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ABSTRACT

Marching squares (MS) and marching cubes (MC) are widely used
algorithms for level-set visualization of scientific data. In this paper,
we address the challenge of uncertainty visualization of the topology
cases of the MS and MC algorithms for uncertain scalar field data
sampled on a uniform grid. The visualization of the MS and MC
topology cases for uncertain data is challenging due to their expo-
nential nature and the possibility of multiple topology cases per cell
of a grid. We propose the topology case count and entropy-based
techniques for quantifying uncertainty in the topology cases of the
MS and MC algorithms when noise in data is modeled with probabil-
ity distributions. We demonstrate the applicability of our techniques
for independent and correlated uncertainty assumptions. We vi-
sualize the quantified topological uncertainty via color mapping
proportional to uncertainty, as well as with interactive probability
queries in the MS case and entropy isosurfaces in the MC case. We
demonstrate the utility of our uncertainty quantification framework
in identifying the isovalues exhibiting relatively high topological
uncertainty. We illustrate the effectiveness of our techniques via
results on synthetic, simulation, and hixel datasets.

Index Terms: Human-centered computing—Visualization—
Visualization application domains—Scientific visualization

1 INTRODUCTION

Level-sets are a fundamental surface-based visualization technique
used to help understand complex scientific datasets. The marching
squares (MS) and marching cubes (MC) algorithms [12] are exten-
sively used by the scientific visualization community for level-set
extraction from univariate scalar fields in two and three dimensions,
respectively. Both algorithms reconstruct the topology and geometry
of level-sets by stepping through the cells of a Cartesian grid on
which data are sampled. We study the uncertainty in the topology
reconstruction step of the MS and MC algorithms when the data
sampled at grid vertices are not fixed or are uncertain.

Analyzing the effects of data uncertainty on visualization algo-
rithms has proved effective in applications such as medical [21]
and geo-spatial data analysis [15], helping to identify and re-
duce visual misrepresentations of underlying data. Thus, uncer-
tainty visualization has been recognized as a top research chal-
lenge [6, 7, 10, 11, 19, 27]. In the context of level-sets, multiple
uncertainty visualizations, such as spaghetti plots [20], contour box-
plot [25], probabilistic marching cubes [16, 17], a closed-form level-
set uncertainty framework [2,3,5], and confidence level-sets [22,26]
have previously been proposed. In this work, we propose a new
framework for uncertainty visualization of level-sets to study the
uncertainty arising in the MS and MC topology cases due to noisy
scalar field data.
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Figure 1: Depiction of the MS topology cases: If data (di j) ≥
isovalue (k), the vertex is marked +; otherwise, it is marked −. The
level-set topology (green) is shown for different sign configurations.

A few recent studies have analyzed the effects of uncertainty in
data on level-sets at the grid-cell granularity for the MS and MC
algorithms, but did not study their topology variations. Specifically,
Pöthkow et al. [17] computed the probability of level-set passing
through a cell, i.e., a level-crossing probability, for each cell of a
Cartesian grid for uncertain data, but no analysis was presented to
quantify the level-set topology variations within a cell. Similarly,
Athawale et al. [5] studied the most probable topology per cell for
uncertain data and the uncertainty in inverse linear interpolation (Il-
erp uncertainty) along cell edges, but did not quantify the uncertainty
in topology. We fill the gap in the prior work by proposing a novel
framework to quantify and visualize the uncertainty in the topology
reconstruction step of the MS and MC algorithms.

Fig. 1 illustrates the MS topology cases [12] for a single 2D cell.
As depicted in Fig. 1, let dxy denote fixed data sampled at the cell
vertices of a 2D Cartesian grid, where x and y denote the local cell
coordinates. Depending upon the isovalue k, a cell vertex is assigned
a positive sign if dxy ≥ k; otherwise, it is assigned a negative sign.
The isocontour topology (green line segments in Fig. 1) is then
extracted within a cell such that it isolates the positive from the
negative vertices [12]. Since there are four vertices and each vertex
can attain a positive or negative sign, there are 24, i.e., 16, possible
MS topology cases per cell. The 16 MS topology cases may be
summarized using the four cases, as shown in Fig. 1, by considering
the symmetry of level-set orientations. The MC algorithm has 28,
i.e., 256, topology cases since each cell has eight vertices.

