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Abstract. Transformers have emerged as the state-of-the-art architec-
ture in medical image registration, outperforming convolutional neu-
ral networks (CNNs) by addressing their limited receptive fields and
overcoming gradient instability in deeper models. Despite their success,
transformer-based models require substantial resources for training, in-
cluding data, memory, and computational power, which may restrict
their applicability for end users with limited resources. In particular, ex-
isting transformer-based 3D image registration architectures face three
critical gaps that challenge their efficiency and effectiveness. Firstly,
while mitigating the quadratic complexity of full attention by focus-
ing on local regions, window-based attention mechanisms often fail to
adequately integrate local and global information. Secondly, feature sim-
ilarities across attention heads that were recently found in multi-head
attention architectures indicate a significant computational redundancy,
suggesting that the capacity of the network could be better utilized to en-
hance performance. Lastly, the granularity of tokenization, a key factor in
registration accuracy, presents a trade-off; smaller tokens improve detail
capture at the cost of higher computational complexity, increased mem-
ory demands, and a risk of overfitting. Here, we propose EfficientMorph,
a transformer-based architecture for unsupervised 3D image registra-
tion. It optimizes the balance between local and global attention through
a plane-based attention mechanism, reduces computational redundancy
via cascaded group attention, and captures fine details without compro-
mising computational efficiency, thanks to a Hi-Res tokenization strategy
complemented by merging operations. We compare the effectiveness of
EfficientMorph on two public datasets, OASIS and IXI, against other
state-of-the-art models. Notably, EfficientMorph sets a new benchmark
for performance on the OASIS dataset with ~16-27x fewer parameters.

Keywords: Windowed Attention - 3D Image Registration - Unsuper-
vised Learning - Parameter-Efficient Transformer Architectures
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1 Introduction

Image registration is a critical task for various medical imaging applications in
fields such as image-guided surgery [I], radiation therapy planning [20], image
fusion for multimodality imaging [I1], and quality enhancement [3]. Registration
entails determining the spatial alignment between two volumes, typically referred
to as the fized and moving images, by identifying correspondences among similar
structures or features and their relative positions. Conventional approaches such
as ANTs [2], Elastix [15], and NiftiReg [19] employ optimization-based frame-
works. This iterative search for the optimal transformation makes these methods
inherently slow, especially when dealing with large datasets or high-resolution
images [I3]. In light of these challenges, there has been a growing interest in
transitioning toward learning-based methods. Specifically, deep learning meth-
ods are significantly faster during inference and currently provide state-of-the-art
performance for 3D image registration [6U12].

Learning-based approaches for image registration can generally be divided
into two main categories: supervised and unsupervised methods. Supervised meth-
ods (e.g., [2T124]) require estimates of deformation fields derived from traditional
optimization-based approaches, the acquisition of which can be prohibitively
costly for extensive datasets. Moreover, the efficacy of supervised approaches
is contingent upon the availability of high-quality deformation fields for super-
vised training, with their performance capped by the accuracy of the method
used to obtain these fields. In contrast, unsupervised methods do not require
deformation fields and use image similarity as a self-supervised signal to train a
registration network. Most unsupervised 3D registration methods (e.g., [4J6I12])
are trained to produce a 3D deformation field that is then used to transform (or
warp) the moving image. Loss (L1 or L2) between the warped moving image and
the fixed image is used to train the network. With sufficient data and training
time, the model learns to produce realistic deformation fields that outperform
optimization-based methods in both accuracy and inference speed [6I12].

Learning-based registration methods predominantly rely on convolutional ar-
chitectures (e.g., [414/12]), using U-Net-based architectures to generate the de-
formation fields. However the effectiveness of convolutional layers for registration
tasks can be compromised due to their limited receptive fields that hinder cap-
turing global context [6] and their increased susceptibility to vanishing gradients
as network depth grows to enhance learning capacity [§]. Since the advent of
Vision Transformers [22], transformer-based architectures have shown superior
performance across various tasks, such as classification, segmentation, and reg-
istration [221236/7], thanks to their modeling capabilities. In particular, they
offer promising mitigations to CNN limitations. Specifically, transformers lever-
age global contextual information through self-attention mechanisms and provide
more stable gradient flow across layers via techiniques such as layer normaliza-
tion and skip connections that are integral to transformers design [6].

