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Highlights

• BL-PINN is proposed for deep learning modeling of thin boundary layers.
• BL-PINN blends classical perturbation theory in its neural network architecture.
• Accurate solution to thin boundary layers is obtained in benchmark problems.
• BL-PINN incorporates parametric dependence in its prediction without retraining.
• BL-PINN provides a hybrid PINN and reduced-physics model.
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Abstract

Physics-informed neural networks (PINNs) are a recent trend in scientific machine learning research

and modeling of differential equations. Despite progress in PINN research, large gradients and highly

nonlinear patterns remain challenging to model. Thin boundary layer problems are prominent ex-

amples of large gradients that commonly arise in transport problems. In this study, boundary-layer

PINN (BL-PINN) is proposed to enable a solution to thin boundary layers by considering them as

a singular perturbation problem. Inspired by the classical perturbation theory and asymptotic ex-

pansions, BL-PINN is designed to replicate the procedure in singular perturbation theory. Namely,

different parallel PINN networks are defined to represent different orders of approximation to the

boundary layer problem in the inner and outer regions. In different benchmark problems (forward

and inverse), BL-PINN shows superior performance compared to the traditional PINN approach

and is able to produce accurate results, whereas the classical PINN approach could not provide

meaningful solutions. BL-PINN also demonstrates significantly better results compared to other

extensions of PINN such as the extended PINN (XPINN) approach. The natural incorporation of

the perturbation parameter in BL-PINN provides the opportunity to evaluate parametric solutions

without the need for retraining. BL-PINN demonstrates an example of how classical mathematical

theory could be used to guide the design of deep neural networks for solving challenging problems.

Keywords: scientific machine learning, deep learning, data-driven modeling, asymptotic
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1. Introduction1

Thin boundary layers with large gradients are a common feature of high Reynolds number flows2

and high Peclet number heat/mass transfer. The aerodynamic problem of drag reduction in turbu-3

lent boundary layers (Schoppa and Hussain, 1998), convective heat transfer in cooling (Chen et al.,4

2018), and biotransport in concentration boundary layers (Arzani et al., 2016) are a few impor-5

tant examples. Prandtl’s boundary layer theory proposed during the start of the 20th century has6

sparked continuing research in this area over the past 120 years (Erhard et al., 2010). Modeling7

thin boundary layers is computationally challenging due to the inherently large gradients. In mo-8

mentum transport analysis, thin boundary layers in practice are typically turbulent, and therefore9

numerically expensive to model. In heat and mass transport, thin boundary layers can also occur10

in the laminar regime due to reduced diffusivity. For example, cardiovascular mass transport prob-11

lems have very thin concentration boundary layers due to the very small diffusion coefficients of12

biochemicals in blood, which make numerical modeling very challenging (Hansen et al., 2019).13

In recent years, data-driven modeling and scientific machine learning approaches have gained14

considerable interest in fluid flow and transport modeling (Brunton et al., 2020; Cai et al., 2022).15

Perhaps the earliest such work in the context of boundary layers was done by Thwaites in 194916

where a solution to the boundary layer momentum-integral equation was found by using a collection17

of available experimental and analytical results to fit a term in the momentum-integral equation and18

enable a closed-form analytical solution (Thwaites, 1949; White, 2006). The correlation method of19

Thwaites was an early example of hybrid data-driven and physics-based modeling in fluid mechanics20

and specifically boundary layers.21

Physics-informed neural networks (PINN) are a trending topic in scientific machine learning and22

enable hybrid physics-based and data-driven modeling within a deep learning setting (Raissi et al.,23

2019; Karniadakis et al., 2021). PINN has been applied to various fluid mechanics (Cai et al., 2022)24

and heat transfer (Cai et al., 2021) problems. However, the robustness of PINN in certain problems25

remains an issue (Karniadakis et al., 2021). PINN has limited accuracy in complex and highly26

nonlinear flow patterns such as turbulence, vortical structures, and boundary layers (Karniadakis27

et al., 2021). Developing robust and reliable models has been identified as a priority in scientific28

machine learning research (Baker et al., 2019). Boundary layers are one of the topics that challenge29

the robustness of PINNs. In current PINN models, after a sufficient reduction of the boundary layer30

thickness (e.g., reduction in the diffusion coefficient), PINN will suffer from convergence issues. Such31

p. 2



difficulty also poses a challenge for operator learning approaches such as DeepONet (Lu et al., 2021),32

which might not be able to learn parametric variations in the solution across all parameters, and33

therefore robustness will be challenging to achieve.34

Over the past couple of years, various variants of the original PINN approach have been pro-35

posed that attempt to overcome certain PINN limitations. Fourier feature networks have been36

developed within PINN to overcome spectral bias in deep neural networks, which limits how well37

high-frequency functions could be learned (Wang et al., 2021c). Conservative PINN (cPINN) (Jag-38

tap et al., 2020), extended PINN (XPINN) (Jagtap and Karniadakis, 2020), and other similar39

domain decomposition techniques (Wang et al., 2021a) have been proposed to leverage localized40

neural networks in regions of high gradient or complex patterns to enable efficient learning of41

complex functions. Alternatively, other approaches have used an enhanced local sampling of the42

collocation or training points near high gradient regions to improve convergence (Mao et al., 2020;43

Nabian et al., 2021). However, none of these techniques studied thin boundary layers. We demon-44

strate that domain decomposition without special treatment cannot resolve the issues with learning45

thin boundary layers due to their highly localized abrupt behavior. Additionally, we show that46

increasing the resolution of the collocation points within the boundary layer does not resolve PINN47

training issues. PINN has been applied to various advection-diffusion transport problems (Dwivedi48

and Srinivasan, 2020; He and Tartakovsky, 2021; de Wolff et al., 2021; Mojgani et al., 2022) in-49

cluding boundary layers (Arzani et al., 2021; Yang et al., 2021; Bararnia and Esmaeilpour, 2022).50