When data at the 2D cell vertices are uncertain, each grid cell
can attain any number of the MS topology cases between 1 and
16. This behavior is different from the certain data scenario, where
each cell attains only one of the 16 topology cases. In our proposed
framework, we build upon the frameworks proposed by Pöthkow
et al. [17] and Athawale et al. [5], and utilize an entropy-based
quantification, similar to [4], for uncertainty visualization of the
level-set topology cases. The entropy of probability distributions
characterizing gradient flow uncertainty was utilized by Athawale et
al. [4] to quantify the uncertainty in Morse complex segmentation
boundaries. In our work, we quantify the uncertainty of the MS and
MC topology cases by computing the entropy of their probability
distributions.

Contributions: In this work, we present the topology case count
and entropy-based statistical frameworks (Sec. 3) for uncertainty
quantification and visualization of the MS and MC topology cases.
We demonstrate the applicability of our frameworks for independent
and correlated random field assumptions. Our results (Sec. 4) demon-
strate that our proposed techniques more effectively capture local
topological uncertainty of level-sets compared to spaghetti plots [20],

1

ar
X

iv
:2

10
8.

03
06

6v
1 

 [
cs

.G
R

] 
 6

 A
ug

 2
02

1



To appear in the IEEE VIS 2021 conference.

Ilerp uncertainty [5], and probabilistic marching squares/cubes [17].
We show how our statistical framework can be leveraged for identify-
ing the isovalues with relatively high or low topological uncertainty.

2 BACKGROUND

We briefly discuss the vertex-based classification [5] and probabilis-
tic marching cubes [17] frameworks, which are the building blocks
of our proposed uncertainty quantification framework.

2.1 Vertex-Based Classification
The vertex-based classification predicts the most probable MS or
MC topology case for each cell of a Cartesian grid, where uncertain
data are assumed to be sampled from independent probability distri-
butions. In Fig. 1, we denoted the fixed data at cell vertices with a
variable dxy. When data have uncertainty, we denote the data at cell
vertices by a random variable Dxy. Let pdfDxy

be the probability dis-
tribution at each vertex estimated from sample data. For the isovalue
k, let D+

xy = Pr(Dxy ≥ k), i.e., the probability of a cell vertex (x,y)
attaining a positive vertex sign. Similarly, let D−xy = Pr(Dxy < k). In
a vertex-based classification, the vertex is predicted as positive if
D+

xy≥D−xy; otherwise, it is predicted as negative. The predicted signs,
therefore, indicate the single most probable MS or MC topology
case for each cell of an uncertain scalar field.

2.2 Probabilistic Marching Cubes
The probabilistic marching cubes estimates the level-crossing prob-
ability for each cell of a Cartesian grid, where uncertain data are
assumed to be sampled from multivariate Gaussians. For a 2D
version of the probabilistic marching cubes, i.e., the probabilistic
marching squares, let D = (D00,D01,D10,D11)

T denote a random
variable representing uncertain data at the 2D cell vertices. The ran-
dom variable is assumed to have a multivariate Gaussian distribution
with the sample mean µ̃= (µ̃D00 , µ̃D01 , µ̃D10 , µ̃D11)

T and sample co-
variance matrix ∑̃ = E[(D− µ̃)(D− µ̃)T ]. The N samples are then
drawn from the distribution N (µ̃, ∑̃). If the level-set with isovalue
k crosses a cell for M number of samples, then the level-crossing
probability for the cell is estimated as M

N . The same approach is
extendable to 3D. Note that the higher value of a sample count N
provides a more reliable estimation of the level-crossing probability.

3 METHODS

We now describe our framework for the uncertainty quantification
and visualization of the level-set topology cases. For simplicity, we
limit our descriptions to the 2D MS algorithm, but they are directly
applicable to the 3D MC algorithm.