Despite their success, transformers’ advantages come at the expense of a
significant increase in memory footprint and parameter count, requiring approx-
imately 10 to 20 times more parameters than convolutional counterparts [6].
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Specifically, existing transformer-based registration methods, including Trans-
Morph [6], the current state-of-the-art transformer-based model for medical im-
age registration, encounter three main significant limitations that compromise
their efficiency and overall performance. Firstly, windowed attention approaches
(e.g., the Swin transformer [I7] backbone used in TransMorph [6]) optimize
computational efficiency through local attention and shifted windows, enhanc-
ing interactions between adjacent windows. However, this limits global con-
text capture, particularly in shallow layers, due to within-window constraints
compared to methods that interact globally. Secondly, multi-head self-attention
(MHSA) often learns redundant features across heads, suggesting that models
could be simplified by encouraging diverse feature learning, thereby reducing
computational redundancy without sacrificing accuracy. Lastly, the granularity
of tokenization significantly impacts registration accuracy; smaller tokens cap-
ture finer details for higher accuracy but increase computational and memory
requirements, potentially leading to overfitting.

In this paper, we propose EfficientMorph, a novel transformer-based frame-
work for unsupervised 3D image registration that addresses the aforementioned
challenges. We introduce a “plane attention” mechanism inspired by anatom-
ical views (coronal, sagittal, and axial) to enhance the balance between local
and global feature recognition. To reduce computational redundancy, we em-
ploy cascaded group attention [I6] where each head receives only a portion of
the complete feature set that is cascaded to the previous head’s representation
via feature additions. Furthermore, we propose Hi-Res tokenization to reduce
the model’s complexity within the encoded representation by merging neighbor-
ing tokens in a high-resolution feature space. The integration of plane cascaded
group attention with Hi-Res tokenization positions EfficientMorph as a highly
parameter-efficient registration architecture (see Figure )

The main contributions of this paper are:

— A novel attention module for 3D registration that focuses on attention across
the coronal (zy), sagittal (yz), or Axial (zz) planes within a single trans-
former block.

— A Hi-Res tokenization mechanism to encode high-resolution features and
use cascaded group attention [16] to learn less redundant features without
compromising computational efficiency.

— A new parameter-efficient architecture that achieved performance compara-
ble to existing methods within a margin of £0.05 dice score, even surpassing
the state-of-the-art performance on one dataset while having ~16-27x fewer
parameters (Figure 2A) and faster convergence (~5x).

2 Methods

Given a 3D volume represented as A € RIXWXD where H, W, and D denote
the height, width, and depth dimensions, respectively. Strided convolutions are
used in the patch embedding layer (with stride s) to project A into a high-
dimensional feature space, resulting in A’ € RY XW’XD’XC, where C' is the
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embedding dimension, (H', W' D) = (g, %, %) The resulting feature space
is tokenized to train the downstream transformer layers. In the sequel, we de-

scribe the Hi-Res tokenization, plane attention mechanism, and cascaded group
attention (CGA) of the proposed EfficientMorph and illustrate them in Figure
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Fig. 1. EfficientMorph architecture. EfficientMorph with CGA utilizes block A
whereas without CGA utilizes plane attention mechanism on the whole volume as
shown in block B only. Plane Attention and CGA Architecture are highlighted from
the transformer block. We use different numbers and types of plane attentions (zy, yz,
or zz planes) for each block in the transformer backbone (Table [1)).