These studies investigated optimal weighting of the loss terms and mainly focused on low Peclet51

numbers to enable a solution to these challenging problems. However, thin boundary layers (the52

limit of vanishing viscosity/diffusivity) remain an elusive target for PINNs.53

In this manuscript, we present a theory-guided and model-driven machine learning approach54

for learning thin boundary layer behavior. Our framework is inspired by the singular pertur-55

bation and asymptotic expansions method for solving differential equations (Bender and Orszag,56

1999; Van Dyke, 1975). The singular perturbation theory is a well-established approach in applied57

mathematics and much of its developments have been inspired by the fluid dynamics commu-58

nity (O’Malley Jr, 2010). In singular perturbation problems, a small perturbation parameter (e.g.,59

viscosity in momentum transport or diffusivity in heat/mass transport) is multiplied by the highest60

order derivative. The singular nature of the problem makes the behavior of the system in the limit61

of vanishing perturbation very different from a zero value of the perturbation parameter. A very62

thin boundary layer is created in such problems, and the resulting abrupt change in the solution63
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is even difficult to resolve using traditional and established numerical techniques such as the finite64

element method (FEM) (Hansen et al., 2019). Singular perturbation solutions are tailor made65

for such situations as they actually become increasingly accurate as the boundary layer thins and66

the gradients increase. For example, such asymptotic basis functions have been used as the basis67

functions in Galerkin projection in order to accurately capture and represent the singular behavior68

inherent in such solutions (Cassel, 2019). Inspired by perturbation theory and its use as asymptotic69

basis functions in projection methods, we propose boundary layer physics-informed neural network70

(BL-PINN) to overcome the current limitations of deep learning in resolving thin boundary layers.71

That is, through the lens of asymptotic expansions (Cassel, 2019), our BL-PINN approach could72

be perceived as a PINN-driven reduced-order model (ROM) where unlike traditional ROM mod-73

els (e.g., proper orthogonal decomposition or dynamic mode decomposition) our ROM approach74

is not data-driven but instead physics-driven. In summary, our study makes the following key75

contributions76

• We provide a new BL-PINN approach for physics-informed neural network modeling of thin77

boundary layers. We demonstrate in benchmark problems that our approach overcomes the78

limitations of PINN in solving forward and inverse thin boundary layer problems.79

• We demonstrate how classical mathematical theories (herein, perturbation methods) could be80

replicated with PINN in a theory-guided/model-driven approach.81

• Our approach provides a reduced-physics model (RPM) within PINN. This approach is en-82

tirely driven by the governing mathematical equations and is in contrast with current data-83

driven ROM approaches, which rely on data to form their basis function. BL-PINN could be84

perceived as a combination of an RPM and PINN.85

• Our asymptotic basis function approach in BL-PINN incorporates gauge functions (containing86

the perturbation parameter) and the spatial coordinates dependence distinctly, and therefore87

could be used to re-evaluate the solution as the small parameter (herein, diffusion coefficient)88

varies. This natural incorporation of parametric dependence is an improvement compared to89

traditional data-driven approaches. BL-PINN enables parametric PINN evaluation without90

the need for retraining, therefore providing attractive advantages similar to operator learning91

approaches such as DeepONet. In fact, BL-PINN actually becomes more accurate with in-92

creasing Reynolds/Peclet number, which is the opposite of traditional PINN that fails as the93
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boundary layer thins and corresponding gradients increase.94

The rest of the manuscript is organized as follows. First, we overview the solution procedure to95

singularly perturbed differential equations. Next, we present the BL-PINN approach along with a96

few benchmark problems. We present the results and demonstrate the advantage of BL-PINN over97

the traditional PINN approach and other variants of PINN (local clustering of collocation points98

and XPINN). Finally, we discuss the results and present future directions and other applications99

for BL-PINN.100

2. Methods101

2.1. Problem statement: singularly perturbed differential equations102

Consider a differential equation of the form103

Lεu = f(x) , (1)

subject to appropriate boundary conditions where ε is a small parameter appearing in the operator104

Lε (e.g., a given small diffusion coefficient). We assume this is a singularly perturbed problem, which105

means that the solution found by the differential equation when ε = 0 behaves very differently from106

that in the limit ε→ 0. A common scenario is when ε is multiplied by the highest order derivative107

term. This will lead to a “boundary layer” where the solution varies rapidly in a small region.108

The thickness of this region approaches zero in the limit ε → 0. In perturbation theory (Bender109

and Orszag, 1999; Van Dyke, 1975; Kutz, 2020), the solution to such a problem is written in terms110

of asymptotic expansions and the solution is divided into an inner and outer region, as shown in111

Fig. 1. The outer region (away from the boundary layer) is approximated with a regular expansion112

uouter(x) =
∞∑
n=0

δn(ε)φn(x) , (2)

where δn(ε) are gauge functions representing the asymptotic sequence of the terms in the solution113

(e.g., εn) and φn(x) are functions of space that embed the solution for each order of ε. As this114

is a regular expansion, the leading order solution corresponds to ε = 0. On the other hand, to115

approximate the boundary layer region a stretched variable is introduced as ξ = x−x0

δ(ε)
, which allows116

one to zoom into the thin boundary layer region and locally represent the solution as117
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uinner(x) =
∞∑
n=0

δn(ε)ψn(x, ε) =
∞∑
n=0

δn(ε)ψ̄n(ξ) , (3)

where ψ̄n(ξ) is the spatial function ψn(x, ε) written in terms of the stretched variable. Finally,118

the outer and inner solutions are matched in the overlap region using matched asymptotic expan-119

sions (Van Dyke, 1975) to obtain the final solution. Briefly, the inner solution when ξ → ∞ is120

enforced to match the outer solution when x→ 0.121

2.2. Boundary layer physics-informed neural networks (BL-PINN)122

We propose to use PINN for solving boundary layer problems with the above perturbation123

framework, and therefore leverage the hybrid data-driven and model-driven deep learning framework124

that PINN offers. Details about PINNs could be found in (Raissi et al., 2019). In the proposed125

BL-PINN approach, we use separate neural networks to approximate each solution level in the outer126

and inner expansions and use the matching condition to obtain a consistent solution. An overview127

of the framework is sketched in Fig. 1. Multiple parallel PINNs are used to represent the different128

orders of approximation for the inner and outer representations. Each PINN network has its own129

physics loss function based on the PDE derived for the specified order of approximation and region130

