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Probabilistic Asymptotic Decider for Topological Ambiguity
Resolution in Level-Set Extraction for Uncertain 2D Data

Tushar Athawale and Chris R. Johnson

(a) The isocontour topology in the
groundtruth image (isovalue = 0.49)

(b) The asymptotic decider in the mean
field

(c) The probabilistic midpoint decider (d) The probabilistic asymptotic decider

Fig. 1: The comparison of the topological decision frameworks for isocontour reconstruction in uncertain data. The marked
squares (white/colored) in all images denote underlying grid cells that have topological ambiguity. In uncertain data, the proposed
probabilistic asymptotic decider (image (d)) recovers the groundtruth isocontours better than the isocontours reconstructed using the
decision frameworks for images (b) and (c). Moreover, the probabilistic decision frameworks allow us to encode the confidence in
topological decisions into the visualization. For example, in images (c) and (d), red indicates relatively low, white denotes moderate,
and blue denotes relatively high confidence in isocontour topology. The isocontour breaks more often near the red cells.

Abstract—We present a framework for the analysis of uncertainty in isocontour extraction. The marching squares (MS) algorithm for
isocontour reconstruction generates a linear topology that is consistent with hyperbolic curves of a piecewise bilinear interpolation. The
saddle points of the bilinear interpolant cause topological ambiguity in isocontour extraction. The midpoint decider and the asymptotic
decider are well-known mathematical techniques for resolving topological ambiguities. The latter technique investigates the data
values at the cell saddle points for ambiguity resolution. The uncertainty in data, however, leads to uncertainty in underlying bilinear
interpolation functions for the MS algorithm, and hence, their saddle points. In our work, we study the behavior of the asymptotic
decider when data at grid vertices is uncertain. First, we derive closed-form distributions characterizing variations in the saddle point
values for uncertain bilinear interpolants. The derivation assumes uniform and nonparametric noise models, and it exploits the concept
of ratio distribution for analytic formulations. Next, the probabilistic asymptotic decider is devised for ambiguity resolution in uncertain
data using distributions of the saddle point values derived in the first step. Finally, the confidence in probabilistic topological decisions is
visualized using a colormapping technique. We demonstrate the higher accuracy and stability of the probabilistic asymptotic decider in
uncertain data with regard to existing decision frameworks, such as deciders in the mean field and the probabilistic midpoint decider,
through the isocontour visualization of synthetic and real datasets.

Index Terms—Isocontour visualization, topological uncertainty, marching squares, asymptotic decider, bilinear interpolation, probabilis-
tic computation

1 INTRODUCTION

Uncertainty visualization has been recognized as one of the top research
challenges in the domain of scientific visualization [16, 17]. Algorith-
mic and hardware limitations can modulate data in unexpected ways as
data is processed through various phases of the visualization pipeline.
The noise introduced in data due to limitations on data processing can
significantly impact the final visualization. Brodlie et al. studied the
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sources of errors in the visualization pipeline [5] and demonstrated
that the quantification of uncertainty in visualization is important in
avoiding misleading interpretations regarding underlying data. In other
words, uncertainty quantification can potentially improve the reliability
of decision support systems [9, 40], especially for sensitive applica-
tions. We study uncertainty quantification in the context of level-set
visualization.

Level-set visualization is one of the fundamental data visualization
paradigms for interpreting scalar and vector field data in a broad spec-
trum of applications, such as medical imaging and flow visualizations
for aerodynamics and hydrodynamics. The marching squares (MS)
algorithm is a 2D version of the marching cubes algorithm [23] for
level-set visualizations. The MS algorithm assumes a piecewise bilinear
interpolation model, and the equation for the bilinear interpolant corre-
sponds to the equation for hyperbolae. The robust implementation of
the MS algorithm aims to reconstruct an isocontour that is topologically
and geometrically consistent with the piecewise bilinear interpolation
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model.
For the MS algorithm, saddle points are the points where curves of

hyperbolae intersect asymptotically. Hence, saddle points are consid-
ered as critical points in scalar and vector fields since they represent
points where the topology for isocontours can either merge or split. The
topological ambiguity in the MS algorithm, therefore, arises near saddle
points since they can represent either a split or a merge configuration.
A careful analysis is needed near the saddle points to avoid topological
inconsistencies with the piecewise bilinear interpolation. The midpoint
and asymptotic decider are well-known mathematical techniques for
resolving topological ambiguities. The latter has been shown to be
more accurate than the former [21]. The existing methods for topolog-
ical ambiguity resolution assume that the sampled data values at the
grid vertices are certain. However, in uncertain data, the ambiguity or
uncertainty in topological configurations escalates. In our contribution,
we address the issue of topological ambiguity resolution in the MS
algorithm when sampled data is uncertain.

The uncertainty in data leads to uncertainty in the underlying bilinear
interpolation function for each cell of a grid and, hence, their saddle
points. We, therefore, define three terms relevant to the bilinear inter-
polation model for uncertain data. First, we define an uncertain cell
as the cell with uncertain data at the cell vertices. Second, we define
saddle points for an uncertain cell as a union of the saddle points of all
possible bilinear interpolation functions for an uncertain cell. Lastly,
we define saddle values for an uncertain cell as the data values attained
at the saddle points for the same uncertain cell. In our contribution, we
analytically derive variations in the saddle values for an uncertain 2D
cell without needing to actually compute its saddle points.

The proposed derivations assume uniform and nonparametric noise
for modeling data uncertainty at grid vertices. The nonparametric den-
sity models have been advocated for a more realistic characterization of
noise distributions when compared to parametric density models [32].
Nonparametric models add flexibility to capture multimodal distribu-
tions. We initially assume a uniform noise model for deriving variations
in saddle values of an uncertain cell. The density characterization for
uniform noise assumption works as a building block for characterizing
saddle value densities assuming nonparametric noise. Our results in
Figure 8 show that the nonparametric noise assumption successfully
captures multimodel probabilistic variations in saddle values for an
uncertain 2D cell.

Athawale et al. [2, 3] recently investigated positional uncertainty in
level-set visualizations for uncertain scalar fields. Our work is primarily
motivated by two major aspects of their contributions, specifically an
analytic framework for fast and accurate characterization of the den-
sities at the spatial positions of interest and a probabilistic decision
framework for topological ambiguity resolution in uncertain data. In
their work, the advantages of analytical models for level-set extraction
in uncertain data over Monte Carlo simulations were demonstrated for
nonparametric density estimation. Analytical models provide perfor-
mance gain and higher computational accuracy. In our work, we devise
an analytic solution that exploits the framework for the probabilistic
midpoint decider [3] (also discussed in section 3) to resolve topological
ambiguities for isocontours in uncertain 2D data.

Contributions: Our contribution in this paper is threefold. First,
we derive the density, in closed form, that characterizes variations in
saddle values for an uncertain 2D cell. The derivation assumes uni-
form and nonparametric densities for modeling data uncertainties at
the cell vertices, and it uses the concept of ratio distribution [2] for
analytic formulation. Second, we study the issue of topological ambi-
guity resolution in uncertain data by leveraging the framework for the
probabilistic midpoint decider [3]. We devise the probabilistic asymp-
totic decider for resolving topological ambiguities in noisy data. The
probabilistic asymptotic decider leverages the computation of saddle
value densities derived in our first contribution to efficiently decide
topology in the marching squares (MS) algorithm. The proposed prob-
abilistic framework allows us to quantify and visualize uncertainty in
topological decisions. We encode topological uncertainty into visual-
ization by employing a colormapping technique. Lastly, we confirm
the higher accuracy and resilience of the statistical model for the proba-

bilistic asymptotic decider with regard to existing decision frameworks
through visualization. The existing frameworks include the asymptotic
and midpoint deciders in the mean field and the probabilistic midpoint
decider. The superiority of isocontour reconstruction for the proba-
bilistic asymptotic decider is confirmed in the results shown in Figure
1.

The rest of the paper is organized as follows: In section 2, we briefly
discuss advances in the fields of topological analysis of level-set ex-
traction and uncertainty visualization. In section 3, we summarize the
asymptotic, midpoint, and probabilistic midpoint decider [3] frame-
works for topological ambiguity resolution in the MS algorithm. Next,
we mathematically present the research question of the characterization
of uncertainty in saddle values for an uncertain 2D cell in section 4. The
probabilistic asymptotic decider is derived in closed form in section 5
for the uniform and nonparametric noise models. Finally, we show the
visualization results for the probabilistic asymptotic decider in section
6.

2 RELATED WORK

The state-of-the-art techniques in the field of uncertainty visualization
have been reviewed by Bonneau et al. [4]. We briefly discuss impor-
tant contributions to uncertainty visualization relevant to the fields of
level-set topology and statistical modeling. Two popular techniques
for summarizing spatial variations in uncertain data are contour [38]
and surface boxplots [8]. Both methods derive quartiles of positional
variations in level sets using the concept of functional data depth [22].
Pöthkow and Hege [31, 33] devised probabilistic marching cubes for
the visualization of spatial uncertainty in isosurfaces when data noise
is modeled using Gaussian distributions. The analysis of probabilistic
marching cubes was further expanded to take into account nonpara-
metric models [32]. The contour tree data structure proposed by Carr
et al. [6] is useful for gaining insight into topological events associ-
ated with isosurfaces. These events include appearance, disappearance,
merging, or splitting of the geometric components of isosurfaces at
critical points, such as local minimum/maximum or saddles, in a scalar
field. Wu and Zhang [39] studied the effect of data uncertainty on con-
tour trees and devised novel methods for integrating data uncertainty
into contour trees. Agarwal et al. [1] developed probabilistic models for
characterizing the variation in distance between the nodes of contour
trees for uncertain data.

The visualization of distribution datasets is another important re-
search challenge. In distribution datasets, each spatial data point is
modeled as a distribution function. Kao et al. [19] and Luo et al. [25]
devised statistical shape descriptors for visualization of uncertainty in
distribution datasets with the least possible clutter. The ProbVis system
developed by Potter et al. [34] enables users to explore the probability
and cumulative density functions interactively. Hazarika et al. [13]
characterized data uncertainty using copula-based mixed distribution
models to study isosurface topology. The copula-based mixture mod-
els add the flexibility to characterize dependency between multiple
random variables while allowing users to choose among a family of
distributions for each random variable independently.

A considerable body of literature addresses the challenge of uncer-
tainty quantification for visualizing vector field data and direct volume
rendering. Otto et al. [28] studied uncertainty in streamline flows, as
well as positional uncertainty in critical points for 2D and 3D flow
fields assuming Gaussian noise models. Djurcilov et al. [7] mapped
the opacity in transfer functions to data uncertainty and colormapped
scatter plot space by segmenting out regions of low and high spatial
variations. Sakhaee and Entezari [36] and Liu et al. [20] modeled data
uncertainty with parametric, nonparametric, and Gaussian mixture mod-
els and integrated uncertainty into the ray-casting technique for direct
volume rendering. Colormapping [35], point-displacement [10, 11],
animation [24], and glyphs [14] are a few of the techniques to encode
quantified uncertainty into visualization.

3 TOPOLOGICAL DECIDERS FOR THE MS ALGORITHM

In this section, we briefly describe the asymptotic, midpoint, and prob-
abilistic midpoint decider frameworks for topological ambiguity reso-

lution in the MS algorithm. Let (x,y) represent the cell domain, where
x ∈ [0,1] and y ∈ [0,1]. Let d00,d01,d10, and d11 denote the data values
at the cell corners. For the bilinear interpolation model, the data values
within a cell can be represented with the following hyperbolic equation:

dxy = a1x+a2y+a3xy+a4 (1)

Let s represent the data values at the intersection of asymptotes (saddle
points) of the equation of hyperbolae presented in Equation (1), and let
m represent data values at the midpoints of 2D cells. The values of s
and m can be derived using the following two equations [21, 27]:

s =
d01 ·d10 +d00 ·d11

d00 −d01 −d10 +d11
(2)

m =
d00 +d11 +d10 +d01

4
(3)

The asymptotic decider and the midpoint decider resolve ambiguous
isocontour topology by investigating values of the variables s and m,
respectively (section 17.4.1, [21])

The probabilistic midpoint decider (section 3.3, [3]) resolves topo-
logical ambiguities when sampled data is uncertain and data uncertainty
is characterized by noise distributions. The uncertainty in data values
at the position (x,y) is represented by a random variable Dxy. Thus,
the random variable corresponding to the midpoint of a 2D cell can be
represented as M = D0.5,0.5. For the independent noise assumption, the
density of M is computable in closed form through the convolution of
densities at the cell vertices. The density of the random variable M can
be leveraged to probabilistically decide the isocontour topology.