2.1 Hi-Res Tokenization

For a fixed embedding dimension C', using each voxel of a 3D volume of N —voxels
for tokenization would create N tokens, where N = H x W x D. Voxel-level to-
kenization results in attention matrices of more than a trillion parameters with
a complexity of O(N?). Transformer architectures often rely on s-strided convo-
lutions (e.g., s = 4 [@]) for volume tokenization and patch embedding, trading

off computational complexity, which is now O ((%)2) at the cost of detailed
features. However, fine-grained spatial information is critical for medical seg-
mentation and registration tasks, which may be lost due to strided convolutions.

We propose a novel Hi-Res tokenization strategy that uses a smaller stride
(s’ < s) within the embedding layer, thereby creating high-resolution tokenized
features. These tokens undergo positional encoding and are merged by grouping
and concatenating the features of adjacent non-overlapping d x d x d voxel token
= » % x £ tokens with an embedding dimension of

blocks resulting in N’ = 4 .
£). Then, C’ is projected into a linear layer to attain

C' = C x d® (with d = -
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a reduced dimension of C x d, as shown in Hi-Res tokenization block in Figure

[[] This approach enables the use of tokens from higher resolution and reduces
3

complexity by a factor of %.

2.2 Plane Cascaded Group Attention Mechanism

Plane Attention. Despite the use of Hi-Res tokenization, the number of tokens
generated from each volume remains high. Running full attention on these to-
kens, while feasible, demands considerable computational resources. To address
this challenge, we introduce a novel attention framework called plane attention.
Instead of performing full 3D attention on all tokens, this method utilizes atten-
tion along coronal (zy), sagittal (yz), or Axial (zz) planes, as shown in Figure
Although attention confines focus to a specific plane, EfficientMorph achieves
volume attention by sequentially employing different attention combinations zy
followed by yz or zz.

Attn(Al, ) = softmax QuimKjim Vi (1)

dim \/ﬂ im
Here, dim € {zy,yz,zx}, Ay, can be represented as A} € RH'xW'xC Al €
RWXD'xC and A/, € RP>*HXC for gy, yz, and zz planes, respectively. By
decomposing the 3D attention into 2D plane attention, the proposed attention
mechanism significantly reduces the parameter count while preserving the ability
to capture essential volumetric features necessary for registration.

Cascaded Group Attention (CGA). MHSA is a key element of transformer
models, allowing simultaneous focus on diverse input aspects. However, research
has shown that MHSA modules tend to learn redundant information from the
dataset [BII6]. To make our proposed architecture learn better feature repre-
sentations, we incorporated CGA as shown in Figure [IB, and it has effectively
minimized redundancy within the feature space without sacrificing performance.

Let A’ be split into h groups of tokens (i.e., A’ = [A], A5, ..., A}, ..., A} ] and
1 <4 < h) where h is the number of heads. CGA can be formally expressed as:

I = Attn(A)) (2)
A=Al +Attn(A), 1<i<h-—-1 (3)
Attn(A’) = Concat[Attn(A}))L,, (4)

Here, each segment of the input features is denoted by A} for the i-th segment.
The enriched feature set for the subsequent head, A}, , is derived by incorpo-
rating the output from the current head, A/, into it. The final output, denoted
as Attn(A’), is formed by concatenating the attention outputs from all heads.
This layered approach ensures that the input for each head is a combination of
its specific feature segment and the aggregated insights from preceding heads.



6 M. Karanam et al.

3 Results and Discussion

3.1 Datasets and Preprocessing

OASIS Brain MRI. We evaluated EfficientMorph on the publicly available
dataset OASIS [I8], obtained from the Learn2Reg challenge [9] for inter-patient
registration and pre-processed from [I0]. It has a total of 451 brain T2 MRI
images. Among these, 394, 19, and 38 scans are used for training, validation, and
testing, respectively. Registration accuracy is reported by performing evaluation
of corresponding segmentation masks for 35 anatomical structures.

Atlas-to-Patient Brain MRI (IXI). We additionally evaluated the proposed
model on IXI dataset that contains 600 MRI scans. Among these, 576 T1-
weighted brain MRI images were employed as fixed images, while the moving
image utilized for this task was an atlas brain MRI [14]. The dataset was par-
titioned into training, validation, and test sets, comprising 403, 58, and 115
volumes, respectively. Evaluation was performed on corresponding segmentation
masks for 29 anatomical structures.