(inner or outer). The final solution in the inner and outer regions is derived by forming a linear131

combination of each PINN output weighted by the known gauge functions δn(ε). The final solution132

is only used in the training process if measurement data is provided and a data loss is defined.133

Finally, appropriate boundary conditions are imposed for each network and a matching condition134

is used to ensure the inner and outer solutions are consistent in the overlap region between them.135

Each neural network representing the outer layer solutions φn(x) and inner layer solutions ψ̄n(ξ)136

are optimized using the following loss functions137

Lnouter(Wn
i,outer,b

n
i,outer) = Lnphys,outer + λbLnBC,outer + λdLdata,outer , (4a)

138

Lninner(Wn
i,inner,b

n
i,inner) = Lnphys,inner + λbLnBC,inner + λdLdata,inner , (4b)

139

Ltot =
∑
n

Lnouter +
∑
n

Lninner + λm
∑
n

Lnmatch , (4c)

where n = 1, 2, . . . represent the different orders of the asymptotic expansion solutions, each140

equipped with appropriate physics Lnphys and boundary condition LnBC loss functions defined based141

on their domain (inner vs. outer) and order of approximation (n) in ε. The match loss function142
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Lnmatch is used as the matching condition for the inner and outer neural networks. The total loss Ltot143

is defined by summing the inner and outer loss functions over their order of approximation together144

with the matching condition. Finally, if data is available, the data loss function Ldata is defined145

and backpropogated based on the final output produced by a linear composition of all solutions as146

shown in Fig. 1. The λ hyperparameters are set to weight the contribution of each loss term. A147

standard stochastic gradient descent algorithm (Adam) is used to find the optimal weights Wi and148

biases bi for each layer i and each inner/outer network n.149

The matching condition will require the ξ → ∞ output of the inner PINNs to match with the150

x→ 0 output of the corresponding outer PINNs. However, the infinity limit is not possible as neural151

network inputs should be ideally normalized. To overcome this issue, a new variable 0 < z < 1152

is defined as z = ξ
A

and the inner equation is rescaled using this variable. The constant A is set153

to a sufficiently large value and ξ → ∞ is approximated as z = 1. This approach was inspired154

by the classical similarity solutions in boundary layer theory where an appropriately large value155

is estimated based on the equations to approximate infinity (White, 2006). Below we discuss the156

choice of the constant A.157

In summary, BL-PINN leverages the observation that the perturbation theory is nothing but a158

series of differential equations that are solved with appropriate boundary/matching conditions and159

the solutions are added to form the final solution. Therefore, one can use different PINN networks160

to solve each one of these differential equations and subsequently linearly add these predictions to161

form the final solution.162

2.3. Boundary layer test cases163

In this section, we explain the different singular perturbation problems that were used to test the164

proposed BL-PINN approach. In each case, BL-PINN is compared to the original PINN approach165

(with similar network parameters). Analytical solutions or high-resolution numerical models are166

considered as the reference for comparison. No data was used (λd = 0) in the problems below with167

the exception of the inverse problem (test case 5). In all of these examples, ε represents a small168

value that appears in the given equation and leads to boundary layer formation. We treat ε as the169

perturbation parameter. 100 collocation points were uniformly placed (equidistant) in the 1D and170

2D problems producing 100 and 10,000 total collocation points, respectively. In the 3D problem171

(test case 7), 80 points were used in each dimension producing 512,000 total collocation points.172
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Figure 1: An overview of the proposed boundary layer physics-informed neural network (BL-PINN) framework is
sketched. The network architecture consists of two coupled networks: the inner and outer networks. These inner and
outer regions are highlighted in a sample u(x) function shown, which exhibits a boundary layer. The inner and outer
parts of BL-PINN provide an asymptotic expansion approximation to the solution in the boundary layer and outside
of boundary layer regions, respectively. Each part (inner or outer) consists of multiple parallel PINN networks that
each represent a certain order approximation to the solution. The final solution is derived by a combination of these
parallel PINN networks. However, the final solution (uinner or uouter) is not needed in the training process unless
measurement data are provided and a data loss is needed. Each parallel PINN network is trained based on a PDE
that is derived analytically for the desired order of approximation. The matching boundary condition (BC) loss
enforces the coupling between the inner and outer networks.

2.3.1. Test case 1: 1D linear advection-diffusion-reaction transport173

First, we consider a simple 1D advection-diffusion-reaction equation presented in (Bender and174

Orszag, 1999; Kutz, 2020)175

ε
∂2u

∂x2
+ (1 + ε)

∂u

∂x
+ u = 0 , (5)

where ε is a small parameter set to 5 × 10−4, x ∈ [0,1], and the boundary conditions are given as176

u(0) = 0 and u(1) = 1. Similar models known as Friedrichs’ boundary layer models are commonly177

used to illustrate the difficulties associated with modeling viscous flow boundary layers (White,178
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2006). The above equation could be analytically solved, which will be used for evaluating the PINN179

solution accuracy:180

u(x) =
e−x − e−x

ε

e−1 − e−1
ε

. (6)

An asymptotic analysis of the differential equation 5 in the limit as ε → 0 reveals that the181

distinguished limit is δ(ε) = ε based on the dominant balance between terms in the differential182

equation. The outer problem is then derived by substituting Eq. 2 with the gauge function δ(ε) = ε183

into the governing equation. The leading order approximation in the outer region with ε = 0 (away184

from the boundary layer) becomes185

∂uouter
∂x

+ uouter = 0 . (7)

To derive the inner problem, the gauge function δ(ε) = ε is used and the stretched variable is186

defined as ξ = x
ε
. The leading inner problem reads187

∂2uinner
∂ξ2

+
∂uinner
∂ξ

= 0 . (8)

The equation is rescaled to z = ξ
A

to make the matching condition possible188

1

A

∂2uinner
∂z2

+
∂uinner
∂z

= 0 . (9)

The boundary conditions are uouter(x = 1) = 1 and uinner(z = 0) = 0, and uinner(z = 1) = uouter(x =189