4 PROBLEM DESCRIPTION

The noise in data values at the cell vertices introduces uncertainty in
the values attained by the saddle points of the bilinear interpolant for
(unknown) groundtruth data. We represent a random variable S to
denote the variations in the saddle values for an uncertain 2D cell. A
range of the values for the random variable S can be derived using the
following formula:

S =
D01 ·D10 +D00 ·D11

D00 −D01 −D10 +D11
(4)

For the isovalue k, the topological ambiguity can be resolved by comput-
ing the most frequent sign attained by the saddle points for an uncertain
cell. We presume that the saddle points for an uncertain cell are the
proper positions for investigating data to decide topology because of the
constant choice of the interpolation model (bilinear) for all realizations
of uncertain data. Mathematically, we compute the probability that the
saddle values for an uncertain 2D cell are less than k:

Pr(S < k) = Pr(
D01 ·D10 +D00 ·D11

D00 −D01 −D10 +D11
< k) (5)

If Pr(S < k) > 0.5, the most probable sign for the saddle point of
the groundtruth data is presumed to be negative and vice versa. We
name this decision framework the probabilistic asymptotic decider. We
rewrite Equation (5) in terms of two new random variables P and Q,
where each random variable represents a combination of the sum and
the product of the random variables Dxy at the cell corners:

Pr(S < k)
= Pr(D01 ·D10 +D00 ·D11 < k · (D00 −D01 −D10 +D11))

= Pr(D01 ·D10 +D00 ·D11 − k · (D00 −D01 −D10 +D11)< 0)
= Pr(D01 ·D10 + k · (D01 +D10)+D00 ·D11 − k · (D00 +D11)< 0)

= Pr(S′ = P+Q < 0),where
P := D01 ·D10 + k · (D01 +D10)

Q := D00 ·D11 − k · (D00 +D11) (6)

In a similar manner, the decision framework for the probabilistic mid-
point decider can be modeled by turning each quantity in Equation (3)
into a random variable:

Pr(M < k) = Pr(
D01 +D10 +D00 +D11

4
< k)

= Pr(M′ = D01 +D10 +D00 +D11 −4k < 0)
(7)

5 SADDLE VALUE DENSITY FOR AN UNCERTAIN CELL

In this section, we present an analytic derivation for computing Pr(S <
k) =Pr(S′ =P+Q< 0) (Equation (6)). The topological decision of the
probabilistic asymptotic decider depends upon the value of Pr(S < k),
as described in section 4. The steps for computing Pr(S < k) are
depicted in Figure 2. The approach consists of three primary steps.
First, we compute the probability densities pdfP(p) and pdfQ(q) for the
independent random variables P and Q, respectively. The independent
computation of pdfP(p) and pdfQ(q) is shown by the two columns of
Figure 2 separated by a dotted vertical line. Second, the density of a
random variable S′ is computed through convolution of the densities
pdfP(p) and pdfQ(q) computed in step one since S′ = P+Q. Lastly,
the density pdfS′(s′) is integrated to evaluate Pr(S′ < 0), which is
equivalent to computing Pr(S < k) (Equation (6)).

Fig. 2: The steps for computing Pr(S < k). Step 1: Computation
of the densities pdfP(p) and pdfQ(q). Both densities are computed
independently, as indicated by the two columns separated by a dotted
vertical line. The dotted blocks denote the temporary renaming of
variables. Step 2: Computation of pdfS′(s′). Step 3: Computation of
Pr(S′ = P+Q < 0).

We provide a closed-form derivation of step 1, i.e, the computation
pdfP(p) and pdfQ(q) in sections 5.1 (uniform noise) and 5.2 (non-
parametric noise). We show only the derivation for the computation of
pdfP(p) (the left column in Figure 2) because pdfQ(q) (the right column
in Figure 2) is derived using a similar approach. A short description of
steps 2 and 3 is provided in section 5.3.

5.1 Formulation of pdfP(p) Assuming Uniform Noise

Initially, we derive the cumulative density function of a random variable
P, cdfP(p). The process is depicted in the left column of Figure 2. The
pdfP(p) is obtained by taking the derivative of cdfP(p) with respect to
variable p. The cumulative density function of a random variable P can
be represented as:
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model.
For the MS algorithm, saddle points are the points where curves of

hyperbolae intersect asymptotically. Hence, saddle points are consid-
ered as critical points in scalar and vector fields since they represent
points where the topology for isocontours can either merge or split. The
topological ambiguity in the MS algorithm, therefore, arises near saddle
points since they can represent either a split or a merge configuration.
A careful analysis is needed near the saddle points to avoid topological
inconsistencies with the piecewise bilinear interpolation. The midpoint
and asymptotic decider are well-known mathematical techniques for
resolving topological ambiguities. The latter has been shown to be
more accurate than the former [21]. The existing methods for topolog-
ical ambiguity resolution assume that the sampled data values at the
grid vertices are certain. However, in uncertain data, the ambiguity or
uncertainty in topological configurations escalates. In our contribution,
we address the issue of topological ambiguity resolution in the MS
algorithm when sampled data is uncertain.

The uncertainty in data leads to uncertainty in the underlying bilinear
interpolation function for each cell of a grid and, hence, their saddle
points. We, therefore, define three terms relevant to the bilinear inter-
polation model for uncertain data. First, we define an uncertain cell
as the cell with uncertain data at the cell vertices. Second, we define
saddle points for an uncertain cell as a union of the saddle points of all
possible bilinear interpolation functions for an uncertain cell. Lastly,
we define saddle values for an uncertain cell as the data values attained
at the saddle points for the same uncertain cell. In our contribution, we
analytically derive variations in the saddle values for an uncertain 2D
cell without needing to actually compute its saddle points.

The proposed derivations assume uniform and nonparametric noise
for modeling data uncertainty at grid vertices. The nonparametric den-
sity models have been advocated for a more realistic characterization of
noise distributions when compared to parametric density models [32].
Nonparametric models add flexibility to capture multimodal distribu-
tions. We initially assume a uniform noise model for deriving variations
in saddle values of an uncertain cell. The density characterization for
uniform noise assumption works as a building block for characterizing
saddle value densities assuming nonparametric noise. Our results in
Figure 8 show that the nonparametric noise assumption successfully
captures multimodel probabilistic variations in saddle values for an
uncertain 2D cell.

Athawale et al. [2, 3] recently investigated positional uncertainty in
level-set visualizations for uncertain scalar fields. Our work is primarily
motivated by two major aspects of their contributions, specifically an
analytic framework for fast and accurate characterization of the den-
sities at the spatial positions of interest and a probabilistic decision
framework for topological ambiguity resolution in uncertain data. In
their work, the advantages of analytical models for level-set extraction
in uncertain data over Monte Carlo simulations were demonstrated for
nonparametric density estimation. Analytical models provide perfor-
mance gain and higher computational accuracy. In our work, we devise
an analytic solution that exploits the framework for the probabilistic
midpoint decider [3] (also discussed in section 3) to resolve topological
ambiguities for isocontours in uncertain 2D data.

Contributions: Our contribution in this paper is threefold. First,
we derive the density, in closed form, that characterizes variations in
saddle values for an uncertain 2D cell. The derivation assumes uni-
form and nonparametric densities for modeling data uncertainties at
the cell vertices, and it uses the concept of ratio distribution [2] for
analytic formulation. Second, we study the issue of topological ambi-
guity resolution in uncertain data by leveraging the framework for the
probabilistic midpoint decider [3]. We devise the probabilistic asymp-
totic decider for resolving topological ambiguities in noisy data. The
probabilistic asymptotic decider leverages the computation of saddle
value densities derived in our first contribution to efficiently decide
topology in the marching squares (MS) algorithm. The proposed prob-
abilistic framework allows us to quantify and visualize uncertainty in
topological decisions. We encode topological uncertainty into visual-
ization by employing a colormapping technique. Lastly, we confirm
the higher accuracy and resilience of the statistical model for the proba-

bilistic asymptotic decider with regard to existing decision frameworks
through visualization. The existing frameworks include the asymptotic
and midpoint deciders in the mean field and the probabilistic midpoint
decider. The superiority of isocontour reconstruction for the proba-
bilistic asymptotic decider is confirmed in the results shown in Figure
1.

The rest of the paper is organized as follows: In section 2, we briefly
discuss advances in the fields of topological analysis of level-set ex-
traction and uncertainty visualization. In section 3, we summarize the
asymptotic, midpoint, and probabilistic midpoint decider [3] frame-
works for topological ambiguity resolution in the MS algorithm. Next,
we mathematically present the research question of the characterization
of uncertainty in saddle values for an uncertain 2D cell in section 4. The
probabilistic asymptotic decider is derived in closed form in section 5
for the uniform and nonparametric noise models. Finally, we show the
visualization results for the probabilistic asymptotic decider in section
6.

2 RELATED WORK

The state-of-the-art techniques in the field of uncertainty visualization
have been reviewed by Bonneau et al. [4]. We briefly discuss impor-
tant contributions to uncertainty visualization relevant to the fields of
level-set topology and statistical modeling. Two popular techniques
for summarizing spatial variations in uncertain data are contour [38]
and surface boxplots [8]. Both methods derive quartiles of positional
variations in level sets using the concept of functional data depth [22].
Pöthkow and Hege [31, 33] devised probabilistic marching cubes for
the visualization of spatial uncertainty in isosurfaces when data noise
is modeled using Gaussian distributions. The analysis of probabilistic
marching cubes was further expanded to take into account nonpara-
metric models [32]. The contour tree data structure proposed by Carr
et al. [6] is useful for gaining insight into topological events associ-
ated with isosurfaces. These events include appearance, disappearance,
merging, or splitting of the geometric components of isosurfaces at
critical points, such as local minimum/maximum or saddles, in a scalar
field. Wu and Zhang [39] studied the effect of data uncertainty on con-
tour trees and devised novel methods for integrating data uncertainty
into contour trees. Agarwal et al. [1] developed probabilistic models for
characterizing the variation in distance between the nodes of contour
trees for uncertain data.

The visualization of distribution datasets is another important re-
search challenge. In distribution datasets, each spatial data point is
modeled as a distribution function. Kao et al. [19] and Luo et al. [25]
devised statistical shape descriptors for visualization of uncertainty in
distribution datasets with the least possible clutter. The ProbVis system
developed by Potter et al. [34] enables users to explore the probability
and cumulative density functions interactively. Hazarika et al. [13]
characterized data uncertainty using copula-based mixed distribution
models to study isosurface topology. The copula-based mixture mod-
els add the flexibility to characterize dependency between multiple
random variables while allowing users to choose among a family of
distributions for each random variable independently.

A considerable body of literature addresses the challenge of uncer-
tainty quantification for visualizing vector field data and direct volume
rendering. Otto et al. [28] studied uncertainty in streamline flows, as
well as positional uncertainty in critical points for 2D and 3D flow
fields assuming Gaussian noise models. Djurcilov et al. [7] mapped
the opacity in transfer functions to data uncertainty and colormapped
scatter plot space by segmenting out regions of low and high spatial
variations. Sakhaee and Entezari [36] and Liu et al. [20] modeled data
uncertainty with parametric, nonparametric, and Gaussian mixture mod-
els and integrated uncertainty into the ray-casting technique for direct
volume rendering. Colormapping [35], point-displacement [10, 11],
animation [24], and glyphs [14] are a few of the techniques to encode
quantified uncertainty into visualization.

