z) = −∇F (z).
We can further construct high-order BDFs, for instance the third- and fourth-order BDFs are given below

• BDF3:

a3 =
11

6
and A3(·) = 3hk −

3

2
hk−1 +

1

3
hk−2.

• BDF4:

a4 =
25

12
and A4(·) = 4hk − 3hk−1 +

4

3
hk−2 −

1

4
hk−3.

The corresponding proximal form of BDF3 and BDF4 are given as follows

• BDF3:

hk+1 = arg min
z

{
3‖z − hk‖2

2s
− 3‖z − hk−1‖2

4s
+
‖z − hk−2‖2

6s
+ F (z)

}
,

• BDF4:

hk+1 = arg min
z

{
2‖z − hk‖2

s
− 3‖z − hk−1‖2

2s
+

2‖z − hk−2‖2

3s
− ‖z − hk−2‖2

8s
+ F (z)

}
,

Only one optimization problem needs to be solved in BDFs, which is the advantage of BDF methods
over many other high-order implicit schemes.

3 Stability and Convergence Analysis

In this section, we will 1) compare the linear stability of different explicit and implicit solvers, 2) show that
the error of the inner solver will not affect the stability of proximal solvers, and 3) analyze the convergence
of proximal solvers.
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3.1 Linear stability: Implicit vs. explicit solvers

It is well known that explicit solvers often require a small step size for numerical stability and convergence
guarantees, especially for solving stiff ODEs. Consider the linear ODE

h′ = Ah, A ∈ Rd×d. (13)

Assume A has spectrum σ(A) = {λj}dj=1 and Re(λj) < 0 for j = 1, . . . d, one can define the stiffness ratio
as

Q =
maxλ∈σ(A) |Re(λ)|
minλ∈σ(A) |Re(λ)|

We say the ODE is stiff if Q � 1. The linear stability domain D of the underlying numerical method
is the set of all numbers z := sλj for j = 1, . . . , d, such that limk→∞ hk = 0, where hk is the numerical
solution of (13) at the k-th step. Table. 1 lists the linear stability domain of some single-step numerical
schemes described above.

Numerical methods Linear stability domain
Forward Euler DFE = {z ∈ C | |1 + z| < 1}

Backward Euler DBE = {z ∈ C | |1− z| > 1}
Crank-Nicolson DCR = {z ∈ C | | 1+z/21−z/2 | < 1}

DOPRI5 DDP = {z ∈ C | |F1/2(z)| < 1}

Table 1: Linear stability domains of several single step numerical ODE solvers. |F1/2(z)| < 1 stands for

|F1(z)| < 1 and |F2(z) < 1| where F1(z) =
∑5
r=0

zr

r! + z6

600 and F2(z) =
∑4
r=0

zr

r! + 1097z5

120000 + 161z6

120000 + z7

24000 ,
see [15, 24] for more details.

We call an ODE solver A-stable if C− := {z ∈ C | Re(z) < 0} ∈ D, where D is the linear stability
domain of the solver. From Table 1, it is clear that the backward Euler and Crank-Nicolson methods are
both A-stable. For multi-step methods, e.g., BDFs, there is no closed-form expression for the linear stability
domain; see [24] for a detailed discussion. Among all BDFs, only BDF2 is A-stable. The A-stability of ODE
solvers is related to the acceleration of the first-order optimization method [30].

3.2 The effect of the error of the inner solver

Compared to the forward methods, backward methods obtain their next step by solving an implicit equation.
Dense linear equations can be solved efficiently using exact methods like QR decomposition. In general,
nonlinear equations, or even sparse linear equations, do not have the luxury. At best, an approximation to
a solution bounded by a specific error tolerance is attained. Fortunately, a bound of linear growth can be
established on the total effect caused by the inner solver error against per step tolerance. For example, we
consider a one-dimensional equation y′ = f(y), and the backward Euler scheme with error can be written as

yk+1 − yk

s
= f(yk+1) + εk,

where εk ≤ ε is the error for the inner loop with ε > 0 being the tolerance. Let ŷk be the exact backward
Euler scheme solution, Then we have

Ck|yk+1 − ŷk+1| ≤ |yk − ŷk|+ εk.