0) is the imposed matching condition. The parameter A needs to be appropriately selected. A very190

large parameter will create another undesirable singularly perturbed problem in Eq. 9, whereas191

a small parameter might not accurately represent infinity. To see how this parameter could be192

selected, we solve Eq. 8 to obtain u = Ce−ξ + D. To approximate ξ → ∞, we need e−ξ → 0.193

Selecting 1×10−4 as the tolerance leads to e−ξ < 1×10−4, and ξ = 10 is thus sufficient to represent194

infinity with this tolerance; therefore, A = 10 was selected.195

The networks had five hidden layers with 60 neurons per layer. λb = 1 and λm = 10 were used,196

and the learning rate was 1× 10−4 with 2000 epochs.197
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2.3.2. Test case 2: nonlinear 1D transport problem198

A nonlinear autonomous equation is considered (Bender and Orszag, 1999)199

ε
∂2u

∂x2
+ 2

∂u

∂x
+ eu = 0 , (10)

where u(0) = u(1) = 0 are the boundary conditions and ε = 1 × 10−3 was used. With ε = 0, the200

leading order outer problem is201

2
∂uouter
∂x

+ euouter = 0 . (11)

The inner problem is obtained with the δ(ε) = ε distinguished limit and z = ξ
A

rescaling202

1

A

∂2uinner
∂z2

+ 2
∂uinner
∂z

= 0 . (12)

The neural network parameters were similar to the previous problem and A = 8 was used here. The203

corresponding numerical simulation for comparison was performed with a fourth-order finite differ-204

ence algorithm for boundary value problems (Kierzenka and Shampine, 2001). The continuation205

method (Vetekha, 2000) was used to enable a solution for a small ε.206

2.3.3. Test case 3: 2D advection-diffusion transport in Couette flow207

Consider the 2D advection-diffusion equation representing high Peclet number mass transport208

u
∂c

∂x
+ v

∂c

∂y
= ε

(
∂2c

∂x2
+
∂2c

∂y2

)
, (13)

where u = 10y and v = 0 are set as the velocity components (Couette flow), ε = 1×10−4 is selected209

as the diffusion coefficient, and the domain is selected as [0,1]×[0,1]. For boundary conditions,210

∂c
∂y

(x, y = 0) = −10 at the bottom wall, c = 0 at the inlet, and a no-flux Neumann boundary211

condition at the other boundaries is prescribed. Performing the asymptotic expansion in y gives212

the following leading order outer problem213

∂couter
∂x

= 0 . (14)

The leading inner problem with the distinguished limit δ(ε) =
√
ε, and inner scaling z = ξ

A
becomes214

u(
√
εAz)

∂cinner
∂x

=
1

A2

∂2cinner
∂z2

. (15)
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The Neumann boundary condition at the wall becomes ∂c
∂z

(x, z = 0) = −10A
√
ε.215

The neural networks had seven hidden layers with 128 neurons per layer.. λb = 10 and A = 8216

were used and the learning rate was 5× 10−6 with 2000 epochs and a batch size of 128. The outer217

solution was simply set to c = 0 based on Eq. 14 and the boundary conditions.218

Finite element method (FEM) simulation was performed in the open-source PDE solver FEniCS219

to provide benchmark data for comparison. The stabilized SUPG method (Brooks and Hughes,220

1982) was implemented, and the mesh had 152,000 triangular elements. To facilitate convergence in221

the challenging high Peclet number regime, the transport model (Eq. 13) was treated as a transient222

problem and was integrated in time until a steady state was reached.223

2.3.4. Test case 4: 2D advection-diffusion transport in the double gyre flow224

We reconsider the 2D advection-diffusion equation above (Eq. 13) with a more complicated225

velocity field. Namely, the double gyre flow (Shadden et al., 2005) is considered, which is a commonly226

used benchmark problem in chaotic advection studies (Balasuriya et al., 2018). The velocity field227

is defined as228

u = −πB sin(2πx) cos(πy) , (16a)
229

v = 2πB cos(2πx) sin(πy) , (16b)

where B = −0.1 and the domain of interest is [0,1]×[0,1]. The diffusion coefficient is set to ε =230

1× 10−4. A Neumann boundary condition with ∂c
∂y

(x, y = 0) = −10 is imposed at the bottom wall,231

c = 0 is used at the left and right boundary, and zero flux is imposed on the top boundary. Similar232

to the previous test case, the leading order outer problem reads233

u
∂couter
∂x

+ v
∂couter
∂y

= 0 . (17)

The diffusion term could be kept in the outer problem to improve the solution stability. The leading234

order inner problem could be derived similar to test case 3 with an additional term due to non-zero235

vertical velocity as follows:236

u(x,
√
εAz)

∂cinner
∂x

+ v(x,
√
εAz)

∂cinner
∂z

/(
√
εA) =

1

A2

∂2cinner
∂z2

. (18)

The neural network parameters were the same as test case 3 but with a variable learning rate237

p. 11



between 2×10−4 and 6×10−6 during 65,000 epochs with a batch size of 256. The FEM solution was238

carried out similar to test case 3 but with a higher resolution mesh (318,000 triangular elements)239

and without stabilization.240

2.3.5. Test case 5: Inverse modeling to infer boundary flux in 2D transport241

We reconsider the 2D transport problem in test case 3. We assume that the flux boundary242

condition at the bottom wall is unknown and use six sensors (shown in the results) to measure243

concentration in the boundary layer and define a data loss for inferring the unknown flux. The244

sensors were probed based on the FEM solution. The network parameters were set similar to test245

case 3 with 60000 epochs. λd = 10 was used to incorporate the data measurements into the total246

loss.247

2.3.6. Test case 6: Axisymmetric transport in 3D Burgers vortex248

In this example, we consider a 3D velocity field. The Burgers vortex is considered as a canonical249

vortex flow. The Burgers vortex could be derived as an asymptotic steady solution to the momentum250

equation and represents viscous vortices with axial stretching (Panton, 2006; Wu et al., 2007). In251

cylindrical coordinates (r,θ,x), the velocity field could be written as252

vr = −γ
2
r (19a)

vθ =
Γ0

2πr

(
1− e−βr2

)
(19b)

vx = γx , (19c)

where the parameters are set to γ = 0.2, Γ0 = 2π, and β = 1. We consider a cylindrical domain253

with a radius of 0.5 and a height of x = 0.3. The diffusion coefficient is set to ε = 1× 10−4 and the254