3 TOPOLOGICAL DECIDERS FOR THE MS ALGORITHM

In this section, we briefly describe the asymptotic, midpoint, and prob-
abilistic midpoint decider frameworks for topological ambiguity reso-

lution in the MS algorithm. Let (x,y) represent the cell domain, where
x ∈ [0,1] and y ∈ [0,1]. Let d00,d01,d10, and d11 denote the data values
at the cell corners. For the bilinear interpolation model, the data values
within a cell can be represented with the following hyperbolic equation:

dxy = a1x+a2y+a3xy+a4 (1)

Let s represent the data values at the intersection of asymptotes (saddle
points) of the equation of hyperbolae presented in Equation (1), and let
m represent data values at the midpoints of 2D cells. The values of s
and m can be derived using the following two equations [21, 27]:

s =
d01 ·d10 +d00 ·d11

d00 −d01 −d10 +d11
(2)

m =
d00 +d11 +d10 +d01

4
(3)

The asymptotic decider and the midpoint decider resolve ambiguous
isocontour topology by investigating values of the variables s and m,
respectively (section 17.4.1, [21])

The probabilistic midpoint decider (section 3.3, [3]) resolves topo-
logical ambiguities when sampled data is uncertain and data uncertainty
is characterized by noise distributions. The uncertainty in data values
at the position (x,y) is represented by a random variable Dxy. Thus,
the random variable corresponding to the midpoint of a 2D cell can be
represented as M = D0.5,0.5. For the independent noise assumption, the
density of M is computable in closed form through the convolution of
densities at the cell vertices. The density of the random variable M can
be leveraged to probabilistically decide the isocontour topology.

4 PROBLEM DESCRIPTION

The noise in data values at the cell vertices introduces uncertainty in
the values attained by the saddle points of the bilinear interpolant for
(unknown) groundtruth data. We represent a random variable S to
denote the variations in the saddle values for an uncertain 2D cell. A
range of the values for the random variable S can be derived using the
following formula:

S =
D01 ·D10 +D00 ·D11

D00 −D01 −D10 +D11
(4)

For the isovalue k, the topological ambiguity can be resolved by comput-
ing the most frequent sign attained by the saddle points for an uncertain
cell. We presume that the saddle points for an uncertain cell are the
proper positions for investigating data to decide topology because of the
constant choice of the interpolation model (bilinear) for all realizations
of uncertain data. Mathematically, we compute the probability that the
saddle values for an uncertain 2D cell are less than k:

Pr(S < k) = Pr(
D01 ·D10 +D00 ·D11

D00 −D01 −D10 +D11
< k) (5)

If Pr(S < k) > 0.5, the most probable sign for the saddle point of
the groundtruth data is presumed to be negative and vice versa. We
name this decision framework the probabilistic asymptotic decider. We
rewrite Equation (5) in terms of two new random variables P and Q,
where each random variable represents a combination of the sum and
the product of the random variables Dxy at the cell corners:

Pr(S < k)
= Pr(D01 ·D10 +D00 ·D11 < k · (D00 −D01 −D10 +D11))

= Pr(D01 ·D10 +D00 ·D11 − k · (D00 −D01 −D10 +D11)< 0)
= Pr(D01 ·D10 + k · (D01 +D10)+D00 ·D11 − k · (D00 +D11)< 0)

= Pr(S′ = P+Q < 0),where
P := D01 ·D10 + k · (D01 +D10)

Q := D00 ·D11 − k · (D00 +D11) (6)

In a similar manner, the decision framework for the probabilistic mid-
point decider can be modeled by turning each quantity in Equation (3)
into a random variable:

Pr(M < k) = Pr(
D01 +D10 +D00 +D11

4
< k)

= Pr(M′ = D01 +D10 +D00 +D11 −4k < 0)
(7)

5 SADDLE VALUE DENSITY FOR AN UNCERTAIN CELL

In this section, we present an analytic derivation for computing Pr(S <
k) =Pr(S′ =P+Q< 0) (Equation (6)). The topological decision of the
probabilistic asymptotic decider depends upon the value of Pr(S < k),
as described in section 4. The steps for computing Pr(S < k) are
depicted in Figure 2. The approach consists of three primary steps.
First, we compute the probability densities pdfP(p) and pdfQ(q) for the
independent random variables P and Q, respectively. The independent
computation of pdfP(p) and pdfQ(q) is shown by the two columns of
Figure 2 separated by a dotted vertical line. Second, the density of a
random variable S′ is computed through convolution of the densities
pdfP(p) and pdfQ(q) computed in step one since S′ = P+Q. Lastly,
the density pdfS′(s′) is integrated to evaluate Pr(S′ < 0), which is
equivalent to computing Pr(S < k) (Equation (6)).

Fig. 2: The steps for computing Pr(S < k). Step 1: Computation
of the densities pdfP(p) and pdfQ(q). Both densities are computed
independently, as indicated by the two columns separated by a dotted
vertical line. The dotted blocks denote the temporary renaming of
variables. Step 2: Computation of pdfS′(s′). Step 3: Computation of
Pr(S′ = P+Q < 0).

We provide a closed-form derivation of step 1, i.e, the computation
pdfP(p) and pdfQ(q) in sections 5.1 (uniform noise) and 5.2 (non-
parametric noise). We show only the derivation for the computation of
pdfP(p) (the left column in Figure 2) because pdfQ(q) (the right column
in Figure 2) is derived using a similar approach. A short description of
steps 2 and 3 is provided in section 5.3.

5.1 Formulation of pdfP(p) Assuming Uniform Noise

Initially, we derive the cumulative density function of a random variable
P, cdfP(p). The process is depicted in the left column of Figure 2. The
pdfP(p) is obtained by taking the derivative of cdfP(p) with respect to
variable p. The cumulative density function of a random variable P can
be represented as:
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cdfP(p) = Pr(P ≤ p)
= Pr(D01 ·D10 + k · (D01 +D10)≤ p) (8)

For simplicity of discussion, we rename the variables D01 and D10 as
X and Y , respectively. The temporary renaming of random variables
is indicated by the dotted blocks in Figure 2. Equation (8) can be
alternatively written as follows:

cdfP(p) = Pr(P ≤ p)
= Pr(XY + k(X +Y )≤ p)
= Pr(XY + kX + kY ≤ p)
= Pr(XY + kY ≤ p− kX)

= Pr(Y ≤ p− kX
k+X

)

= Pr(Y ≤ R),where R =
p− kX
k+X

(9)

Thus, the computation of Pr(Y ≤ R) is equivalent to computing cdfP(p).
We show the analytic formulation of Pr(Y ≤ R) when random variables
X and Y are uniformly distributed. Let X ∼ U(a,b) and Y ∼ U(c,d).
For both uniform distributions, we assume a < b and c < d. We break
down the formulation of Pr(Y ≤R) into two steps. First, the distribution
of a ratio random variable R = p−kX

k+X , pdfR(r), is derived analytically.
The second step uses pdfR(r) computed in the first step to evaluate
Pr(Y ≤ R) in closed form. The computation of pdfR(r) is indicated
on arrows in Figure 2 since it is fed as input for the computation of
Pr(Y ≤ R).

5.1.1 Step 1: Formulation of pdfR(r)
We use the concept of ratio distribution [2] for the formulation of
pdfR(r). Let R = R1

R2
, where R1 = p− kX and R2 = k+X . We break

down the computation of pdfR(r) into three parts. First, we compute
the joint density of R1 and R2. In the second part, the cumulative
density cdfR(r) is computed from the joint density computed in the part
one. Last, pdfR(r) is computed by taking the derivative of cdfR(r) with
respect to r.

Fig. 3: The ratio distribution of random variable R = p−kX
k+X . The

tilted solid line depicts the support of the joint distribution of random
variables R1 and R2. The cumulative density function cdfR(r) is pro-
portional to the length of the line segment bounded by the point I and
the endpoint end2 on which R ≤ r.

We initially describe an approach for computing the joint density
of random variables R1 and R2, as depicted in Figure 3. For axis R1,
p−kb < p−ka or p−ka < p−kb depending upon the isovalue k. On
the contrary, the order of the quantities k+a and k+b on the axis R2
does not depend upon the isovalue k, and in all cases k+ a < k+ b
since a < b. For now, let p− kb < p− ka on the axis R1. The support
of the joint density of random variables R1 and R2 is a line since both

Fig. 4: Monte Carlo (left) vs analytic computation (right) of pdfR(r).

random variables depend only on X . In Figure 3, the tilted solid line
segment between points end1 and end2 denotes the support of the joint
density of R1 and R2. Throughout this paper, end1 and end2 indicate
the positions (k+a, p−ka) and (k+b, p−kb), respectively. Also, note
that the height of the joint density at all points between end1 and end2
is constant since X assumes a uniform distribution.

Next, we derive cdfR(r). The cumulative density can be computed
by sweeping the dotted line R1

R2
= r depicted in Figure 3 from r =−∞

to r = ∞. For the specific value of r, cdfR(r) is an integral of the joint
density of variables R1 and R2, where R = R1

R2
≤ r. For example, for the

dotted line shown in Figure 3, the line segment (I = ( k2+p
k+r ,

r(k2+p)
k+r ),

end2) represents a portion of the joint density of R1 and R2 where
R1
R2

≤ r. Thus, cdfR(r) can be computed by finding the length of the line
segment (I, end2) and dividing it by the total length of a line segment
(end1, end2).

Lastly, pdfR(r) is obtained by taking the derivative of cdfR(r) with
respect to r. For uniformly distributed random variable X , the proba-
bility density of a random variable R = p−kX

k+X , in closed form, is given
by:

pdfR(r) =
k2 + p

(k+ r)2(b−a)
(10)

Figure 4 shows a sample result for the closed-form computation of
pdfR(r). For the result presented, X ∼U(2,4), the isovalue k is 4, and
p is chosen as 40. The same shapes of Monte Carlo simulations and
the analytical formulation validate the derivation of pdfR(r).

The approach presented for computation of pdfR(r) is applicable
when the support of the joint density of R1 and R2 lies in any of the
four quadrants or spans multiple quadrants. For the quadrants other
than the first quadrant, the distribution function pdfR(r) stays the same;
however, the domain of pdfR(r) can be finite and continuous or infinite
and discontinuous. Figure 5 illustrates the two cases. In Figure 5a,
the support of the joint density of R1 and R2 spans the second and
the third quadrants. In this case, the domain of pdfR(r) is finite and
continuous, where r ∈ [end1,end2]. Here, r ∈ [end1,end2] indicates
that the ratio r lies between the slopes for the points end1 and end2.
In Figure 5b, the support of the joint density of R1 and R2 spans the

(a) Finite continuous domain (b) Infinite discontinuous domain

Fig. 5: The domain of pdfR(r): (a) r ∈ [end1,end2]. (b) r ∈
[−∞,end1]∪ [end2,∞]. The domain of integration in both cases can be
interpreted by finding the slopes of the dotted line for which it intersects
the tilted solid line, as the slope is varied from −∞ to ∞.

first, second, and fourth quadrants. In this case, the domain of pdfR(r)
is infinite and discontinuous, where r ∈ [−∞,end1]∪ [end2,∞]. We
tabulate the domain of integration of cdfR(r) for all quadrant cases in
the supplementary material.

5.1.2 Step 2: Formulation of Pr(Y ≤ R)

In this section, we derive Pr(Y ≤ R) in closed form using pdfR(r) for-
mulated in step 1. Pr(Y ≤ R) is equivalent to computing the cumulative
distribution function of a random variable P = kX +kY +XY (Equation
(9) and Figure 2 (left column)). We present the derivation of Pr(Y ≤ R)
for two cases, specifically when the domain of pdfR(r) is either finite
or infinite, as illustrated in Figure 5.

(a) Domain of pdfR(r) is finite and continuous.

(b) Domain of pdfR(r) is infinite and discontinuous

Fig. 6: The joint density of random variables Y and R assuming the
uniform noise model. In both subfigures, the distribution is bounded
on the Y axis in the range [c,d]. In subfigure (a), the distribution along
the R axis is bounded between [ p−kb

k+b , p−ka
k+a ]. In subfigure (b), the

distribution along the R axis is in the range [−∞, p−kb
k+b ]∪ [ p−ka

k+a ,∞]. In
the blue regions, Y ≤ R at any position R = r1 (illustrated by the purple
line), and brown highlights the domain of integration for computing
Pr(Y ≤ R).