Where Ck = minξ∈I(yk+1,ŷk+1)|1− sf ′(ξ)|, and I(a, b) denote the interval [min(a, b),max(a, b)]. Hence

|yk − ŷk| ≤
k−1∑
j=0

k−1∏
i=j

C−1k εj ≤
k−1∑
j=0

k−1∏
i=j

C−1k ε,

which provides a linear upper bound on the error. Similar arguments can be generalized to other solvers and
for high-dimensional ODEs.
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3.3 Energy stability and convergence

Besides the linear stability, there is another notion of stability, known as energy stability. We say a
numerical method is energy stable if F (hk+1) ≤ F (hk) for all k [48]. As an advantage of the proximal
formulation, one can show that the backward Euler is unconditionally energy stable [57] for arbitrary s
even for non-convex F (z) (here we assume that there exists F (z) such that f(z) = −∇F (z)). The energy
stability guarantees that the numerical solver takes each step toward minimizing F (z), which further lead to
the convergence of the numerical scheme [54]. More precisely, we have the following result (see Appendix C
for the detailed proof).

Proposition 3.1. If F (z) is continuous, coercive and bounded from below, for any choice of s > 0, there
exists hk+1 solves (4), such that

F (hk+1) ≤ F (hk). (14)

Moreover, for non-convex F (z), hk+1 is unique provided s ≤ −1/λ1, where λ1 < 0 is the smallest eigenvalue
of ∇2F .

Similar energy stability analysis holds for other type of proximal solvers. For instance, for BDF2, one
can show there exists hk+1 such that

F (hk+1) +
‖hk+1 − hk‖2

4s
≤ F (hk) +

‖hk − hk−1‖2

4s
.

For Crank-Nicolson, the proximal formulation (12) leads to

F (hk+1) + 〈hk+1 − hk,∇F (hk)〉 ≤ F (hk).

These energy stability result can further lead to the convergence of these scheme in the discrete level [34].

4 Experimental Results

In this section, we validate the efficacy of proximal solvers and contrast their performances with bench-
mark adaptive neural ODE solvers in solving the one-dimensional diffusion problem and learning continuous
normalizing flows (CNFs) [23] and GRAND [8].

4.1 Solving one-dimensional diffusion equation

We consider solving the following 1D diffusion equation

∂h

∂t
=
∂2h

∂x2

for t ∈ [0, 1] and x ∈ [0, 1] with a periodic boundary condition. We initialize u(x, 0) with the standard
Gaussian. To solve the diffusion equation, we first partition [0, 1] into uniform grids {xi}128i=1 and discretize
∂2h/∂x2 using the central finite difference scheme, resulting in the following coupled ODEs

dh

dt
= −Lh, (15)

where L ∈ R128×128 is the Laplacian matrix of a cyclic graph scaled by 1/∆x2 with ∆x = 1/127 being
the spatial resolution, and h = [h(x1), . . . , h(x128)]. Then we apply different ODE solvers to solve (15). It
is worth noting that the diffusion equation has an infinite domain of dependence, thus in method of lines
discretization, the time step to be taken for explicit methods has to be much finer compared to the spatial
discretization to guarantee numerical stability.

We compare our proximal methods against the predominantly used Adaptive Heun and DOPRI5 in
solving (15). As the matrix L is circulant, we can compute the exact solution of (15) using the discrete
Fourier transform for comparison. Figure 3 compares the NFEs of proximal methods and two benchmark
adaptive solvers with different errors at the final time. For each final error, we use a fixed step size for
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each proximal solver with FR for solving the inner minimization problem. A list of the configuration of
each ODE solver can be found in Table 2 in the appendix. Figure 3 shows that adaptive solvers require
many more NFEs than proximal solvers. NFEs required by explicit solvers are almost independent of the
error, revealing that the step sizes are constrained by numerical stability. Each iteration of higher-order
BDF schemes requires more NFEs than lower-order BDF schemes, showing a tradeoff between controlling
numerical error and using high-order schemes.

10
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Figure 3: Final step error vs. NFEs of different solvers in solving the one-dimensional diffusion equation
(15). Adaptive solvers require many more NFEs than proximal solvers, and NFEs required by explicit solvers
are almost independent of the error since the step sizes here are constrained by numerical stability.