3.1 Computing Topology Case Probability Distribution
In the uncertainty quantification step, we characterize the uncertainty
of the MS topology cases by computing their probability distribution.
For the independent random field assumption, we leverage the vertex-
based classification framework (Sec. 2.1) to compute the topology
case probability distribution. First, we compute D+

xy and D−xy for
each cell vertex. We then compute the probability for each of the
16 MS topology cases per cell. For example, the probability of
D00, D10, and D11 being positive and D01 being negative is equal
to the product D+

00 ·D
−
01 ·D

+
10 ·D

+
11 because of the independence

assumption.
For the correlated random field assumption, we leverage the

probabilistic marching cubes framework (Sec. 2.2) to compute the
topology case probability distribution. First, we draw N samples
from a multivariate Gaussian distribution N (µ̃, ∑̃). Next, we empir-
ically compute the histogram of 16 topology cases depending upon
the topology case observed for each of the N samples. Note that the
Monte Carlo sampling for the correlated noise assumption results
in approximate and expensive computations unlike the closed-form
and fast computations for the independent noise models.

3.2 Topology Case Count Visualization
In the topology case count technique, we first compute the topology
case probability distribution per grid cell, as described in Sec 3.1.
We then derive the topology count field in which we count the
number of topology cases per cell that have a probability greater
than the user-specified lower probability threshold t, where t ∈ [0,1].
Setting a lower threshold provides users the flexibility to study
uncertainty among topology cases with relatively high probability.
Let C denote a discrete random variable representing the 16 MS
topology cases for a 2D cell q, and pdfC(q) denote the topology case
probability distribution for the cell q. Mathematically, the topology
count for cell q is equal to ∑

c=16
c=1 1(PrC=c(q)>t)(c), where 1 is the

indicator function. Finally, we visualize the topology count field via
colormapping. Note that for our experiments in Sec. 4, we set t = 0.

3.3 Entropy-Based Uncertainty Visualization
In the entropy-based technique, we first compute the topology
case probability distribution per grid cell, as described in Sec 3.1.
We then compute the Shannon entropy [23] E(q) of the topology
case probability distribution pdfC(q) for each cell q as: E(q) =
−∑

c=16
c=1 PrC=c(q)log2PrC=c(q). Finally, we visualize the entropy

field via colormapping. The entropy of a topology case probability
distribution quantifies the level of randomness of the topology cases
within each cell, which may not be captured by the topology case
count technique. Low entropy implies the relatively more determin-
istic nature of the topology cases, whereas high entropy implies the
relatively more uncertain nature of the topology cases. Our entropy-
based approach is inspired by the similar entropy-based approach
proposed in [4] for the visualization of uncertainty in Morse com-
plexes. Our entropy-based framework can be used to identify the
isovalues that exhibit relatively high or low topological uncertainty.
Specifically, we visualize a boxplot of the entropy of grid cells with
nonzero entropy/uncertainty for different isovalues to compare the
topological uncertainty distribution of isovalues.

4 RESULTS

We demonstrate the effectiveness of our topology count and entropy-
based level-set uncertainty visualizations in Fig. 2 via a synthetic
experiment. The level-set for the Ackley dataset [1] is visualized in
Fig. 2a. We mix the dataset with uniform-distributed noise samples
to generate an ensemble. Figs. 2b-f visualize the results for the
ensemble using multiple uncertainty visualization techniques for
the independent uniform noise assumption, in which the mean and
width of a distribution per vertex are estimated from the ensemble.

Fig. 2b visualizes a spaghetti plot [20] of level-sets, in which the
orange and pink boxes enclose the positions of the relatively high
and low spatial variability of the level-sets, respectively. Fig. 2c
visualizes the most probable level-set extracted using the vertex-
based classification (Sec. 2.1) with colormapping based on the Ilerp
uncertainty [2]. The relatively high Ilerp variance (mapped to red) is
oberved inside the orange box in Fig. 2c. Fig. 2d visualizes a result
for the probabilistic marching squares [17] (Sec. 2.2), in which the
level-crossing probabilities are colormapped.