Implementation Details. EfficientMorph was trained on NVIDIA A100 GPUs
with 40GB RAM and a batch size of 1. We used the same splits for both datasets
as the existing works [6/12]. We limited training epochs to 100 to prioritize pa-
rameter efficiency and quick convergence within resource limits. We used the
Adam optimizer with a learning rate of 5e — 4 for OASIS and 3e — 4 for IXI. We
used a cosine annealing schedule for OASIS and stepLR for IXI. The IXI dataset
was augmented by flipping in random directions while training, as done by base-
lines. We tested different variants: EfficientMorph-11, featuring one transformer
block at each stage, and EfficientMorph-23, with two transformer blocks at stage
1 and three transformer blocks at stage 2. The corresponding plane attentions
used in the variants are shown in Table [l

Table 1. Efficient Morph Variants. EfficientMorph-AB refers to a two-stage model
with A-blocks in stage 1 and B-blocks in stage 2.

Variants Planes
EfficientMorph-11 (xy, yz)
EfficientMorph-23| (xy-yz, Xy-yz-zx)

3.2 Results

The results on the OASIS dataset are shown in Table [2| We compare Efficient-
Morph with state-of-the-art convolutional-based methods, including VoxelMorph-
H [4] and Fourier-Net [12], as well as different variants of TransMorph [6], such
as TransMorph-Tiny, TransMorph, and TransMorph-L. Our proposed variants,
EfficientMorph-11 and EfficientMorph-23, exhibit comparable performance al-
beit with fewer parameters (Figure ) and achieve faster convergence (Figure
). EfficientMorph variants utilizing the Hi-Res tokenization strategy with a
stride of 2 demonstrate a parameter count similar to those employing a stride
of 4, with only a marginal increase in computational overhead. Among these
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Table 2. OASIS Results. Mean average dice score and standard deviation are evalu-

ated on 35 segmented anatomies in OASIS. * indicates the performance numbers taken
from TransMorph and Fourier-Net; for all others, we ran these baselines on our sys-
tem for fair comparison. ‘stride’ and ‘C’ are the strides and embedding dimensions.
‘Multi-Add’ denotes the number of Multiply add operations for a forward pass.

Methods stride| C |Epochs|Param(M)|Multi-Add |Infer(sec)| Dice Score
VoxelMorph-H*[4] - - - - 3656.2 - 0.847+0.014
Fourier-Net*[12] - - - 4.19 169.07 - 0.847+0.013
TransMorph-Tiny[6] | 4x4x4 | 6 100 0.24 11.36 0.0161 0.80+0.056
TransMorph 6] 4x4x4 1 96 | 100 46.5 251.50 0.0992 0.8486+0.0137
TransMorph/[6] 4x4x4 | 96 500 46.5 251.50 0.0998 0.858+0.0143
TransMorph-L* [6] 4x4x4 (128|500 108.11 416.30 - 0.862+0.014
EfficientMorph-11 4x4x4 1 96 | 100 1.8 171.14 0.0610 0.8408+0.0127
EfficientMorph-23 4x4x4 | 96 100 2.8 171.14 0.0810 0.8458+0.0127
EfficientMorph-11 2x2x2 | 96 100 1.7 1359.85 0.5585 |0.8623+0.0133
EfficientMorph-23 2x2x2 | 96 100 2.8 1359.85 0.9179 |0.8671+0.0135
EfficientMorph-11(CGA) | 2x2x2 | 96 100 1.6 1359.85 0.5525 |0.8506+0.0136
EfficientMorph-11 2x2x2 | 24 100 1.2 92.12 0.0834 0.8403+£0.0114
EfficientMorph-23 2x2x2 | 24 100 2.25 92.12 0.0959 0.843+0.01360
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Fig.2. OASIS quantitative results. The proposed variants are formatted as
EfficientMorph-11-stride-C and EfficientMorph-23-stride-C. (A) Comparison of param-
eter count in millions(M) and Dice scores between the proposed Variants and baselines.
(B) Dice score curves of EfficientMorph variants as a function of epochs.