Convergence of inner solvers. An inner optimization algorithm is required for the proximal solver. We
compare the efficiency of a few gradient-based optimization algorithms, including GD, NAG, Restart, and
FR, for one pass of the proximal backward Euler solver. The comparison of different optimizers using the
same step size 0.1 (Figure 4) shows that different solvers perform similarly to each other at the beginning of
iterations, while as the iteration goes, FR performs best among the five considered solvers. The performance
of different optimization algorithms further shows the rationale for solving the inner problem using gradient-
based optimization algorithms since the convergence is consistent with the desired performance of each
optimizer. We will use FR as the default inner solver for all experiments below.

Proximal vs. nonlinear solvers. We further verify the computational advantages of proximal solvers
over other nonlinear root-finding algorithms for directly solving the implicit ODE solvers. In particular,
we consider solving the 1D diffusion equation mentioned before using backward Euler solver given by (4),
where we use proximal backward Euler and directly solve (4) using either fixed point (FP) iteration or the
Newton-Raphson method (NR). Figure 5 (a) below shows the time required by different solvers when the
spatial interval [0, 1] is discretized into different number of grids, controlling the scale of the problem. Also,
the computational time of proximal solver is almost linear w.r.t. NFE (Fig. 5 (b)). Proximal solver beats FP
and NR. NR is not scalable to high-dimension since it requires evaluating Jacobian, which is very expensive
in computational time and memory costs.

2) NFE is the number of function calls during integration; each optimization step takes one call, the
reported NFEs of the proximal solvers in Sec. 4 equals the product of inner and outer iterations. We solve
inner problem using Fletcher-Reeves (see Sec. 4.1), which is much faster than GD.

3) First, the A-stable domain determines the largest step size that the algorithm can take. The linear
stability analysis shows that the implicit solver can use much larger step sizes than explicit solvers with
numerical stability guarantee. Second, regarding why our theory shows implicit solver is “faster” than
explicit solver: Notice that the step size used for solving ODEs in a given time interval is constrained by
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Figure 4: Convergence comparison of different inner solvers for the proximal Backward Euler. (a) Conver-
gence of ‖zi+1 − zi‖, and (b) convergence of ‖zi − hk+1‖ for k = 0.
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Figure 5: (a) Computational time of solving 1D diffusion equation with different number of grids by backward
Euler (BE) using proximal, FP, and NR solvers. (b) Computational time vs. NFE of proximal backward
Euler solver for solving 1D diffusion equation.

local truncation error and numerical stability, and the later is often the dominating factor, as illustrated in
Fig. 1 and Sec. 1.1 in our paper. Since the implicit solver uses a much larger step size than explicit solvers
with stability guarantee, the implicit solver takes fewer NFEs than explicit solvers.

4.2 Learning CNFs

We train CNFs for MNIST [28] generation using proximal solvers and contrast them to adaptive solvers. In
particular, we use the FFJORD approach outlined in [23]. We use an architecture of a multi-scale encoder
and two CNF blocks, containing convolutional layers of dimension 64 → 64 → 64 → 64 with a uniform
stride length of 1 and a softplus activation function. We use two scale blocks and train for 10 epochs using
Adam optimizer [27] with an initial learning rate of 0.001. We run the model using the proximal BDFs
with FR and DOPRI5 with relative tolerance of 10−5 and 10−7, respectively. All the other experimental
settings are adapted from [23]. The proximal BDFs are tuned to have an error profile which was consistent
with the DOPRI5 as shown in Figure 6 (a). We choose t0 = 0 and T = 1 and the step sizes for numerical
integration and the inner optimizer are 0.2 and 0.3, respectively. We terminate the inner optimization solver
once ‖zi+1 − zi‖ ≤ 2 × 10−3. A comparison of the forward and backward NFEs are depicted in Figure 6
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Figure 6: Contrasting BDFs with DOPRI5 using different error tolerances for training CNFs for MNIST
image generation. BDFs converge as well as DOPRI5 using very small error tolerances but require much
fewer NFEs in solving both neural ODE and its adjoint ODE.
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Figure 7: Comparison of proximal solvers with adaptive solvers in training GRAND for the CoauthorCS
node classification. Proximal solvers require much fewer NFEs than adaptive solvers but converges as well
as adaptive solvers in training loss and validation accuracy.

(b) and (c), respectively. We see that proximal BDF2, BDF3, and BDF4 require approximately half of the
NFEs as DOPRI5 to reach similar training curves.