Figs. 2e-f visualize the results of our topology case count and
entropy-based techniques, respectively (Sec. 3). The yellow regions
in Fig. 2e indicate the cells that have 16 possible MS topology cases
with nonzero probability of occurrence, i.e., high topological un-
certainty, across the ensemble. In Fig. 2f, the high entropy mapped
to yellow implies a relatively high level of randomness of level-set
topology. Our proposed uncertainty visualizations clearly high-
light the positions of relatively high topological uncertainty (yellow
regions), which are not easily observed by visualizing the level-
crossing probability (Fig. 2d). Fig. 3 visualizes entropy boxplots
for the isovalues sampled in the range [−4.5,−2.5] for the Ackley
ensemble. In Fig. 3, the isovalues near−4.5 exhibit relatively higher
median entropy (orange segments) than the isovalues near −2.9.

2



To appear in the IEEE VIS 2021 conference.

(a) Level-set in an
image without noise

(b) Spaghetti plot
[20]

(c) Ilerp uncertainty
visualization [2]

(d) Probabilistic marching
squares [17]

(e) Topology case count
visualization

(f) Entropy-based
visualization

Figure 2: Level-set uncertainty visualizations for the Ackley
dataset [1] at isovalue k = −3.25 using the state-of-the-art tech-
niques in images (b-d) and our proposed techniques in images (e-f).
The orange and pink dotted boxes mark the positions with the rela-
tively high and low topological variations, respectively.

Figure 3: A boxplot of the entropy of grid cells with nonzero entropy
is visualized per sampled isovalue to understand the topological
uncertainty distribution of isovalues for the Ackley dataset.

In Fig. 4, we demonstrate the comparison of independent and
correlated noise models and an application of interactive probability
distribution queries [18]. Specifically, we analyze the uncertainty in
level-sets for the velocity magnitude fields derived from the wind
ensemble dataset [8] with 15 ensemble members. Figs. 4a-c visualize
the spaghetti plot, Ilerp uncertainty, and level-crossing probabilities
similar to the visualizations in Figs. 2b-d for the Ackley ensemble.

Figs. 4d-e visualize the topology case counts for the independent
and multivariate Gaussian noise models, respectively. The positions
of relatively high topological variations are clearly highlighted (yel-
low regions) in Fig. 4d, which are not easily observed in Fig. 4c.
The number of possible topological cases per cell with nonzero

probability of occurrence is reduced or the topology becomes more
deterministic for the multivariate Gaussian assumption in Fig. 4e.
For the multivariate Gaussian assumption, we used a sample count
N = 500 for Monte Carlo sampling since increasing a sample count
beyond 500 did not visually alter the results significantly.

Fig. 4f and Fig. 4h visualize the entropy of the topological distri-
butions for the independent and multivariate Gaussian noise assump-
tions, respectively. We investigate the probability distributions of
the MS topology cases, interactively [18], at the pixels marked with
white circles in Fig. 4f and Fig. 4h and visualize them in Fig. 4g and
Fig. 4i, respectively. In Fig. 4g, the high entropy of distributions is
evidenced by the relatively high probability of four topology con-
figurations 0100, 0110, 1100, and 1110, where 1 denotes a positive
and 0 denotes a negative vertex. In contrast, the topology becomes
more deterministic in Fig. 4i with relatively high probability for the
topology cases 0100, 1110, and 1111.

In Fig. 5, we apply our proposed uncertainty visualizations to a
3D hixel data [24] assuming the independent Gaussian-distributed
uncertainty. The hixel technique produces a reduced representation
of the original data by partitioning these data into blocks and summa-
rizing each block with a probability distribution. In our example, we
derived the hixel data from the stag beetle dataset [9] with resolution
832×832×492. For the hixel-based representation, we partitioned
the dataset into blocks of size 4×4×4 and summarized each block
with a Gaussian distribution. The hixel dataset, therefore, has a
resolution of 208×208×123×2, where each block stores the mean
and standard deviation of a Gaussian distribution.