variants, EfficientMorph-23 achieves the highest Dice score with only 2.8M pa-
rameters (16 times fewer parameters than TransMorph) and outperforms all
the compared baselines, even TransMorph-L, which has more than 100M pa-
rameters. With even fewer parameters, Efficient-11 and its CGA variant out-
perform all other baselines. The results indicate that leveraging the plane at-
tentions, with Hi-Res tokenization and CGA, leads to fewer parameters and
better performance. It is observed that the ability to learn diverse features is
more beneficial when we have fewer parameters because the model attempts
to maximize its learning capacity with the parameter count available. Figure
shows that reducing 75% of embedding dimensions for “EfficientMorph-23”
and “EfficientMorph-11" results in a significant parameter reduction (19.6% and
29.4%, respectively) with a small performance decrease (2.8% and 2.55%, respec-
tively). This indicates that altering embedding dimensions in Hi-Res tokeniza-
tion can substantially reduce parameters with a limited impact on performance.
Supplementary Figure [5| illustrates the performance comparison between the
EfficientMorph variants and the baseline on different brain MR substructures,
demonstrating notable enhancements for the proposed models.
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The accuracy curves in Figure 2B clearly show that TransMorph learns
quickly in a few initial epochs but then slowly saturates to the final performance,
whereas all EfficientMorph variants slowly and steadily converge to higher dice
scores. EfficientMorph starts to outperform TransMorph by a significant mar-
gin as early as 10 epochs. Supplementary Figure [3| shows that EfficientMorph’s
warped segmentations are qualitatively better than those of TransMorph.

Results of the IXI dataset are presented in Table [3} EfficientMorph outper-
forms traditional optimization-based methods such as SyN, NiftiReg, and vari-
ous convolutional-based approaches such as VoxelMorph-H [4] and CycleMorph
[14] by a significant margin. EfficientMorph variants Efficient Morph-11 and
EfficientMorph-23 with 4x4x4 strides achieve comparable performance (within
£0.003) with less than 3 million parameters compared to TransMorph’s 46 mil-
lion parameters and 5x fewer epochs. Variants employing the Hi-Res tokeniza-
tion technique with a stride 2 do not perform well for IXI. However, the ablations
experiment with fewer embedding dimensions (C=24) improved the performance
of 0.7317 to TransMorph’s 0.7293 at 100 epochs, achieving similar accuracy as
Fourier-Net-s and has better inference speed than all other baselines. If trained
for a longer period (> 100 epochs), EfficientMorph will probably be as accurate
as TransMorph (maybe even higher), but this is left for future experiments. Ac-
curacy vs epochs curves shown in supplementary Figure [ indicate that most
EfficientMorph variants outperform TransMorph in initial epochs, but then per-
formance tends to saturate. Qualitative segmentations for IXI dataset, shown in
supplementary Figure [7] show that EfficientMorph produces results of similar
quality to TransMorph. For different substructures, EfficientMorph performs on
par with the baseline, as shown in supplementary Figure [6]

Table 3. IXI Results. Mean average dice score and standard deviation are evaluated
on 29 segmented anatomies in IXI. * indicates the performance numbers taken from
TransMorph and Fourier-Net; for all others, we ran these baselines on our system for
fair comparison. ‘stride’ and ‘C’ are the strides and channel layer for initial embedding
layer. ‘Multi-Add’ is the number of Multiply add operations needed for a forward pass.