4.3 Training GRAND

GRAND is a continuous-depth graph neural network proposed in [8]. It consists of a dense embedding layer,
a diffusion layer, and a dense output layer, with ReLU activation function in between. The diffusion layer
takes u(t0) as input and solves (16) below to time T

du(t)

dt
= A(u, θ)u− u, (16)

where A is the graph attention function [51] with learnable parameter set θ. This ODE to be solved in
GRAND is nonlinear and diffusive, which is particularly challenging to solve numerically.

We compare the performance of proximal solvers with three major adaptive ODE solver options (DO-
PRI5, DOPRI8, Adaptive Heun) on training the GRAND model for CoauthorCS node classification. The
CoauthorCS graph contains 18333 nodes and 81894 edges, and each node is represented by a 6805 dimen-
sional vector. The graph nodes contains 15 classes, and we aim to classify the unlabelled nodes. We choose
t0 = 0 and T = 10 as our starting and ending times of the ODE (16). For each solver, we run the experiment
for 50 epochs and record the average NFEs per epoch and accuracy of trained models. For adaptive solvers
we choose tolerance 10−4, and for proximal solvers we choose the integration step size 1.25 (8 steps in to-
tal) so that for the first iteration with same input admits output with error within 10−3. For optimization
method we use Fletcher-Reeves with learning rate 0.3, and stop when error is below 10−4 tolerance. All the
other experimental settings are adapted from [8]. Figure 7 shows the advantage of proximal methods over
adaptive solvers in training efficiency and maintaining the convergence of the training.
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5 Concluding Remarks

We propose accelerating learning neural ODEs using proximal solvers, including proximal BDFs and proximal
Crank-Nicolson. These proximal schemes approach the corresponding implicit schemes as the accuracy of
the inner solver enhances. Compared to the existing adaptive explicit ODE solvers, the proximal solvers are
better suited for solving stiff ODEs for numerical stability guarantees. We validate the efficiency of proximal
solvers on learning benchmark graph neural diffusion and continuous normalizing flows. There are several
interesting future directions. In particular, 1) accelerating the inner solver from the fixed point iteration
viewpoint, e.g., leveraging Anderson acceleration, and 2) developing adaptive step size proximal solvers by
integrating proximal solvers of different orders.

A Dormand-Prince Method: A Review

In this section, we briefly review the scheme, error control, and step size rule of the Dormand-Prince method,
which is an explicit adaptive numerical ODE solver. The one step calculation, from tk to tk+1 with step size
s, in the Dormand-Prince method for solving (1) is summarized below: First, we update hk to hk+1 using
Runge-Kutta method of order 4.

k1 = sf(tk,hk)

k2 = sf
(
tk +

1

5
s,hk +

1

5
k1

)
k3 = sf

(
tk +

3

10
s,hk +

3

40
k1 +

9

40
k2

)
k4 = sf

(
tk +

4

5
s,hk +

44

45
k1 −

56

15
k2 +

32

9
k3

)
k5 = sf

(
tk +

8

9
s,hk +

19372

6561
k1 −

25360

2187
k2 +

64448

6561
k3 −

212

729
k4

)
k6 = sf

(
tk + s,hk +

9017

3168
k1 −

355

33
k2 −

46732

5247
k3 +

49

176
k4 −

5103

18656
k5

)
k7 = sf

(
tk + s,hk +

35

384
k1 +

500

1113
k3 +

125

192
k4 −

2187

6784
k5 +

11

84
k6

)
And the hk+1 is calculated as

hk+1 = hk +
35

384
k1 +

500

1113
k3 +

500

192
k4 −

2187

6784
k5 +

11

84
k6.

Second, we update hk to h′k+1 by Runge-Kutta method of order 5 as

h′k+1 = hk +
5179

57600
k1 +

7571

16695
k3 +

393

640
k4 −

92097

339200
k5 +

187

2100
k6 +

1

40
k7.

We consider ‖h′k+1−hk+1‖ as the error in hk+1, and given error tolerance ε we select the adaptive step size
at this step to be

sopt = s

(
εs

2‖hk+1 − h′k+1‖

) 1
5

.

Many other adaptive ODE solvers exist, and some are also used to learn neural ODEs, e.g., the adaptive
Heun’s method, which is a second-order ODE solver. More adaptive step solvers can be found at [2].