To compute Pr(Y < R), we again find the joint density of random
variables Y and R. Figure 6a illustrates the joint density of random
variables Y and R when R is finite and continuous, and Figure 6b
illustrates the joint density when R is infinite and discontinuous. The
joint density is a product of distributions pdfY(y) and pdfR(r) since
random variables Y and R are independent. The support of the joint
density is a rectangle. The rectangle is bounded by the range [c,d]
along the Y axis, and the range [ p−kb

k+b , p−ka
k+a ] along the R axis. Note

that c < d, but the order of p−kb
k+b and p−ka

k+a is interchangeable for the
axis R depending upon the signs of p, k, a, and b.

Having computed the joint density of random variables Y and R, we
take a two-step approach for evaluating Pr(Y ≤ R). First, we find the
positions where Y ≤ R. Second, we integrate the joint density of Y and

R at positions where Y ≤ R. The blue region highlighted in Figure 6
represents the half space generated by line Y

R = 1 and indicates positions
where Y ≤ R at any position R = r1. For example, the position R = r1
is indicated by a purple line in Figure 6, and every point on the purple
line has Y ≤ r1. The domain of integration to compute Pr(Y ≤ R) is the
intersection of the blue region and the support of the joint distribution
of Y and R. The domain of integration is highlighted in brown.

The joint density of Y and R is integrated over the brown regions
in Figure 6a to obtain the closed-form formulation of Pr(Y ≤ R). In
Figure 6a, Pr(Y < R) can be computed using a double integration over
the brown area as follows:

Pr(Y ≤ R) =
∫ r= p−ka

k+a

r= p−kb
k+b

∫ y=r

y=c
pdfY(y) ·pdfR(r)dydr (11)

We substitute pdfY(y) = 1
d−c and pdfR(r) derived in Equation (10)

into Equation (11). The substitution simplifies the double integration
into a single integration as:

Pr(Y ≤ R) =
∫ r= p−ka

k+a

r= p−kb
k+b

r− c
d − c

· k2 + p
(k+ r)2(b−a)

dr

In Figure 6b, Pr(Y < R) can be computed as a sum of three double
integrations over the brown area:

Pr(Y ≤ R) =
∫ r= p−kb

k+b

r=c

∫ y=r

y=c
pdfY(y) ·pdfR(r)dydr

+
∫ r=d

r= p−ka
k+a

∫ y=r

y=c
pdfY(y) ·pdfR(r)dydr

+
∫ r=∞

r=d

∫ y=d

y=c
pdfY(y) ·pdfR(r)dydr (12)

Although the limits of the last integral in Equation 12 contain ∞, it is
computable in closed form. A single integral corresponding to the third
double integral in Equation 12 after substitution of pdfY(y) and pdfR(r)
is:

Pr(Y ≤ R) =
∫ r=∞

r=d

k2 + p
(k+ r)2(b−a)

dr (13)

The integration in Equation (13) is an inverse function of r, specifically
k2+p

(k+r)(a−b) . Thus, the integration value goes to zero in the limit when
r = ∞. Thus, the computation of Pr(Y ≤ R) can be obtained in closed
form even if the domain of R is infinite. We tabulate the cases for the
domain of integration of cdfP(p) in the supplementary material when
the support of the joint density of Y and R is finite or infinite. Having
computed cdfP(p) = Pr(Y ≤ R) (Equation (9)), we take the derivative
of cdfP(p) with respect to p to compute pdfP(p).

5.2 Formulation of pdfP(p) Assuming Nonparametric Noise
The kernel density estimation for a random variable X is mathematically
represented as:

pdfX(x) =
1
n

i=n

∑
i=1

Kh(x− xi),where

n = Number of kernels
h = Bandwidth

Kh(x− xi) = Kernel of width h centered at xi

(14)

Equation (14) represents a uniform noise model when n = 1 and the ker-
nel is uniform. When n > 1, we repeat the steps described in subsection
5.1 for computing pdfP(p).
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cdfP(p) = Pr(P ≤ p)
= Pr(D01 ·D10 + k · (D01 +D10)≤ p) (8)

For simplicity of discussion, we rename the variables D01 and D10 as
X and Y , respectively. The temporary renaming of random variables
is indicated by the dotted blocks in Figure 2. Equation (8) can be
alternatively written as follows:

cdfP(p) = Pr(P ≤ p)
= Pr(XY + k(X +Y )≤ p)
= Pr(XY + kX + kY ≤ p)
= Pr(XY + kY ≤ p− kX)

= Pr(Y ≤ p− kX
k+X

)

= Pr(Y ≤ R),where R =
p− kX
k+X

(9)

Thus, the computation of Pr(Y ≤ R) is equivalent to computing cdfP(p).
We show the analytic formulation of Pr(Y ≤ R) when random variables
X and Y are uniformly distributed. Let X ∼ U(a,b) and Y ∼ U(c,d).
For both uniform distributions, we assume a < b and c < d. We break
down the formulation of Pr(Y ≤R) into two steps. First, the distribution
of a ratio random variable R = p−kX

k+X , pdfR(r), is derived analytically.
The second step uses pdfR(r) computed in the first step to evaluate
Pr(Y ≤ R) in closed form. The computation of pdfR(r) is indicated
on arrows in Figure 2 since it is fed as input for the computation of
Pr(Y ≤ R).

5.1.1 Step 1: Formulation of pdfR(r)
We use the concept of ratio distribution [2] for the formulation of
pdfR(r). Let R = R1

R2
, where R1 = p− kX and R2 = k+X . We break

down the computation of pdfR(r) into three parts. First, we compute
the joint density of R1 and R2. In the second part, the cumulative
density cdfR(r) is computed from the joint density computed in the part
one. Last, pdfR(r) is computed by taking the derivative of cdfR(r) with
respect to r.

Fig. 3: The ratio distribution of random variable R = p−kX
k+X . The

tilted solid line depicts the support of the joint distribution of random
variables R1 and R2. The cumulative density function cdfR(r) is pro-
portional to the length of the line segment bounded by the point I and
the endpoint end2 on which R ≤ r.

We initially describe an approach for computing the joint density
of random variables R1 and R2, as depicted in Figure 3. For axis R1,
p−kb < p−ka or p−ka < p−kb depending upon the isovalue k. On
the contrary, the order of the quantities k+a and k+b on the axis R2
does not depend upon the isovalue k, and in all cases k+ a < k+ b
since a < b. For now, let p− kb < p− ka on the axis R1. The support
of the joint density of random variables R1 and R2 is a line since both

Fig. 4: Monte Carlo (left) vs analytic computation (right) of pdfR(r).

random variables depend only on X . In Figure 3, the tilted solid line
segment between points end1 and end2 denotes the support of the joint
density of R1 and R2. Throughout this paper, end1 and end2 indicate
the positions (k+a, p−ka) and (k+b, p−kb), respectively. Also, note
that the height of the joint density at all points between end1 and end2
is constant since X assumes a uniform distribution.

Next, we derive cdfR(r). The cumulative density can be computed
by sweeping the dotted line R1

R2
= r depicted in Figure 3 from r =−∞

to r = ∞. For the specific value of r, cdfR(r) is an integral of the joint
density of variables R1 and R2, where R = R1

R2
≤ r. For example, for the

dotted line shown in Figure 3, the line segment (I = ( k2+p
k+r ,

r(k2+p)
k+r ),

end2) represents a portion of the joint density of R1 and R2 where
R1
R2

≤ r. Thus, cdfR(r) can be computed by finding the length of the line
segment (I, end2) and dividing it by the total length of a line segment
(end1, end2).

Lastly, pdfR(r) is obtained by taking the derivative of cdfR(r) with
respect to r. For uniformly distributed random variable X , the proba-
bility density of a random variable R = p−kX

k+X , in closed form, is given
by:

pdfR(r) =
k2 + p

(k+ r)2(b−a)
(10)

Figure 4 shows a sample result for the closed-form computation of
pdfR(r). For the result presented, X ∼U(2,4), the isovalue k is 4, and
p is chosen as 40. The same shapes of Monte Carlo simulations and
the analytical formulation validate the derivation of pdfR(r).

The approach presented for computation of pdfR(r) is applicable
when the support of the joint density of R1 and R2 lies in any of the
four quadrants or spans multiple quadrants. For the quadrants other
than the first quadrant, the distribution function pdfR(r) stays the same;
however, the domain of pdfR(r) can be finite and continuous or infinite
and discontinuous. Figure 5 illustrates the two cases. In Figure 5a,
the support of the joint density of R1 and R2 spans the second and
the third quadrants. In this case, the domain of pdfR(r) is finite and
continuous, where r ∈ [end1,end2]. Here, r ∈ [end1,end2] indicates
that the ratio r lies between the slopes for the points end1 and end2.
In Figure 5b, the support of the joint density of R1 and R2 spans the

(a) Finite continuous domain (b) Infinite discontinuous domain

Fig. 5: The domain of pdfR(r): (a) r ∈ [end1,end2]. (b) r ∈
[−∞,end1]∪ [end2,∞]. The domain of integration in both cases can be
interpreted by finding the slopes of the dotted line for which it intersects
the tilted solid line, as the slope is varied from −∞ to ∞.

first, second, and fourth quadrants. In this case, the domain of pdfR(r)
is infinite and discontinuous, where r ∈ [−∞,end1]∪ [end2,∞]. We
tabulate the domain of integration of cdfR(r) for all quadrant cases in
the supplementary material.

5.1.2 Step 2: Formulation of Pr(Y ≤ R)

In this section, we derive Pr(Y ≤ R) in closed form using pdfR(r) for-
mulated in step 1. Pr(Y ≤ R) is equivalent to computing the cumulative
distribution function of a random variable P = kX +kY +XY (Equation
(9) and Figure 2 (left column)). We present the derivation of Pr(Y ≤ R)
for two cases, specifically when the domain of pdfR(r) is either finite
or infinite, as illustrated in Figure 5.

(a) Domain of pdfR(r) is finite and continuous.

(b) Domain of pdfR(r) is infinite and discontinuous

Fig. 6: The joint density of random variables Y and R assuming the
uniform noise model. In both subfigures, the distribution is bounded
on the Y axis in the range [c,d]. In subfigure (a), the distribution along
the R axis is bounded between [ p−kb

k+b , p−ka
k+a ]. In subfigure (b), the

distribution along the R axis is in the range [−∞, p−kb
k+b ]∪ [ p−ka

k+a ,∞]. In
the blue regions, Y ≤ R at any position R = r1 (illustrated by the purple
line), and brown highlights the domain of integration for computing
Pr(Y ≤ R).

To compute Pr(Y < R), we again find the joint density of random
variables Y and R. Figure 6a illustrates the joint density of random
variables Y and R when R is finite and continuous, and Figure 6b
illustrates the joint density when R is infinite and discontinuous. The
joint density is a product of distributions pdfY(y) and pdfR(r) since
random variables Y and R are independent. The support of the joint
density is a rectangle. The rectangle is bounded by the range [c,d]
along the Y axis, and the range [ p−kb

k+b , p−ka
k+a ] along the R axis. Note

that c < d, but the order of p−kb
k+b and p−ka

k+a is interchangeable for the
axis R depending upon the signs of p, k, a, and b.

Having computed the joint density of random variables Y and R, we
take a two-step approach for evaluating Pr(Y ≤ R). First, we find the
positions where Y ≤ R. Second, we integrate the joint density of Y and

R at positions where Y ≤ R. The blue region highlighted in Figure 6
represents the half space generated by line Y

R = 1 and indicates positions
where Y ≤ R at any position R = r1. For example, the position R = r1
is indicated by a purple line in Figure 6, and every point on the purple
line has Y ≤ r1. The domain of integration to compute Pr(Y ≤ R) is the
intersection of the blue region and the support of the joint distribution
of Y and R. The domain of integration is highlighted in brown.