Neumann boundary condition at the bottom wall (x=0) is ∂c
∂x

= −5. Zero concentration is imposed255

on the side walls. Due to the symmetric nature of the transport problem, despite the 3D nature256

of the flow, the advection-diffusion equation could be simplified to a 2D problem in cylindrical257

coordinates258

vr
∂c

∂r
+ vx

∂c

∂x
= ε

(
∂2c

∂r2
+

1

r

∂c

∂r
+
∂2c

∂x2

)
. (20)
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The inner and outer problems are derived similar to test case 4. The neural network architecture259

was similar to test cases 3 and 4. A=8 was used and the batch size was 512. The learning rate260

varied between 4× 10−4 and 1× 10−5 with 32,000 epochs. The FEM solution was performed with261

a full 3D discretization (4.6M tetrahedral elements) with local boundary layer refinement.262

2.3.7. Test case 7: 3D transport near flow separation263

In this example, a fully 3D mass transport problem is considered. The velocity field is defined264

to represent flow around a separation profile. Namely, we consider a saddle type fixed point in wall265

shear stress (WSS) vector field, which represents flow separation in steady flows (Surana et al., 2006).266

Subsequently, the velocity field near the separation point is defined using a Taylor series expansion.267

Such topological analysis of fluid flow has been utilized in studying flow separation (Surana et al.,268

2006; Wu et al., 2007) and more recently near-wall mass transport (Arzani et al., 2016; Farghadan269

and Arzani, 2019).270

In this example, a 3D box is used to define the domain as [-0.7,0.7]×[-0.3,0.3]×[0,0.3]. The271

bottom wall (z=0) is considered the separation region. The WSS vector field τ in this wall is272

defined as (τx, τy) = (−x + y , x − y
4
). Subsequently, using Taylor series expansion of the WSS273

vector field the velocity field is extrapolated to the rest of the domain (Gambaruto et al., 2010;274

Arzani et al., 2016)275

vπ =
τz

µ
=
(

(−xz + yz)/µ , (xz − yz

4
)/µ
)

(21a)

276

vz = − 1

2µ
∇ · τ z2 = 0.625z2/µ , (21b)

where vπ = (vx.vy) is the 2D velocity vector in the xy plane, vz is the velocity component normal to277

this plane, and µ is the dynamic viscosity set to one in this non-dimensional example. The above278

velocity field is used to solve the 3D advection-diffusion equation where ∂c
∂z

= −10 is imposed at279

z=0 to generate a boundary layer and zero concentration is applied to the lateral walls. The inner280

and outer problems are derived similar to test case 4 as281

vx
∂couter
∂x

+ vy
∂couter
∂y

+ vz
∂couter
∂z

= 0 (22a)

282

vx(x, y,
√
εAz)

∂cinner
∂x

+vy(x, y,
√
εAz)

∂cinner
∂y

+vz(x, y,
√
εAz)

∂cinner
∂z

/(
√
εA) =

1

A2

∂2cinner
∂z2

, (22b)

where the diffusion term could be brought back to the outer problem to improve stabilization, and z283
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in Eq. 22b is the rescaled stretched variable as defined earlier (not to be confused with the physical284

z coordinates in all the other equations in this Section). The network architecture was similar to285

previous cases (test cases 3, 4, and 6). A=8 and ε = 1 × 10−4 were used and a large batch size of286

8192 was used to an enable efficient solution in 3D. The learning rate was varied between 4× 10−4287

and 2 × 10−5 during 24,000 epochs. The FEM simulation was performed with 2.7M tetrahedral288

elements with local refinement around the boundary layer region.289

3. Results290

The five test case results are presented in this section. In all cases, only the O(1) networks,291

corresponding to the leading-order asymptotic solution, were considered in the simulations unless292

otherwise noted. In addition to comparison to the original PINN method for all test cases, the results293

are also compared to two other approaches: localized high-resolution clustering of collocation points294

(test case 1) and XPINN (test case 2).295

The test case 1 results (linear advection-diffusion-reaction) are plotted in Fig. 2a. Observe that296

the traditional PINN approach does not converge to a reasonable solution or capture the singular297

boundary layer behavior near x = 0, whereas the inner and outer BL-PINN approximations match298

the exact analytical solution very well in their respective regions. An additional original PINN299

simulation was performed where an additional set of collocation points were seeded inside and300

in the vicinity of the boundary layer (1000 points). The results show that this high-resolution301

local sampling approach, which was suggested in prior work (Mao et al., 2020; Nabian et al.,302

2021), still cannot find the correct solution. In Fig. 2b, the difference between O(1), leading order303

approximation, and O(ε) approximations are shown. To distinguish between these results, case 1 was304

repeated with a larger perturbation parameter (ε = 0.05). In this case, due to the larger diffusion305

coefficient, the original PINN approach converges to the exact solution. In BL-PINN, increasing the306

asymptotic expansion order does not improve the outer solution, however, the O(ε) approximation307

provides notable improvement for the inner solution. Overall, the O(ε) approximation provides308

accurate results in both inner and outer regions but does not offer any advantage over the original309

PINN approach in this case due to the larger ε value, and the correspondingly less severe gradients.310

Test case 2 extends the previous problem to a nonlinear differential equation and also presents311

a comparison with XPINN as shown in Fig. 3. Similar results could be seen where BL-PINN312

approximates the true solution very well, while the original PINN approach cannot converge to the313

correct solution. In this case, it could be seen that the original PINN approach seems to be learning314
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Figure 2: Test case 1 (linear advection-diffusion-reaction) results are plotted and the inner and outer solutions
approximated by BL-PINN are compared to the original PINN approach, a high-resolution local sampling approach,
and the analytical solution. a) ε = 5 × 10−4 and only the leading order approximation in BL-PINN is retained. b)
ε = 0.05 and the O(1) approximation (leading order) as well as the O(ε) approximation in BL-PINN are compared.
PINN and analytical solutions are on top of each other in this case.

a shifted version of only the outer layer solution. The reason for the shifted solution is the imposed315

x = 0 boundary condition, which is where the boundary layer is occurring. XPINN cannot provide316

much improvement over the original PINN approach. In XPINN, the domain was decomposed into317

boundary layer and outer regions, and continuity was imposed at the interface. We also investigated318

sensitivity to the choice of the size of the boundary layer domain of XPINN and confirmed similar319

results (not shown).320

Figure 3: Test case 2 (nonlinear advection-diffusion-reaction) results are plotted and the inner and outer solutions
approximated by BL-PINN are compared to the original PINN approach, XPINN, and the true solution. The inner
XPINN solution covers the very thin boundary layer region; however, it cannot discover the true solution and just
continues the outer XPINN pattern based on XPINN’s interface condition (continuity in solution and its flux).