B Derivation of Proximal ODE Solvers

In this section, we show the equivalence of the implicit solvers with their proximal formulation.
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• Crank-Nicolson

d

dz

(
‖z − hk‖2

s
+ F (z) + 〈z − hk,∇F (hk)〉

) ∣∣∣
hk+1

=2

(
hk+1 − hk

s
+

1

2
(∇F (hk+1) +∇F (hk))

)
,

• BDF2:
d

dz

(
‖z − hk‖2

s
− ‖z − hk−1‖2

4s
+ F (z)

) ∣∣∣
hk+1

=
1

s

(
2(hk+1 − hk)− 1

2 (hk+1 − hk−1)
)

+∇F (hk+1),

• BDF3:
d

dz

(
3‖z − hk‖2

2s
− 3‖z − hk−1‖2

4s
+
‖z − hk−2‖2

6s
+ F (z)

) ∣∣∣
hk+1

=
1

s

(
11
6 hk+1 − (3hk − 3

2hk−1 + 1
3hk−2)

)
+∇F (hk+1),

• BDF4:
d

dz

(
3‖z − hk‖2

2s
− 3‖z − hk−1‖2

4s
+
‖z − hk−2‖2

6s
+ F (z

) ∣∣∣
hk+1

=
1

s

(
25
12hk+1 − (4hk − 3hk−1 + 4

3hk−2 −
1
4hk−3)

)
+∇F (hk+1).

C Missing Proofs

Proof of Proposition 3.1. For any given hk, recall the definition of G(z) in (6).
If F (z) is a convex function, clearly, G(z) admits a unique minimizer. If F (z) is not convex, denote

λ1 ≤ 0 be the smallest eigenvalue of ∇2F . Direct computation shows that

∇2G(z) =
1

s
I +∇2F (z), (17)

which indicates that G(z) is a convex function if s ≤ −1/λ1. Notice that lim|z|→∞G(z) =∞, G(z) admits

a unique minimizer in Rd.
If G(z) is not convex, we define S = {G(z) ≤ G(hk)}. By the coerciveness and continuity of F (z), S is

a non-empty, bounded, and closed set. Hence, G(z) admits a minimizer (not unique) z∗ in S. We can take
hk+1 = z∗, then

1

2s
‖hk+1 − hk‖2 + F (hk+1) ≤ F (hk),

which gives us Equation (14). Hence, the scheme is unconditionally energy stable.
For the sequence {hk}, since

‖hk − hk−1‖2 ≤ 2s(F (hk−1)− F (hk)),

we have
N∑
k=1

‖hk − hk−1‖2 ≤ 2s(F (h0)− F (hN )) ≤ C,

for some constant C that is independent with N . Hence

lim
N→∞

‖hN − hN−1‖ = 0,

which indicates the convergence of {hk}. Moreover, since

hN = hN−1 − s∇F (hN ),
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we have
lim
N→∞

∇F (hN ) = 0,

so {hk} converges to a stationary point of F (z).

D Some More Experimental Details

D.1 Configurations of solvers for solving the one-dimensional diffusion equation

We list the numerical integration step size and the corresponding final step error of each ODE solver in
Table 2. Here, we use FR optimizer to solve the inner optimization problem with step size 0.1. We stop the
inner solver when ‖zi+1 − zi‖ ≤ 5× 10−9.

Table 2: The configuration of different ODE solvers for solving the 1D Diffusion equation in Section 4.1.
Here, we use GD with FR optimization to solve the inner optimization problem with the step size 0.1.
Figure 3 is generated by considering a range of inner optimization tolerances from 10−3 to 10−7. The
final step error is the error between the numerical solution at t = 1 and the exact solution. We report
in the following figure the smallest final step error for each proximal algorithm.

Proximal algorithm Numerical integration step size s Optimization step size η Final step error

Backward Euler 1/2000 0.1 4.68e−7
Crank Nicolson 1/2000 0.1 1.75e−6

BDF2 1/2000 0.1 1.36e−6
BDF3 1/2000 0.1 5.71e−7
BDF4 1/2000 0.1 1.15e−6
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H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[18] Sourav Dutta, Peter Rivera-Casillas, and Matthew W Farthing. Neural ordinary differential equa-
tions for data-driven reduced order modeling of environmental hydrodynamics. arXiv preprint
arXiv:2104.13962, 2021.

[19] Chris Finlay, Joern-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your neural
ODE: the world of Jacobian and kinetic regularization. In Hal Daumé III and Aarti Singh, editors,
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