The hixel-based reduced representation comes at the cost of in-
creased uncertainty in the data and, hence, the level-set positions.
Fig. 5a visualizes the level-set extracted from the original high-
resolution stag beetle dataset at isovalue k = 900. Fig. 5b visualizes
the most probable isosurface extracted using the vertex-based classi-
fication [2] for the hixel dataset. The relatively high sensitivity of the
beetle leg topology to noise results in the breaking of the beetle leg
in Fig. 5b. Fig. 5c visualizes the result for the probabilistic marching
cubes, in which the positions of high and low topological uncertainty
are not clearly separated. Our proposed uncertainty visualizations in
Fig. 5d-f clearly detect the relatively high sensitivity of the beetle
leg topology to noise, as visualized with the red regions. In Fig. 5f,
we overlay the most probable level-set (gray) with the level-set ex-
tracted from the entropy volume (red) for the entropy isovalue 5.
Thus, the red isosurface encloses the positions that have relatively
high topological uncertainty.

5 CONCLUSION AND FUTURE WORK

In this paper, we study uncertainty arising in the topology cases
of the MS and MC algorithms for level-set visualizations when
the data uncertainty is modeled with independent and correlated
noise distributions. Specifically, we propose the topology case count
and entropy-based techniques for uncertainty quantification and
visualization of the topology cases. We demonstrate the effectiveness
of our proposed uncertainty visualizations by comparing the results
with previously proposed spaghetti plots [20], probabilistic marching
cubes [17], and Ilerp uncertainty visualizations [2].

Our proposed uncertainty quantification framework has a few
limitations. First, we assume no correlation among the 16 MS
(or 256 MC) topology cases that are distinguished based on the
cell vertex signs. A few topology cases, however, are rotated or
flipped versions of other MS topology cases. Considering such
correlations for uncertainty quantification could be interesting future
work. Further, a specific combination of cell vertex signs may
correspond to multiple possible topologies within a grid cell [13,14],
which we plan to take into account for uncertainty quantification in
the future. Currently, we limit interactive probability queries [18] to
explore the MS topological uncertainty. Applying such a framework
to the MC topology cases, however, is nontrivial and impractical. We
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(a) Spaghetti plot [20] (b) Ilerp uncertainty
visualization [2]

(c) Probabilistic marching
squares [17]

(d) Topology case count
(independent noise)

(e) Topology case count
(multivariate noise)

(f) Entropy-based visualization
(independent noise)

(g) Topology distribution for
pixel (39,25) of image (f)

(h) Entropy-based visualization
(multivariate noise)

(i) Topology distribution for
pixel (39,25) of image (h)

Figure 4: Uncertainty visualization of the wind dataset [8] at k =−40 with noise modeling using independent Gaussians in images (b-d, f) and
multivariate Gaussians in images (e,h). The reduced topology counts and entropy in images (e) and (h) compared to those in images (d) and (f),
respectively, imply the more deterministic nature of the topology for multivariate noise models than independent noise models. In images (g,i),
the high probability topology cases are depicted in the bottom rows. The vertex signs for any topology case (green segments) in images (g,i)
are read from the top left corner of square cells in a counter-clockwise direction, in which 1 denotes a positive and 0 denotes a negative vertex.

(a) Level-set in a high-resolution image (b) Most probable level-set topology [2] (c) Probabilistic marching cubes [17]

(d) Topology case count visualization (e) Entropy-based visualization (f) Entropy level-set (red)

Figure 5: Uncertainty visualizations for the stag beetle [24] hixel dataset at k = 900. The noise in the data results in the breaking of the beetle
leg in image (b). In probabilistic marching cubes, it is difficult to distinguish between the regions of high and topological uncertainty, which is
easier using our visualizations in images (d-f). The relatively high sensitivity of the beetle leg topology to noise is detected in images (d-f) by
the red regions. In image (f), the most probable level-set (gray) is overlaid with the entropy volume level-set (red) for entropy isovalue 5.

would like to study the MC topology cases further. In our study, we
restrict the topology uncertainty analysis for each cell of a scalar grid
similar to the MS and MC algorithms. We would like to expand this
analysis to take into account correlations with a local neighborhood.
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