The 2D advection-diffusion transport result for the Couette flow problem (test case 3) are321

shown in Fig. 4 and Fig. 5. The first figure shows the contour plots of the concentration results.322
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It could be seen that the original PINN approach does not capture the quantitative features in the323

boundary layer correctly, whereas BL-PINN produces results very similar to the reference FEM324

solution. To better visualize the quantitative features, the concentration on the bottom wall where325

the boundary layer is created is plotted in Fig. 5. It could be seen that BL-PINN captures the326

quantitative behavior much more accurately. Similar to the previous example, the original PINN327

solution shows a shifted behavior where in this case it predicts the qualitative trend away from328

x = 0 (the leading edge of the boundary layer) and only in a shifted fashion.329

Figure 4: Test case 3 (2D advection-diffusion in Couette flow) contour results are shown and the BL-PINN approach
is compared to the original PINN approach and the reference FEM solution.
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Figure 5: Test case 3 (2D advection-diffusion in Couette flow) concentration results are plotted at the bottom wall
(y = 0) where the boundary flux is imposed and the boundary layer is generated. The original PINN, BL-PINN,
and reference FEM results are compared.

A more complicated advection-diffusion transport example is shown in Fig. 6 and Fig. 7 where330

test case 4 (double gyre flow) results are shown. The velocity vector field is sketched showing the two331
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counterrotating vortices in the double gyre flow. In this example, we are interested in the boundary332

layer that forms at the bottom wall where the Neumann boundary condition is prescribed. The333

contour results shown in Fig. 6 show that the inner part of BL-PINN is capable of capturing the334

quantitative and qualitative behavior in the boundary layer. The original PINN approach does335

not provide results close to the reference FEM solution (note the different color bar range). In the336

outer region (outside of the boundary layer at the bottom wall), the problem is more complicated337

due to the domination of advection. The BL-PINN outer network in this case cannot capture338

quantitative concentration patterns in the outer region and only captures the qualitative behavior.339

On the other hand, the original PINN approach completely misses the qualitative behavior and340

cannot find even a qualitatively meaningful solution. Interestingly, the outer part of BL-PINN can341

provide a correct quantitative approximation near the interface with the inner part of BL-PINN,342

and therefore the matching boundary condition is satisfied, which helps produce correct boundary343

layer results by the inner network. This is further shown in Fig. 7 where the concentration is plotted344

at the bottom wall. We can see that BL-PINN provides a very accurate quantitative prediction of345

the concentration pattern, while PINN cannot approximate the correct quantitative pattern.346

Figure 6: Test case 4 (2D advection-diffusion in the double gyre flow) contour results are shown and the BL-PINN
approach is compared to the original PINN approach and the reference FEM solution. In the BL-PINN panels, the
entire solution is shown. However, the inner and outer solutions are only valid near and away from the bottom wall,
respectively. To better demonstrate the qualitative behavior, different color bar ranges are used in some cases where
the error was higher. The velocity vector field is shown on the right where normalized vector fields are superimposed
on top of the streamlines to show the velocity direction.
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Figure 7: Test case 4 (2D advection-diffusion in the double gyre flow) concentration results are plotted at the bottom
wall (y = 0) where the boundary flux is imposed and the boundary layer is generated. The original PINN, BL-PINN,
and reference FEM results are compared.

The inverse problem (test case 5) results are shown in Fig. 8. The right panel shows the347

placement of the measurement sensors (the six grey spheres) within the boundary layer. The left348

panel shows the learned flux boundary condition, ∂c
∂y

(y = 0), during different epochs of the deep349

learning training. It is seen that BL-PINN converges to the ground truth flux that was used to350

generate the data, whereas the original PINN approach cannot converge to the ground truth flux.351

Figure 8: Test case 5 (inverse modeling of flux in the Couette flow transport problem) results are shown on the left
panel. The learned flux versus deep learning epochs are shown for the BL-PINN and original PINN approaches along
with the true flux. The right panel demonstrates the location of the measurement sensors within the boundary layer
that were used to define the data loss. The grey spheres mark the sensor locations

In the last two test cases (6 and 7), the BL-PINN approach did not provide accurate results352

in the outer region (similar to the double gyre flow problem), and therefore these results are not353

included. It should be highlighted that the boundary layer is the region of interest in our work,354

and therefore this is not a concern. In test case 7, we further substantiate this by demonstrating355

the success of a BL-PINN approach inspired by surface transport models where we completely356

omit the outer BL-PINN network in our approach. We further discuss these observations in the357
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Discussion. The Burgers vortex (test case 6) results are shown in Fig. 9. We can see that the358

BL-PINN approach leads to considerable improvement in the wall concentration results compared359

to the original approach.360

Figure 9: Test case 6 (axisymmetric advection-diffusion in 3D Burgers vortex) results are shown. a) The BL-PINN
approach is compared to the original PINN and reference FEM solution. The x=0 plane where the boundary layer
forms is shown. b) The concentration results are quantitatively compared at the x=0 plane for different radial
positions. c) The 3D velocity streamlines are shown in the cylindrical region of interest and are colored based on
velocity magnitude.