Dice Score
Methods stride| C |Epochs|Param(M)|Multi- Add|Infer(sec) Val Test
SyN* R I - N N - N 0.6450.152
NiftiReg* - - - - - - - 0.645+0.167
voxelMorph-1* 4] - - - 0.3 - - - 0.548+0.317
cycleMorph* [14] - - - - 966.9 - - 0.528+0.321
Fourier-Net-s[12] - - 200 1.05 43.82 0.318 0.72940.024 0.730+0.025
Fourier-Net-s[12] - - 1000 1.05 43.82 0.318 0.73540.026 0.736£0.027
Fourier-Net [T2]* - - 1000 4.19 169.07 0.342 - 0.763+0.129
TransMorph-Tiny*[6] |4x4x4| 6 500 0.24 122.3 - 0.545£0.180 0.543+£0.180
TransMorph/[G] 4x4x4|96 | 100 46.7 686.80 0.2044 0.7293+0.029 | 0.7324£0.0314
TransMorph [6] 4x4x4| 96 | 500 46.7 686.80 0.2044 | 0.7405+0.0283 | 0.740840.0299
TransMorph-L[6]* 4x4x4 128|500 108.34 1084.9 - 0.753 £0.130 | 0.754+0.128
EfficientMorph-11 4x4x4]96 | 100 2.01 577.29 0.1567 | 0.7233£0.0305 | 0.722440.0324
EfficientMorph-23 4x4x4 |96 | 100 3.04 577.29 0.1749 0.72334£0.0303 | 0.729840.0322
EfficientMorph-11 2x2x2| 96 | 100 1.7 1359.86 0.5716 0.6739+0.0322 | 0.674940.0323
EfficientMorph-23 2x2x2| 96 | 100 2.8 1359.86 0.9365 0.7159+0.0307 | 0.717440.0330
EfficientMorph-11(CGA)|2x2x2| 96 | 100 1.6 1359.86 0.5490 |0.684340.03332| 0.685940.0330
EfficientMorph-11 2x2x2| 24| 100 2.02 576.3 0.1715 0.7206+0.0315 | 0.7210+£0.0337
EfficientMorph-23 2x2x2| 24| 100 3.0 576.3 0.1906 |0.7312+0.0298|0.7317+0.0320



EfficientMorph 9
4 Conclusion and Future Work

We propose EfficientMorph, a parameter-efficient transformer-based architecture
for unsupervised 3D deformable image registration. EfficientMorph uses a novel
attention plane attention mechanism. EfficientMorph attends to 3D volumetric
features by sequentially placing different plane attention blocks zy followed by yz
or zx, thus attending to features along all three axes. Additionally, we propose
a Hi-Res tokenization strategy to increase the feature resolution while main-
taining computational complexity. To mitigate the redundant feature learned by
transformer layers, we use cascaded group attention (CGA). Evaluations of two
datasets demonstrate that EfficientMorph can achieve state-of-the-art results
with a considerably lower parameter count (~16-27x). As future work, we plan
to explore other attention mechanisms that can be paired with EfficientMorph
to further reduce the computational overhead. Furthermore, reducing decoder
complexity can further improve the efficiency and efficacy of EfficientMorph.
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5 Supplementary

TransMorph

EfficientMorph-11 EfficientMorph-23 EfficientMorph-11(CGA

Fixed Image

Fig. 3. OASIS qualitative results. Comparison among the best, median, and worst
output of TransMorph with the variants of the proposed method. Here, EfficientMorph-
23 and EfficientMorph-11 are the different variants with 2x2x2 stride size and 96 em-
bedded dimension; CGA means variants with cascaded group attention.
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Fig. 4. Dice scores as a function of number of epochs(IXI).
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Fig. 5. OASIS boxplot. Quantitative comparison of the proposed models with Trans-
Morph showing dice scores for 19 anatomical substructures.
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Fig. 6. IXI boxplot. Quantitative comparison of the proposed models with Trans-
Morph showing dice scores for 22 anatomical substructures.
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Fig. 7. IXI qualitative results. Comparison among the best, median, and worst
output of TransMorph with the variants of the proposed method. EfficientMorph-23
and EfficientMorph-11 are the different variants with 4x4x4 stride size and 96 embedded
dimensions; EfficientMorph-11(24) has 24 embedding dimensions.
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