The joint density of Y and R is integrated over the brown regions
in Figure 6a to obtain the closed-form formulation of Pr(Y ≤ R). In
Figure 6a, Pr(Y < R) can be computed using a double integration over
the brown area as follows:

Pr(Y ≤ R) =
∫ r= p−ka

k+a

r= p−kb
k+b

∫ y=r

y=c
pdfY(y) ·pdfR(r)dydr (11)

We substitute pdfY(y) = 1
d−c and pdfR(r) derived in Equation (10)

into Equation (11). The substitution simplifies the double integration
into a single integration as:

Pr(Y ≤ R) =
∫ r= p−ka

k+a

r= p−kb
k+b

r− c
d − c

· k2 + p
(k+ r)2(b−a)

dr

In Figure 6b, Pr(Y < R) can be computed as a sum of three double
integrations over the brown area:

Pr(Y ≤ R) =
∫ r= p−kb

k+b

r=c

∫ y=r

y=c
pdfY(y) ·pdfR(r)dydr

+
∫ r=d

r= p−ka
k+a

∫ y=r

y=c
pdfY(y) ·pdfR(r)dydr

+
∫ r=∞

r=d

∫ y=d

y=c
pdfY(y) ·pdfR(r)dydr (12)

Although the limits of the last integral in Equation 12 contain ∞, it is
computable in closed form. A single integral corresponding to the third
double integral in Equation 12 after substitution of pdfY(y) and pdfR(r)
is:

Pr(Y ≤ R) =
∫ r=∞

r=d

k2 + p
(k+ r)2(b−a)

dr (13)

The integration in Equation (13) is an inverse function of r, specifically
k2+p

(k+r)(a−b) . Thus, the integration value goes to zero in the limit when
r = ∞. Thus, the computation of Pr(Y ≤ R) can be obtained in closed
form even if the domain of R is infinite. We tabulate the cases for the
domain of integration of cdfP(p) in the supplementary material when
the support of the joint density of Y and R is finite or infinite. Having
computed cdfP(p) = Pr(Y ≤ R) (Equation (9)), we take the derivative
of cdfP(p) with respect to p to compute pdfP(p).

5.2 Formulation of pdfP(p) Assuming Nonparametric Noise
The kernel density estimation for a random variable X is mathematically
represented as:

pdfX(x) =
1
n

i=n

∑
i=1

Kh(x− xi),where

n = Number of kernels
h = Bandwidth

Kh(x− xi) = Kernel of width h centered at xi

(14)

Equation (14) represents a uniform noise model when n = 1 and the ker-
nel is uniform. When n > 1, we repeat the steps described in subsection
5.1 for computing pdfP(p).
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5.2.1 Step 1: Formulation of pdfR(r)
Let n1 denote the number of kernels in nonparametric density pdfX(x),
and let cdfRki(r) denote the cumulative density function for the i’th
kernel ki in pdfX(x). Then cdfR(r) is a sum of the cumulative density
functions computed over all base kernels of pdfX(x). Mathematically,

cdfR(r) = 1/n1

i=n1

∑
i=1

cdfRki(r) (15)

For example, consider Figure 7a for the computation of cdfR(r). Sup-
pose pdfX(x) has a kernel count of n1 = 2 and pdfY(y) has a kernel
count of n2 = 2. Let the base kernel for both nonparametric distribu-
tions be uniform. Let k1 and k2 denote base uniform kernels of pdfX(x).
In Figure 7a, the two solid lines indicate the domain of integration for
kernels k1 and k2 in order to compute cdfR(r). We process each line
individually using the approach in section 5.1.1 to compute cdfRki and
sum the cumulative density over all kernels, as presented in Equation
(15). The derivative of Equation (15) with respect to r gives us pdfR(r).

5.2.2 Step 2: Formulation of Pr(Y ≤ R)
We compute Pr(Y ≤ R) by finding the joint distribution of random
variables Y and R. As Y and R are independent, the joint density of Y

(a) cdfR(r)

(b) cdfP(p)

Fig. 7: Computation of PdfP(p) for nonparametric models when the
number of base kernels in pdfX(x) and pdfY(y) is two. (a) The joint
density of R1 = p− kX and R2 = k+X . The two solid lines represent
the joint density for two kernels (k1 and k2) of nonparametric density
pdfX(x). (b) The joint density of random variables Y and R. Two
kernels of pdfY(y) are in the range [c1,d1] and [c2,d2]. pdfR(r) varies
for kernels k1 and k2 of pdfX(x) in ranges [r1k1,r2k1] and [r1k2,r2k2],
respectively. The four rectangles depict the joint density for each pair
of ranges of Y and R. The rectangles for ranges [c1,d1] and [c2,d2] are
colored in red and green, respectively. In the blue regions, Y ≤ R at
any position R = r. Brown and orange together highlight the domain
of integration for computing Pr(Y ≤ R). Orange denotes the regions
where the rectangles of the joint density overlap.

and R is the product of pdfY(y) and pdfR(r):

Pr(Y = y,R = r) =
1

n1 ·n2

i=n2

∑
i=1

K(y− yi) ·
j=n1

∑
j=1

pdfRkj(r),where

(16)

Equation (16) can be expanded as the sum of the product of densities
for each pair of ranges of random variables Y and R. Thus, the compu-
tational complexity of (16) is quadratic to the number of kernels. For
example, in Figure 7b, the joint density of Y and R is depicted for a
range of R corresponding to Figure 7a. The joint density of Y and R
shown in Figure 7b is a superimposition of four rectangles. The base
kernels of pdfY(y) vary in the ranges [c1,d1] and [c2,d2]. The pdfR(r)
for kernels k1 and k2 varies in ranges [r1k1,r2k1] and [r1k2,r2k2], re-
spectively. Blue denotes the region where Y ≤ R for any R = r. Brown
and orange regions together highlight the domain of integration for
the computation of Pr(Y ≤ R). Orange indicates areas of overlap be-
tween rectangles of the joint densities of Y and R, and hence, higher
probability.

The results of the nonparametric density estimation have a relatively
higher sensitivity to the choice of the bandwidth h than the choice of
the kernel [3,18]. We use Silverman’s rule of thumb [37] for bandwidth
estimation of a uniform kernel. The formula for the bandwidth of a
uniform kernel using Silverman’s rule of thumb (appendix, [3]) is:

h = (4.51/5)(
3
8

π−1/2σ−5)−1/5n−1/5

5.3 Formulation of pdfS′(s′) and pdfM′(m′)

In subsections 5.1 and 5.2, we derived density pdfP(p) in closed form
for uniform and nonparametric noise models, respectively. We show
the derivation when random variable P takes the form P = kX + kY +
XY . We similarly compute the density of a random variable Q, which
takes the form Q = −kX − kY +XY (the right column in Figure 2),
in which we flip the sign of the isovalue k. Variables P and Q in
Equation (6) are independent. Thus, the density of a random variable
S′ introduced in Equation (6) can be computed through convolution of
the densities of random variables P and Q (step 2 in Figure 2). The
density function pdfM′(m) of a random variable M′ corresponding to the
probabilistic midpoint decider (Equation (7)) can be obtained through
the convolution of densities at the cell vertices (section 3) since we
assume an independent noise model. The topological ambiguity can be
probabilistically resolved by slicing pdfS′(s′) and pdfM′(m′) at 0 (step
3 in Figure 2).

6 RESULTS AND DISCUSSION

We design three experiments to validate and demonstrate the effective-
ness of the proposed methods. In the first experiment, we confirm the
correctness of the derivation for density computation of saddle values
for an uncertain 2D cell described in section 5 for uniform and non-
parametric noise assumptions. The results shown in Figure 8 validate
the correctness of the derivation. In the second experiment, we demon-
strate the higher decision accuracy and stability of the probabilistic
asymptotic decider in uncertain data for deciding the contour topology
when compared to the other decision frameworks. We support our
claim of the higher reliability of the probabilistic asymptotic decider
in uncertain data by presenting the results for the synthetic datasets in
Figures 1, 9, 10, and 11. In the last experiment, we visualize the results
for the real datasets in Figure 12.

6.1 Probabilistic Asymptotic Decider for an Uncertain Cell
A topological ambiguity resolution for a 2D cell is illustrated for the
uniform noise model in the top row of Figure 8. The uniform noise
at the cell vertices is modeled by random variables D00 ∼ U(9,11),
D01 ∼U(−2,2), D10 ∼U(1,3), and D11 ∼U(6,7). For the isovalue
k = 4.5, the most probable signs of random variables D01 and D10
are negative, whereas the most probable signs of random variables

I. Monte Carlo vs analytic density
for pdfP(p)

II. Monte Carlo vs analytic density
for pdfQ(q)

III. Probabilistic asymptotic decider vs probabilistic midpoint
decider

(a) Uniform Noise

I. Monte Carlo vs analytic density
for pdfP(p)

II. Monte Carlo vs analytic density
for pdfQ(q)

III. Probabilistic asymptotic decider vs probabilistic midpoint
decider

(b) Nonparametric Noise

Fig. 8: Topological ambiguity resolution for a 2D uncertain cell using probabilistic decision frameworks. In the left two columns, the similar
shapes of the distributions for the Monte Carlo simulations and the analytical approach confirm the correctness of the derivations in sections 5.1
and 5.2. The right column illustrates the inconsistency of the topological decisions for the probabilistic asymptotic and the probabilistic midpoint
deciders.

D00 and D11 are positive. Therefore, the cell denotes an ambiguous
configuration. Figures 8a.I and 8a.II compare the results of the Monte
Carlo simulations and the analytic formulation for the densities pdfP(p)
and pdfQ(q), where P=D01 ·D10+k ·(D01+D10) and Q=D00 ·D11−
k · (D00 +D11) (Equation (6)). The analytic results are obtained using
a derivation in section 5.1 for the uniform noise models. The same
shapes for the densities of Monte Carlo sampling and the analytical
formulation confirm the correctness of the proposed derivation.

Figure 8a.III illustrates the inconsistency in the decisions of the
probabilistic asymptotic decider and the probabilistic midpoint decider.
pdfS′(s′) is computed by convolving the densities pdfP(p) and pdfQ(q)
(step 2 in Figure 2). The density pdfM′(m′) is computed by convolving
the densities of random variables D00, D01, D10, and D11. For the iso-
value k = 4.5, the most probable sign for the saddle point of the under-
lying bilinear interpolant is negative since Pr(S′ < 0) = 0.5187 > 0.5.
In the case of the probabilistic midpoint decider, the most probable sign
is positive since Pr(M′ < 0) = 0.3553 < 0.5. We also studied topolog-
ical decisions for the asymptotic and midpoint deciders in the mean
of uncertain data. However, the decisions for the asymptotic and the
midpoint deciders in the mean field are the same when compared with
the probabilistic asymptotic and the probabilistic midpoint deciders,
respectively, for the uniform noise assumption. The advantage of the
probabilistic asymptotic decider is evident when data noise is modeled
with nonparametric densities.

In Figure 8, the bottom row shows the results for the non-
parametric noise models. We describe the process for drawing
noise samples to show the advantage of nonparametric distributions
over uniform noise models. We draw noise samples close to a
user’s choice of the groundtruth value in addition to a few out-
lier samples. For example, if a user selects the groundtruth value
to be 1.5, then the sample array for this experiment looks like
[1.4,1.2,1.3,2.9]. Sample 2.9 is an outlier in this example. For the
results shown in Figure 8, we choose kernel densities at each cell
vertex, such that the kernel means for D00, D01, D10, and D11 are
positioned at [10,10.2,10.3,10.3,11], [−1,−1.1,−1.3,−0.8,−1.6],
[1,1.3,1.2,1.3,2.8], and [6,6.1,6.2,6.3,6.9], respectively. The iso-
value is k = 4.2. Our results show that the outliers can significantly
affect the mean of uncertain data, and hence, can result in misleading
interpretations. In contrast, the nonparametric densities show higher
resilience to the outliers. The bandwidth estimation for nonparametric
densities is performed using Silverman’s rule of thumb for the uniform
kernel, as described in the last paragraph of section 5.2.

In Figures 8b.I and 8b.II, the shapes of the densities for the Monte
Carlo simulations and the analytic formulation are the same for pdfP(p)
and pdfQ(q), which proves the correctness of the derivation described
in section 5.2. The nonparametric densities successfully capture the
multimodel behavior of probabilistic variations in the saddle values for
an uncertain cell. Figure 8b.III illustrates the inconsistency in topo-
logical decisions for the probabilistic asymptotic and the probabilistic
midpoint deciders. The probability of a negative sign for the saddle
point of the underlying bilinear interpolant is significantly different
when compared with the midpoint. Specifically, the probability of the
underlying saddle point being negative is 0.9175, and it is 0.3928 at
the midpoint for the isovalue k = 4.2.