Finally, the results for test case 7 (3D transport around flow separation) are shown in Fig. 10.361

The original PINN cannot capture the qualitative (Fig. 10a) or quantitative (Fig. 10b) patterns. To362

assist with qualitative visualization of the patterns, the maximum color bar range for the original363

PINN approach is set to 0.03 and for the other approaches, this is 1.04. In this test case, we also364

present a new BL-PINN approach where we just consider the inner network and at the matching365

condition set zero concentration for the inner network. This approach was inspired by recent work366

on near-wall transport in the context of biomedical flows (Hansen and Shadden, 2016; Arzani et al.,367

2016; Farghadan and Arzani, 2019) where it has been shown that in thin concentration boundary368

layer problems one could reduce the problem to a surface transport model based on WSS and near-369

wall velocity, and therefore ignore transport away from the wall with minimal loss in accuracy for370

most problems. Interestingly, our results here demonstrate that the BL-PINN approach with just an371

inner network (inspired by surface transport models) produces very accurate results. As a relevant372

note, the region of high surface concentration (red region) corresponds to the unstable manifold of373

the WSS vector field. The unstable WSS manifold, also known as the attracting WSS Lagrangian374

coherent structure, has been shown to dominate near-wall concentration patterns in complex 3D375
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problems (Arzani et al., 2016; Farghadan and Arzani, 2019; Arzani et al., 2017).376

Figure 10: Test case 7 (3D transport near flow separation) results are shown. a) The BL-PINN approach is compared
to the original PINN and reference FEM solution. Additionally, a de-coupled BL-PINN solution (just the inner
network) is shown where the outer network is not included during training and is replaced with a zero concentration
matching condition. In the color bar, cmax is 0.03 for the original PINN panel and 1.04 for the other approaches. The
z=0 plane where the boundary layer forms is shown. b) The concentration results are quantitatively compared at the
z=0 plane for a line passing through the middle of the plane (-0.7<x< 0.7, y=0). c) The 3D velocity streamlines are
shown in the cylindrical region of interest and are colored based on velocity magnitude. Normalized velocity vectors
are also plotted to show the flow direction.

4. Discussion377

In this work, boundary layer PINN (BL-PINN) was proposed for solving thin boundary layer378

problems. One- and two-dimensional benchmark problems were presented as proof-of-concept where379

it was shown that BL-PINN overcomes PINN limitations in solving thin boundary layer problems.380

As illustrated here, only a small number of asymptotic basis functions is necessary to accurately381

capture the solution using BL-PINN. This is in marked contrast to traditional numerical methods382

that have increasing difficulty and require more small elements to capture high-gradient regions of383

a solution. It was also shown that prior extensions of PINN (XPINN and local collocation point384

clustering) were not able to resolve thin boundary layers.385

Solutions of physical problems that contain large gradients give rise to numerical difficulties386

when solved using traditional numerical methods, such as FEM. Typically, such problems contain387

a parameter that becomes very small or very large, in which case perturbation methods are well388

suited to deciphering the solution’s dependence on this parameter. Asymptotic basis functions389

are obtained directly from the governing differential equation. As such, they contain physical390
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information about how the system depends on the small or large parameter. In fact, the accuracy391

of the asymptotic basis functions increases as the small parameter approaches zero (or the large392

parameter approaches infinity) or as additional terms are included in the expansion. This is in393

contrast to numerical methods attempting to capture the same solution. Their primary limitation394

is that they only apply when the parameter is very small or large. Consequently, incorporating these395

asymptotic basis functions into more general techniques holds great promise in combining the best of396

both into a robust solution framework that takes advantage of the flexibility of general methods and397

the model-driven, as opposed to data-driven, approach to capturing abrupt behavior in a solution.398

Galerkin projection with asymptotic basis functions is one approach for accomplishing this (Cassel,399

2019), and PINN offers an alternative framework. Such reduced-physics models (RPM) have the400

potential to dramatically reduce the computational requirements necessary for solving physical401

problems containing large gradients as compared to traditional numerical methods.402

Whether for use in a projection method or PINN, the ideal basis functions would contain as403

much information as possible about the system and accommodate solutions for a range of parameter404

values. This is precisely what asymptotic basis functions offer. Perturbation (asymptotic) methods405

comprise a set of techniques for obtaining the solution in terms of an asymptotic series for prob-406

lems having a very small or very large parameter. These methods allow for determination of the407

dependence of the system of the small or large parameter in a formal manner from the governing408

equation(s) itself without any need for data from the system. This dependence is contained in409

the gauge functions, which unlike most ROM approaches captures the system’s dependence on the410

parameter.411

BL-PINN shares similarities with other extensions of PINN and yet provides clear advantages412

for boundary layer problems. Similar to XPINN and cPINN, BL-PINN is based on a domain413

decomposition implementation of PINN where separate neural networks are used in different regions414

and matched at the interface. However, unlike the arbitrary nature of XPINN and cPINN, BL-PINN415

decomposes the domain into an inner region (boundary layer) and an outer region in a systematic416

fashion inspired by the perturbation theory. Additionally, the rescaling of the equation within the417

boundary layer enables an accurate solution to thin boundary layers, which is not possible with418

prior approaches. Similar to the recently proposed sparse, physics-based, and partially interpretable419

neural networks (SPINN) (Ramabathiran and Ramachandran, 2021), BL-PINN leverages rescaling420

of the input variables to define the stretched variable ξ (similar to the mesh encoding layer in421

SPINN) and relies on parallel neural networks and their linear combination to build the solution.422
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Therefore, similar to SPINN, BL-PINN is partially interpretable. However, BL-PINN extends423

SPINN’s interpretability since its design is based on asymptotic expansions and therefore in the424

context of asymptotic basis functions (Cassel, 2019), BL-PINN could be interpreted as a physics-425

based reduced-order model representation with PINN where parametric dependence is naturally426

considered in its design. In theory, defining kernels that represent boundary layer behavior (similar427

to FEM enrichment of basis functions (Borker et al., 2017)) could be implemented in SPINN for428

modeling thin boundary layers, however, the exponential nature of such kernels in boundary layers429

poses a challenge for effective training of the neural networks.430

A key advantage of BL-PINN is that it becomes more accurate as the perturbation parameter431

becomes smaller, and therefore it is suitable for thin boundary layer problems. Interestingly, this is432

in contrast with existing PINN methods that lose accuracy as the perturbation parameter decreases.433