(a) Bandwidth = b−0.1 (b) Bandwidth = b (c) Bandwidth = b+0.1

Fig. 9: The sensitivity of the decision probabilities to kernel bandwidth
for the data used in the result in 8b. The isovalue is k = 4. The variable
b denotes the bandwidth estimated using Silverman’s rule of thumb.

In Figure 9, we test the effect of the bandwidth estimation on the
saddle value probabilities for the data used in obtaining the results
in Figure 8b. A nonoptimal choice of bandwidth can result in under-
smoothing or oversmooting of kernel density estimates. Since decision
probabilities depend upon the evaluation of the integral Pr(S′ < 0),
the shape variations in distribution of S′ caused by the bandwidth vari-
ations do not severely affect the integral computation. For example,
for the variation of 0.1 in bandwidth b computed using Silverman’s
rule of thumb, the estimation of the saddle probabilities varied by ap-
proximately 0.02, as depicted in Figure 9. Thus, the decisions of the
probabilistic deciders are stable to the choice of the bandwidth for
nonparamtric density estimation.

In Figure 10, we study the inconsistency in topological decisions for
various decision frameworks as a function of isovalue k. We perform
the study on noise samples consisting of outliers, similar to the ones
used for obtaining the nonparametric density results in Figure 8b. The
left and right columns in Figure 10 resolve topological ambiguities
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5.2.1 Step 1: Formulation of pdfR(r)
Let n1 denote the number of kernels in nonparametric density pdfX(x),
and let cdfRki(r) denote the cumulative density function for the i’th
kernel ki in pdfX(x). Then cdfR(r) is a sum of the cumulative density
functions computed over all base kernels of pdfX(x). Mathematically,

cdfR(r) = 1/n1

i=n1

∑
i=1

cdfRki(r) (15)

For example, consider Figure 7a for the computation of cdfR(r). Sup-
pose pdfX(x) has a kernel count of n1 = 2 and pdfY(y) has a kernel
count of n2 = 2. Let the base kernel for both nonparametric distribu-
tions be uniform. Let k1 and k2 denote base uniform kernels of pdfX(x).
In Figure 7a, the two solid lines indicate the domain of integration for
kernels k1 and k2 in order to compute cdfR(r). We process each line
individually using the approach in section 5.1.1 to compute cdfRki and
sum the cumulative density over all kernels, as presented in Equation
(15). The derivative of Equation (15) with respect to r gives us pdfR(r).

5.2.2 Step 2: Formulation of Pr(Y ≤ R)
We compute Pr(Y ≤ R) by finding the joint distribution of random
variables Y and R. As Y and R are independent, the joint density of Y

(a) cdfR(r)

(b) cdfP(p)

Fig. 7: Computation of PdfP(p) for nonparametric models when the
number of base kernels in pdfX(x) and pdfY(y) is two. (a) The joint
density of R1 = p− kX and R2 = k+X . The two solid lines represent
the joint density for two kernels (k1 and k2) of nonparametric density
pdfX(x). (b) The joint density of random variables Y and R. Two
kernels of pdfY(y) are in the range [c1,d1] and [c2,d2]. pdfR(r) varies
for kernels k1 and k2 of pdfX(x) in ranges [r1k1,r2k1] and [r1k2,r2k2],
respectively. The four rectangles depict the joint density for each pair
of ranges of Y and R. The rectangles for ranges [c1,d1] and [c2,d2] are
colored in red and green, respectively. In the blue regions, Y ≤ R at
any position R = r. Brown and orange together highlight the domain
of integration for computing Pr(Y ≤ R). Orange denotes the regions
where the rectangles of the joint density overlap.

and R is the product of pdfY(y) and pdfR(r):

Pr(Y = y,R = r) =
1

n1 ·n2

i=n2

∑
i=1

K(y− yi) ·
j=n1

∑
j=1

pdfRkj(r),where

(16)

Equation (16) can be expanded as the sum of the product of densities
for each pair of ranges of random variables Y and R. Thus, the compu-
tational complexity of (16) is quadratic to the number of kernels. For
example, in Figure 7b, the joint density of Y and R is depicted for a
range of R corresponding to Figure 7a. The joint density of Y and R
shown in Figure 7b is a superimposition of four rectangles. The base
kernels of pdfY(y) vary in the ranges [c1,d1] and [c2,d2]. The pdfR(r)
for kernels k1 and k2 varies in ranges [r1k1,r2k1] and [r1k2,r2k2], re-
spectively. Blue denotes the region where Y ≤ R for any R = r. Brown
and orange regions together highlight the domain of integration for
the computation of Pr(Y ≤ R). Orange indicates areas of overlap be-
tween rectangles of the joint densities of Y and R, and hence, higher
probability.

The results of the nonparametric density estimation have a relatively
higher sensitivity to the choice of the bandwidth h than the choice of
the kernel [3,18]. We use Silverman’s rule of thumb [37] for bandwidth
estimation of a uniform kernel. The formula for the bandwidth of a
uniform kernel using Silverman’s rule of thumb (appendix, [3]) is:

h = (4.51/5)(
3
8

π−1/2σ−5)−1/5n−1/5

5.3 Formulation of pdfS′(s′) and pdfM′(m′)

In subsections 5.1 and 5.2, we derived density pdfP(p) in closed form
for uniform and nonparametric noise models, respectively. We show
the derivation when random variable P takes the form P = kX + kY +
XY . We similarly compute the density of a random variable Q, which
takes the form Q = −kX − kY +XY (the right column in Figure 2),
in which we flip the sign of the isovalue k. Variables P and Q in
Equation (6) are independent. Thus, the density of a random variable
S′ introduced in Equation (6) can be computed through convolution of
the densities of random variables P and Q (step 2 in Figure 2). The
density function pdfM′(m) of a random variable M′ corresponding to the
probabilistic midpoint decider (Equation (7)) can be obtained through
the convolution of densities at the cell vertices (section 3) since we
assume an independent noise model. The topological ambiguity can be
probabilistically resolved by slicing pdfS′(s′) and pdfM′(m′) at 0 (step
3 in Figure 2).

6 RESULTS AND DISCUSSION

We design three experiments to validate and demonstrate the effective-
ness of the proposed methods. In the first experiment, we confirm the
correctness of the derivation for density computation of saddle values
for an uncertain 2D cell described in section 5 for uniform and non-
parametric noise assumptions. The results shown in Figure 8 validate
the correctness of the derivation. In the second experiment, we demon-
strate the higher decision accuracy and stability of the probabilistic
asymptotic decider in uncertain data for deciding the contour topology
when compared to the other decision frameworks. We support our
claim of the higher reliability of the probabilistic asymptotic decider
in uncertain data by presenting the results for the synthetic datasets in
Figures 1, 9, 10, and 11. In the last experiment, we visualize the results
for the real datasets in Figure 12.

6.1 Probabilistic Asymptotic Decider for an Uncertain Cell
A topological ambiguity resolution for a 2D cell is illustrated for the
uniform noise model in the top row of Figure 8. The uniform noise
at the cell vertices is modeled by random variables D00 ∼ U(9,11),
D01 ∼U(−2,2), D10 ∼U(1,3), and D11 ∼U(6,7). For the isovalue
k = 4.5, the most probable signs of random variables D01 and D10
are negative, whereas the most probable signs of random variables

I. Monte Carlo vs analytic density
for pdfP(p)

II. Monte Carlo vs analytic density
for pdfQ(q)

III. Probabilistic asymptotic decider vs probabilistic midpoint
decider

(a) Uniform Noise

I. Monte Carlo vs analytic density
for pdfP(p)

II. Monte Carlo vs analytic density
for pdfQ(q)

III. Probabilistic asymptotic decider vs probabilistic midpoint
decider

(b) Nonparametric Noise

Fig. 8: Topological ambiguity resolution for a 2D uncertain cell using probabilistic decision frameworks. In the left two columns, the similar
shapes of the distributions for the Monte Carlo simulations and the analytical approach confirm the correctness of the derivations in sections 5.1
and 5.2. The right column illustrates the inconsistency of the topological decisions for the probabilistic asymptotic and the probabilistic midpoint
deciders.

D00 and D11 are positive. Therefore, the cell denotes an ambiguous
configuration. Figures 8a.I and 8a.II compare the results of the Monte
Carlo simulations and the analytic formulation for the densities pdfP(p)
and pdfQ(q), where P=D01 ·D10+k ·(D01+D10) and Q=D00 ·D11−
k · (D00 +D11) (Equation (6)). The analytic results are obtained using
a derivation in section 5.1 for the uniform noise models. The same
shapes for the densities of Monte Carlo sampling and the analytical
formulation confirm the correctness of the proposed derivation.

Figure 8a.III illustrates the inconsistency in the decisions of the
probabilistic asymptotic decider and the probabilistic midpoint decider.
pdfS′(s′) is computed by convolving the densities pdfP(p) and pdfQ(q)
(step 2 in Figure 2). The density pdfM′(m′) is computed by convolving
the densities of random variables D00, D01, D10, and D11. For the iso-
value k = 4.5, the most probable sign for the saddle point of the under-
lying bilinear interpolant is negative since Pr(S′ < 0) = 0.5187 > 0.5.
In the case of the probabilistic midpoint decider, the most probable sign
is positive since Pr(M′ < 0) = 0.3553 < 0.5. We also studied topolog-
ical decisions for the asymptotic and midpoint deciders in the mean
of uncertain data. However, the decisions for the asymptotic and the
midpoint deciders in the mean field are the same when compared with
the probabilistic asymptotic and the probabilistic midpoint deciders,
respectively, for the uniform noise assumption. The advantage of the
probabilistic asymptotic decider is evident when data noise is modeled
with nonparametric densities.

In Figure 8, the bottom row shows the results for the non-
parametric noise models. We describe the process for drawing
noise samples to show the advantage of nonparametric distributions
over uniform noise models. We draw noise samples close to a
user’s choice of the groundtruth value in addition to a few out-
lier samples. For example, if a user selects the groundtruth value
to be 1.5, then the sample array for this experiment looks like
[1.4,1.2,1.3,2.9]. Sample 2.9 is an outlier in this example. For the
results shown in Figure 8, we choose kernel densities at each cell
vertex, such that the kernel means for D00, D01, D10, and D11 are
positioned at [10,10.2,10.3,10.3,11], [−1,−1.1,−1.3,−0.8,−1.6],
[1,1.3,1.2,1.3,2.8], and [6,6.1,6.2,6.3,6.9], respectively. The iso-
value is k = 4.2. Our results show that the outliers can significantly
affect the mean of uncertain data, and hence, can result in misleading
interpretations. In contrast, the nonparametric densities show higher
resilience to the outliers. The bandwidth estimation for nonparametric
densities is performed using Silverman’s rule of thumb for the uniform
kernel, as described in the last paragraph of section 5.2.

In Figures 8b.I and 8b.II, the shapes of the densities for the Monte
Carlo simulations and the analytic formulation are the same for pdfP(p)
and pdfQ(q), which proves the correctness of the derivation described
in section 5.2. The nonparametric densities successfully capture the
multimodel behavior of probabilistic variations in the saddle values for
an uncertain cell. Figure 8b.III illustrates the inconsistency in topo-
logical decisions for the probabilistic asymptotic and the probabilistic
midpoint deciders. The probability of a negative sign for the saddle
point of the underlying bilinear interpolant is significantly different
when compared with the midpoint. Specifically, the probability of the
underlying saddle point being negative is 0.9175, and it is 0.3928 at
the midpoint for the isovalue k = 4.2.

(a) Bandwidth = b−0.1 (b) Bandwidth = b (c) Bandwidth = b+0.1

Fig. 9: The sensitivity of the decision probabilities to kernel bandwidth
for the data used in the result in 8b. The isovalue is k = 4. The variable
b denotes the bandwidth estimated using Silverman’s rule of thumb.

In Figure 9, we test the effect of the bandwidth estimation on the
saddle value probabilities for the data used in obtaining the results
in Figure 8b. A nonoptimal choice of bandwidth can result in under-
smoothing or oversmooting of kernel density estimates. Since decision
probabilities depend upon the evaluation of the integral Pr(S′ < 0),
the shape variations in distribution of S′ caused by the bandwidth vari-
ations do not severely affect the integral computation. For example,
for the variation of 0.1 in bandwidth b computed using Silverman’s
rule of thumb, the estimation of the saddle probabilities varied by ap-
proximately 0.02, as depicted in Figure 9. Thus, the decisions of the
probabilistic deciders are stable to the choice of the bandwidth for
nonparamtric density estimation.

In Figure 10, we study the inconsistency in topological decisions for
various decision frameworks as a function of isovalue k. We perform
the study on noise samples consisting of outliers, similar to the ones
used for obtaining the nonparametric density results in Figure 8b. The
left and right columns in Figure 10 resolve topological ambiguities
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Fig. 10: A comparison of the decision frameworks for resolving
topological ambiguities. The decision plots are a function of isovalue k.
1 and -1 indicate the positive and the negative decider signs, respectively.
The left and the right columns depict the topology by considering the
sign computed at the saddle point and the midpoint, respectively. The
top row shows the sign decisions for the groundtruth data. The top
left image is considered as the gold standard. The middle row shows
the decider signs for the probabilistic deciders in uncertain data along
with the confidence information. The confidence map is shown in pink.
The bottom row depicts topological decisions for the mean of uncertain
data. The probabilistic asymptotic decider (left image in the middle
row) is the most consistent with the gold standard when compared to
the other decision frameworks.

based on the signs derived at the cell saddle points and the midpoints,
respectively. The top row shows the variation in the decider sign for the
groundtruth data as a function of isovalue k. The groundtruth data was
chosen to be d00 = 10.1, , d01 = −1, d10 = 1.2, and d11 = 6.1. 200
equispaced k values were sampled from the range [3.5,4.7]. The data
values at the saddle point and midpoint are computed for each k using
Equations (2) and (3), respectively. The vertex sign at the saddle point
in the groundtruth data is considered as the gold standard.

The middle row shows the variation in the decider sign for uncertain
data computed using the probabilistic asymptotic decider (section 5)
and the probabilistic midpoint decider (section 3). The vertex signs
reported by the probabilistic asymptotic decider match closely with
the decisions for the gold standard, which illustrates the robustness
of the probabilistic asymptotic decider to noise or the outlier samples.
Moreover, the decisions of the probabilistic asymptotic decider can be
computed fast because of the proposed analytical derivation. The vertex
signs reported by the probabilistic midpoint decider are in disagreement
with the gold standard in the isovalue range k = [3.9,4.25]. The pink
plots represent confidence information regarding the decisions made
by the probabilistic deciders. Due to the uncertainty in the data, the
confidence value for the probabilistic asymptotic decider is the lowest
near k = 3.85 where the saddle point sign is flipped in the gold standard.
However, the confidence for the probabilistic midpoint decider is the
lowest near k = 4.25. The shift in k is because of the outlier samples.
The bottom row in Figure 10 plots decisions of the asymptotic decider
and the midpoint decider for the mean of the uncertain data. The
results again show the inconsistency in decisions with respect to the
gold standard in the approximate isovalue range k = [3.9,4.2]. The
inconsistencies in the results for the mean field are again due to a
significant shift in the mean caused by the outlier samples. Also, the
mean field technique does not provide any confidence information
regarding the vertex signs.

6.2 Visualization of an Uncertain Scalar Field Using the
Probabilistic Asymptotic Decider

We demonstrate the higher reconstruction accuracy of the probabilistic
asymptotic decider compared to the other decision frameworks through
an experiment on a synthetic dataset. We use the Blobs image shipped
with MATLAB as the groundtruth data. For the isovalue k = 0.49, the
image has 145 2D cells with ambiguous cell configurations. Figure

1a visualizes isocontours corresponding to two concentric circles in a
portion of the groundtruth image. The white areas represent the cells
with ambiguous topology for k = 0.49 in the MS algorithm, whereas
gray denotes cells without any topological ambiguity. To compare the
visualization performance of various decision frameworks, we inject
the groundtruth image with noise to create an ensemble representing
uncertain data. The noise samples are generated by following the same
process as for the nonparametric density results in Figure 8b. We
visualize the results of the comparison of various decision frameworks
in Figure 1.

In the first step for extracting isocontours from uncertain data, the
most probable vertex sign is determined at each cell vertex. We follow
the vertex-based classification approach (section 3.1, [3]) for closed-
form computation of the most probable signs for grid vertices. The
most probable vertex signs for the scalar grid decide whether the cell
topology is ambiguous or not. Note that the computation of the cell
configuration (ambiguous or not ambiguous) stays the same for all
decision frameworks in Figure 1 since all frameworks are tested on the
same ensemble data. The difference in isocontour topology in Figure 1
for various decider frameworks is because of their statistical properties.

For each cell with an ambiguous configuration, we make the topo-
logical decisions using three statistical frameworks, specifically the
asymptotic decider in the mean field (Figure 1b), the probabilistic mid-
point decider (Figure 1c), and our probabilistic asymptotic decider
(Figure 1d). In the results for the mean field, the isocontour breaks at
many positions because of the incorrect topological decisions for am-
biguous cells, where ambiguous cells are marked in white. Moreover,
the mean field result does not give any cues regarding confidence in the
topological decisions. The probabilistic midpoint decider [3] recovers
isocontours for the concentric circles reasonably well when compared
with the mean field result. Moreover, the probabilistic midpoint decider
allows us to encode confidence in the topological decision into the
visualization. In Figure 1c, the cells with relatively low confidence are
colored in red, whereas the cells with relatively high confidence are
colored in blue.

Although the reconstruction performance for the probabilistic mid-
point decider is better than the mean field decider, the reconstructed
isocontour contains a considerable number of holes. The isocontour
holes are prominent, especially in the regions of low confidence (red
cells). Figure 1d visualizes the result of the proposed probabilistic
asymptotic decider. The isocontours for the concentric circles are re-
covered considerably well when compared with the other two decision
frameworks. The isocontours for the probabilistic asymptotic decider
are recovered at all groundtruth positions except for two places: one
position on the southeast and one position on the west side of the
concentric isocontours. Moreover, the closed-form formulation of the
probabilistic asymptotic decider allows fast and accurate computation
of the probabilities as opposed to expensive Monte-Carlo simulations.

Figure 11 visualizes a comparison of the time complexity and the ac-
curacy of the probabilistic deciders for the uncertain Blobs dataset. The
results are taken by increasing the number of ensemble members from
five to 40 at intervals of five. The time complexity of the probabilistic
asymptotic decider (Figure 11a) grows quadratically with the number
of ensemble members/kernels, as we had anticipated from Equation
(16). The time complexity of the probabilistic midpoint decider is, how-

Fig. 11: The comparison of performance (left image) and topological
error (right image) for probabilistic deciders.

I. The probabilistic midpoint decider

II. The probabilistic asymptotic decider

(a) The temperature field

I. The probabilistic midpoint decider

II. The probabilistic asymptotic decider

(b) The velocity field for the Kàrmàn vortex street

Fig. 12: The visualization of the real datasets for the comparison of the probabilistic asymptotic decider and the probabilistic midpoint decider.
The dotted boxes colored in magenta mark positions with topological differences. Red denotes relatively low and blue denotes relatively high
confidence in the isocontour topology.

ever, constant since its computation consists of a single convolution
per cell, as described in section 3. Figure 11b plots the number of grid
cells where the topology for each of the probabilistic deciders differs
from the groundtruth topology. The topological inconsistency or the
topological error of the proposed probabilistic asymptotic decider is
lower than the probabilistic midpoint decider throughout. However, the
inconsistency in decisions converges as we get more samples from the
underlying distribution or for higher numbers of ensemble members.

In the last experiment, we compare the results of the probabilistic
deciders for the real datasets in Figure 12. Figure 12a visualizes isocon-
tour reconstruction in the temperature dataset. The temperature dataset
is courtesy of the DEMETER project [29]. The isocontours are visual-
ized in the temperature field for isovalue k = 10◦. The dataset consists
of nine ensemble simulations for 2-meter temperature data collected in
years 2000-02. We perform nonparametric density estimation and visu-
alize the results for the probabilistic asymptotic and the probabilistic
midpoint deciders. The positions of inconsistent topological decisions
for the two methods are indicated by the dotted boxes colored in ma-
genta. The cells with relatively low confidence in topology are colored
in red, whereas those with relatively high confidence in topology are
colored in blue.

Figure 12b visualizes the results similar to the temperature dataset
for flow simulations. We generate 15 simulations of the Kàrmàn vortex
street with Gerris [30]. All simulations were run for a fixed amount
of time with uncertain viscosity parameters (section 5.2, [12]). The
analysis of the Kàrmàn vortex street plays a critical role in engineering
applications, such as structural engineering [15]. The inconsistency in
isocontour reconstruction of the probabilistic deciders for the velocity
magnitude field of Kàrmàn vortex street is visualized in Figure 12b. In
the majority of cells, the probabilistic asymptotic decider resolves the
topology with the high confidence value, whereas the topological confi-
dence of the probabilistic midpoint decider seems to vary considerably
because of the outliers.

7 CONCLUSION AND FUTURE WORK

The asymptotic and the midpoint decider are standard techniques for
resolving topological ambiguities in the marching squares (MS) algo-
rithm. The issue of topological ambiguity escalates for uncertain data.
None of the existing work, to the best of our knowledge, has rigorously
analyzed topological ambiguity resolution in uncertain data. In our
contribution, we address the issue of ambiguity resolution in uncertain
data by proposing a closed-form statistical framework. We analytically
derive the density of the data values at the saddle points of uncertain

bilinear interpolation functions for the MS algorithm assuming uniform
and nonparametric noise models. The density formulation allows us
to decide topology probabilistically and efficiently when compared
to expensive Monte Carlo simulations. Our experiments show that
the probabilistic asymptotic decider framework is the most stable and
accurate when compared with other decision frameworks in uncertain
data. The probabilistic models allow us to quantify the confidence in
topological decisions and integrate it into the visualization.

The methods proposed in this paper are the building blocks for
studying the research question of topological ambiguity resolution in
the case of 3D isosurfaces. The probabilistic asymptotic decider can
be directly applied to resolve the face ambiguities for the marching
cubes algorithm. However, topological ambiguity resolution in 3D is a
complex problem, especially when a cell has more than one ambiguous
face. Accurate resolution of topological ambiguities for uncertain data
in 3D requires the study of the probabilistic variations in data at the
points in the interior of a 3D cell, e.g., body saddle points [26, 27].
As the next step of our work, we plan to study the question of density
characterization at the saddle points of uncertain trilinear interpolation
functions.

In the future, we also plan to take into account data correlation
and kernels other than the uniform kernel for deriving the closed-form
probabilistic asymptotic decider. The higher order kernels pose the
challenge of computing complex integrals. It would be interesting to
investigate the research question of probabilistic placement of saddle
points in uncertain cells. Finally, we would like to investigate the
impact of variations in data at the saddle points of uncertain fields in
visualization applications, such as contour trees and flow field topolo-
gies.
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Fig. 10: A comparison of the decision frameworks for resolving
topological ambiguities. The decision plots are a function of isovalue k.
1 and -1 indicate the positive and the negative decider signs, respectively.
The left and the right columns depict the topology by considering the
sign computed at the saddle point and the midpoint, respectively. The
top row shows the sign decisions for the groundtruth data. The top
left image is considered as the gold standard. The middle row shows
the decider signs for the probabilistic deciders in uncertain data along
with the confidence information. The confidence map is shown in pink.
The bottom row depicts topological decisions for the mean of uncertain
data. The probabilistic asymptotic decider (left image in the middle
row) is the most consistent with the gold standard when compared to
the other decision frameworks.

based on the signs derived at the cell saddle points and the midpoints,
respectively. The top row shows the variation in the decider sign for the
groundtruth data as a function of isovalue k. The groundtruth data was
chosen to be d00 = 10.1, , d01 = −1, d10 = 1.2, and d11 = 6.1. 200
equispaced k values were sampled from the range [3.5,4.7]. The data
values at the saddle point and midpoint are computed for each k using
Equations (2) and (3), respectively. The vertex sign at the saddle point
in the groundtruth data is considered as the gold standard.