Another advantage of BL-PINN compared to other PINN approaches is its natural incorporation434

of the perturbation parameter (e.g., diffusion coefficient) into the solution. That is, one can re-435

evaluate the solution without retraining with new parameters. In addition, BL-PINN can add436

parallel networks as higher order approximations to the solution instead of increasing the degrees437

of freedom in each network. Each of these higher order approximation networks is trained based438

on a different equation and could have an arbitrary architecture independent of the other networks.439

This could be somewhat compared to p-refinement in finite element method as opposed to an h-440

refinement analogy where one would use more collocation points. One disadvantage of BL-PINN441

is the higher computational cost. For instance, in most examples shown in this paper, two neural442

networks (inner and outer) were used to approximate the solution. However, similar to XPINN,443

these neural networks could possess independent architectures and accuracy based on the region444

of interest (inner vs outer). In terms of computational cost, BL-PINN requires at least two neural445

networks to be trained (more networks if higher order approximation is required), and therefore has446

roughly twice the computational cost of PINN for the same number of epochs. Nevertheless, one447

has the freedom to reduce the outer network size to improve computational cost. For instance, in448

the limit where the outer network is dropped (Fig. 10), BL-PINN will just need to train one neural449

network similar to PINN.450

An interesting observation in our results was that BL-PINN was capable of finding accurate451

surface concentration patterns in the boundary layer (our region of interest) even without producing452

necessarily accurate results in the outer region. While this might be surprising at first, our group453

has previously shown similar results in the context of high Peclet and high Schmidt number mass454
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transport problems where thin boundary layers are formed (Arzani et al., 2016; Farghadan and455

Arzani, 2019). That is, such mass transport problems could be reduced to a surface transport456

problem where the surface concentration patterns are determined by the WSS (a scale of near-wall457

velocity) vector field. To further investigate this scenario, we performed a simulation in test case 7458

where we only considered the inner neural network and at the matching interface forced the neural459

network to be equal to zero (instead of coupling it to the outer network). This could be perceived as460

a near-wall transport model in PINN where we are just studying transport within the boundary layer461

and assuming the outer region to have minimal influence on the results. Interestingly, Fig. 10 shows462

promising results for this approach where the surface concentration patterns are very similar to the463

original BL-PINN approach. We should highlight that solving high Peclet mass transport problems464

even with well established numerical methods such as finite element method is challenging and it465

is not surprising to see inaccurate PINN results. For instance, various stabilization methods have466

been proposed in the finite element literature for overcoming these numerical difficulties (Brooks467

and Hughes, 1982; Codina, 1998; Hansen et al., 2019).468

There are several areas where our study could be improved. Compared to the original PINN469

approach, BL-PINN only demonstrates significant improvement once the boundary layer thickness470

is sufficiently reduced, i.e. for small ε. An example could be seen in Fig. 2b where the original471

PINN can solve the problem due to the boundary layer size. Due to this reason, we did not present472

thin boundary layer problems in the Navier-Stokes equations. If the momentum boundary layer473

thickness is sufficiently reduced (Reynolds number increased), transition to turbulence will occur.474

Therefore, special treatment of turbulence within PINN will be needed (Eivazi et al., 2021). In the475

double gyre flow, BL-PINN could not provide quantitatively accurate concentration patterns in the476

outer region (Fig. 6). This is a well-known problem in advection-dominated transport modeling with477

PINN and could be improved with other approaches such as curriculum learning (Krishnapriyan478

et al., 2021). Alternatively, a hybrid FEM-PINN approach (Mitusch et al., 2021) could be developed479

where a traditional numerical solver such as FEM solves the outer region. Interestingly, BL-PINN is480

capable of correctly resolving the boundary layer region as well as the interface, however, it struggles481

to find the correct solution in the outer region where the original advection-diffusion equation is482

solved without any special treatment. Finally, we demonstrated an example of inverse modeling483

with BL-PINN (test case 5). More complicated inverse modeling examples such as finding velocity484

fields from concentration (Raissi et al., 2020) could be investigated for boundary layers in future485

work.486
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5. Conclusion and Future Directions487

We presented BL-PINN, a new theory-guided/model-driven extension of PINN for solving thin488

boundary layer problems. In the benchmark problems investigated, BL-PINN demonstrated ex-489

cellent results and significantly outperformed prior PINN approaches, which could not provide490

any meaningful results for solutions containing large gradients. BL-PINN was designed based on491

asymptotic expansions and singular perturbation theory, and therefore the designed network is par-492

tially interpretable. Finally, thanks to the analytical incorporation of the perturbation parameter493

in asymptotic expansions, BL-PINN naturally incorporates the perturbation parameter of interest494

(e.g., diffusion coefficient) and does not need to be retrained during parametric evaluations.495

There are several additional problems for which BL-PINN could potentially be utilized. Deep-496

ONets (Lu et al., 2021) and physics-informed DeepONets (Wang et al., 2021b) have been recently497

introduced for learning operators and parametric solutions. Theory-guided and model-driven de-498

signs similar to BL-PINN could be used to facilitate parametric learning of problems where variation499

in parameters leads to extreme behavior in the solution and large gradients. Boundary layer control500

is another application area where flow measurement and data-driven modeling within boundary501

layers are necessary (Bagheri et al., 2009; Belson et al., 2013). Unsteady boundary layers could502

occur for systems of differential equations with multiscale temporal behavior, where the solution503

rapidly changes in time (Verhulst, 2005; Kutz, 2020). BL-PINN could be applied to such dynam-504

ical systems problems. Characterizing multiple time-scale behavior in chaotic dynamical systems505

with perturbation methods is another relevant example (Mease et al., 2016). Singular perturbation506

problems also occur in systems of reaction-diffusion or advection-diffusion-reaction equations that507

are commonly used in modeling the spatiotemporal dynamics of disease (Panfilov et al., 2019).508

Finally, similar singular perturbation methods could be used in modeling low Reynolds number509

hydrodynamics (Masoud and Stone, 2019).510
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