The middle row shows the variation in the decider sign for uncertain
data computed using the probabilistic asymptotic decider (section 5)
and the probabilistic midpoint decider (section 3). The vertex signs
reported by the probabilistic asymptotic decider match closely with
the decisions for the gold standard, which illustrates the robustness
of the probabilistic asymptotic decider to noise or the outlier samples.
Moreover, the decisions of the probabilistic asymptotic decider can be
computed fast because of the proposed analytical derivation. The vertex
signs reported by the probabilistic midpoint decider are in disagreement
with the gold standard in the isovalue range k = [3.9,4.25]. The pink
plots represent confidence information regarding the decisions made
by the probabilistic deciders. Due to the uncertainty in the data, the
confidence value for the probabilistic asymptotic decider is the lowest
near k = 3.85 where the saddle point sign is flipped in the gold standard.
However, the confidence for the probabilistic midpoint decider is the
lowest near k = 4.25. The shift in k is because of the outlier samples.
The bottom row in Figure 10 plots decisions of the asymptotic decider
and the midpoint decider for the mean of the uncertain data. The
results again show the inconsistency in decisions with respect to the
gold standard in the approximate isovalue range k = [3.9,4.2]. The
inconsistencies in the results for the mean field are again due to a
significant shift in the mean caused by the outlier samples. Also, the
mean field technique does not provide any confidence information
regarding the vertex signs.

6.2 Visualization of an Uncertain Scalar Field Using the
Probabilistic Asymptotic Decider

We demonstrate the higher reconstruction accuracy of the probabilistic
asymptotic decider compared to the other decision frameworks through
an experiment on a synthetic dataset. We use the Blobs image shipped
with MATLAB as the groundtruth data. For the isovalue k = 0.49, the
image has 145 2D cells with ambiguous cell configurations. Figure

1a visualizes isocontours corresponding to two concentric circles in a
portion of the groundtruth image. The white areas represent the cells
with ambiguous topology for k = 0.49 in the MS algorithm, whereas
gray denotes cells without any topological ambiguity. To compare the
visualization performance of various decision frameworks, we inject
the groundtruth image with noise to create an ensemble representing
uncertain data. The noise samples are generated by following the same
process as for the nonparametric density results in Figure 8b. We
visualize the results of the comparison of various decision frameworks
in Figure 1.

In the first step for extracting isocontours from uncertain data, the
most probable vertex sign is determined at each cell vertex. We follow
the vertex-based classification approach (section 3.1, [3]) for closed-
form computation of the most probable signs for grid vertices. The
most probable vertex signs for the scalar grid decide whether the cell
topology is ambiguous or not. Note that the computation of the cell
configuration (ambiguous or not ambiguous) stays the same for all
decision frameworks in Figure 1 since all frameworks are tested on the
same ensemble data. The difference in isocontour topology in Figure 1
for various decider frameworks is because of their statistical properties.

For each cell with an ambiguous configuration, we make the topo-
logical decisions using three statistical frameworks, specifically the
asymptotic decider in the mean field (Figure 1b), the probabilistic mid-
point decider (Figure 1c), and our probabilistic asymptotic decider
(Figure 1d). In the results for the mean field, the isocontour breaks at
many positions because of the incorrect topological decisions for am-
biguous cells, where ambiguous cells are marked in white. Moreover,
the mean field result does not give any cues regarding confidence in the
topological decisions. The probabilistic midpoint decider [3] recovers
isocontours for the concentric circles reasonably well when compared
with the mean field result. Moreover, the probabilistic midpoint decider
allows us to encode confidence in the topological decision into the
visualization. In Figure 1c, the cells with relatively low confidence are
colored in red, whereas the cells with relatively high confidence are
colored in blue.

Although the reconstruction performance for the probabilistic mid-
point decider is better than the mean field decider, the reconstructed
isocontour contains a considerable number of holes. The isocontour
holes are prominent, especially in the regions of low confidence (red
cells). Figure 1d visualizes the result of the proposed probabilistic
asymptotic decider. The isocontours for the concentric circles are re-
covered considerably well when compared with the other two decision
frameworks. The isocontours for the probabilistic asymptotic decider
are recovered at all groundtruth positions except for two places: one
position on the southeast and one position on the west side of the
concentric isocontours. Moreover, the closed-form formulation of the
probabilistic asymptotic decider allows fast and accurate computation
of the probabilities as opposed to expensive Monte-Carlo simulations.

Figure 11 visualizes a comparison of the time complexity and the ac-
curacy of the probabilistic deciders for the uncertain Blobs dataset. The
results are taken by increasing the number of ensemble members from
five to 40 at intervals of five. The time complexity of the probabilistic
asymptotic decider (Figure 11a) grows quadratically with the number
of ensemble members/kernels, as we had anticipated from Equation
(16). The time complexity of the probabilistic midpoint decider is, how-

Fig. 11: The comparison of performance (left image) and topological
error (right image) for probabilistic deciders.

I. The probabilistic midpoint decider

II. The probabilistic asymptotic decider

(a) The temperature field

I. The probabilistic midpoint decider

II. The probabilistic asymptotic decider

(b) The velocity field for the Kàrmàn vortex street

Fig. 12: The visualization of the real datasets for the comparison of the probabilistic asymptotic decider and the probabilistic midpoint decider.
The dotted boxes colored in magenta mark positions with topological differences. Red denotes relatively low and blue denotes relatively high
confidence in the isocontour topology.

ever, constant since its computation consists of a single convolution
per cell, as described in section 3. Figure 11b plots the number of grid
cells where the topology for each of the probabilistic deciders differs
from the groundtruth topology. The topological inconsistency or the
topological error of the proposed probabilistic asymptotic decider is
lower than the probabilistic midpoint decider throughout. However, the
inconsistency in decisions converges as we get more samples from the
underlying distribution or for higher numbers of ensemble members.

In the last experiment, we compare the results of the probabilistic
deciders for the real datasets in Figure 12. Figure 12a visualizes isocon-
tour reconstruction in the temperature dataset. The temperature dataset
is courtesy of the DEMETER project [29]. The isocontours are visual-
ized in the temperature field for isovalue k = 10◦. The dataset consists
of nine ensemble simulations for 2-meter temperature data collected in
years 2000-02. We perform nonparametric density estimation and visu-
alize the results for the probabilistic asymptotic and the probabilistic
midpoint deciders. The positions of inconsistent topological decisions
for the two methods are indicated by the dotted boxes colored in ma-
genta. The cells with relatively low confidence in topology are colored
in red, whereas those with relatively high confidence in topology are
colored in blue.

Figure 12b visualizes the results similar to the temperature dataset
for flow simulations. We generate 15 simulations of the Kàrmàn vortex
street with Gerris [30]. All simulations were run for a fixed amount
of time with uncertain viscosity parameters (section 5.2, [12]). The
analysis of the Kàrmàn vortex street plays a critical role in engineering
applications, such as structural engineering [15]. The inconsistency in
isocontour reconstruction of the probabilistic deciders for the velocity
magnitude field of Kàrmàn vortex street is visualized in Figure 12b. In
the majority of cells, the probabilistic asymptotic decider resolves the
topology with the high confidence value, whereas the topological confi-
dence of the probabilistic midpoint decider seems to vary considerably
because of the outliers.

7 CONCLUSION AND FUTURE WORK

The asymptotic and the midpoint decider are standard techniques for
resolving topological ambiguities in the marching squares (MS) algo-
rithm. The issue of topological ambiguity escalates for uncertain data.
None of the existing work, to the best of our knowledge, has rigorously
analyzed topological ambiguity resolution in uncertain data. In our
contribution, we address the issue of ambiguity resolution in uncertain
data by proposing a closed-form statistical framework. We analytically
derive the density of the data values at the saddle points of uncertain

bilinear interpolation functions for the MS algorithm assuming uniform
and nonparametric noise models. The density formulation allows us
to decide topology probabilistically and efficiently when compared
to expensive Monte Carlo simulations. Our experiments show that
the probabilistic asymptotic decider framework is the most stable and
accurate when compared with other decision frameworks in uncertain
data. The probabilistic models allow us to quantify the confidence in
topological decisions and integrate it into the visualization.

The methods proposed in this paper are the building blocks for
studying the research question of topological ambiguity resolution in
the case of 3D isosurfaces. The probabilistic asymptotic decider can
be directly applied to resolve the face ambiguities for the marching
cubes algorithm. However, topological ambiguity resolution in 3D is a
complex problem, especially when a cell has more than one ambiguous
face. Accurate resolution of topological ambiguities for uncertain data
in 3D requires the study of the probabilistic variations in data at the
points in the interior of a 3D cell, e.g., body saddle points [26, 27].
As the next step of our work, we plan to study the question of density
characterization at the saddle points of uncertain trilinear interpolation
functions.

In the future, we also plan to take into account data correlation
and kernels other than the uniform kernel for deriving the closed-form
probabilistic asymptotic decider. The higher order kernels pose the
challenge of computing complex integrals. It would be interesting to
investigate the research question of probabilistic placement of saddle
points in uncertain cells. Finally, we would like to investigate the
impact of variations in data at the saddle points of uncertain fields in
visualization applications, such as contour trees and flow field topolo-
gies.
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[10] G. Grigoryan and P. Rheingans. Probabilistic surfaces: Point based primi-
tives to show surface uncertainty. In IEEE Visualization ‘02, pp. 147–153.
IEEE Press, Oct. 2002. doi: 10.1109/VISUAL.2002.1183769

[11] G. Grigoryan and P. Rheingans. Point-based probabilistic surfaces to show
surface uncertainty. IEEE Transactions on Visualization and Computer
Graphics, 10(5):564–573, July 2004. doi: 10.1109/TVCG.2004.30

[12] D. Günther, J. Salmon, and J. Tierny. Mandatory critical points of 2d
uncertain scalar fields. Computer Graphics Forum, 33(3):31–40, July
2014. doi: 10.1111/cgf.12359

[13] S. Hazarika, A. Biswas, and H.-W. Shen. Uncertainty visualization using
copula-based analysis in mixed distribution models. IEEE Transactions
on Visualization and Computer Graphics, 24(1):934–943, Aug. 2017. doi:
10.1109/TVCG.2017.2744099

[14] M. Hlawatsch, P. Leube, W. Nowak, and D. Weiskopf. Flow radar glyphs &
static visualization of unsteady flow with uncertainty. IEEE Transactions
on Visualization and Computer Graphics, 17(12):1949–1958, dec. 2011.
doi: 10.1109/TVCG.2011.203

[15] P. A. Irwin. Vortices and tall buildings: A recipe for resonance. Physics
Today: American Institute of Physics, 63(9):68–69, Sept. 2010. doi: 10.
1063/1.3490510

[16] C. R. Johnson. Top scientific visualization research problems. IEEE
Computer Graphics and Applications: Visualization Viewpoints, 24(4):13–
17, July/August 2004. doi: 10.1109/MCG.2004.20

[17] C. R. Johnson and A. R. Sanderson. A next step: Visualizing errors
and uncertainty. IEEE Computer Graphics and Applications, 23(5):6–10,
September/October 2003. doi: 10.1109/MCG.2003.1231171

[18] M. C. Jones, J. S. Marron, and S. J. Sheather. A brief survey of bandwidth
selection for density estimation. Journal of the American Statistical
Association, 91(433):401–407, Mar. 1996. doi: 10.2307/2291420

[19] D. Kao, A. Luo, J. L. Dungan, and A. Pang. Visualizing spatially varying
distribution data. In Proceedings of the Sixth International Conference on
Information Visualisation, pp. 219–225. London, UK, July 2002. doi: 10.
1109/IV.2002.1028780

[20] S. Liu, J. Levine, P.-T. Bremer, and V. Pascucci. Gaussian mixture model
based volume visualization. In IEEE Symposium on Large-Scale Data
Analysis and Visualization (LDAV), pp. 73–77. Seattle, WA, USA, Dec.
2012. Received Best Paper Award. doi: 10.1109/LDAV.2012.6378978

[21] A. Lopes and K. Brodlie. Interactive approaches to contouring and
isosurfacing for geovisualization, chap. 17, pp. 345–361. ELSEVIER,
2005. doi: 10.1016/B978-008044531-1/50435-8
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