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Abstract
Effectively evaluating visualization techniques is a difficult task often assessed through feedback from user studies
and expert evaluations. This work presents an alternative approach to visualization evaluation in which brain
activity is passively recorded using electroencephalography (EEG). These measurements are used to compare
different visualization techniques in terms of the burden they place on a viewer’s cognitive resources. In this paper,
EEG signals and response times are recorded while users interpret different representations of data distributions.
This information is processed to provide insight into the cognitive load imposed on the viewer. This paper describes
the design of the user study performed, the extraction of cognitive load measures from EEG data, and how those
measures are used to quantitatively evaluate the effectiveness of visualizations.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: General—Human Factors,
Evaluation, Electroencephalography

1. Introduction
Efficient visualizations facilitate the understanding of data
sets through an appropriate choice of visual metaphor.
Within the field of visualization, there exist numerous dis-
play strategies, many of which can be applied to similar
types of data. These various techniques often create distinct
imagery, emphasizing particular data characteristics or visu-
alization goals. In most cases, several rendering techniques
are appropriate; however, some methods may present salient
information more quickly and accurately. The choice of best
visualization technique for a particular data set is difficult to
make. The visualization expert must not only determine an
appropriate technique for the type of data, but also ensure
the chosen method will answer the questions posed by do-
main experts. The difficulty of this choice is exacerbated by
the lack of exhaustive visualization evaluation detailing the
effectiveness of methods for particular types of inquiry.

Often, evaluation of visualization techniques is conducted
through expert assessments and user studies, which typi-
cally judge a visualization using verbal feedback and user
performance. While some measures of usability and effec-
tiveness are relatively easy to quantify, such as increases
in users’ response speed or decreases in their error rates,
others are problematic. For example, it is difficult to as-
sess improved understanding and insight because those met-
rics tend to be highly subjective. Approaches to evaluation
which rely on verbal feedback can be influenced by personal
preference, user expectations, cultural biases within scien-
tific fields, and resistance to change. The work described in

this paper strives to evaluate visualization techniques objec-
tively by using passive, non-invasive monitoring devices to
measure the burden placed on a user’s cognitive resources.

The study we present in this paper explores the amount
of work, defined by cognitive load, needed to interpret a vi-
sualization. We evaluate some simple visualization methods
by measuring the brain activity through electroencephalog-
raphy (EEG). A framework is defined for the processing and
analysis of the acquired EEG sensor data which allows for
the interpretation of difficulty of a visualization task. We be-
lieve the results of this study to be an important advancement
of objective visualization evaluation.

This work offers the following contributions to the field
of visualization analysis and evaluation:
• The use of EEG to inspect brain activity while interpreting

visualizations.
• The use of cognitive load as a objective measure of visu-

alization effectiveness
• The formulation of cognitive load based on its spatial,

spectral, and temporal organization.
• The use of working memory as an estimation of cognitive

load.

2. Visualization Evaluation: A Review
A substantial barrier to the evaluation of visualization tech-
niques is the complexity of the task. Not only must a tech-
nique appropriately portray the data, but it also must suffi-
ciently outperform equivalent rendering techniques. While
appropriate measures for these requirements are difficult to
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Figure 1: The cognitive and memory model of a single trial

formulate, there exists the additional challenge that most vi-
sualization problems are highly application dependent; vi-
sualization techniques that are validated as effective for one
particular type of problem may not perform well for another
one, even if the two are similar. Many visualization tech-
niques are presented with evaluations which rely on tech-
nical improvements such as speedups, or the management
of larger data sets. However, the use of human factors, user
studies or expert evaluations is becoming more common.

User studies are effective ways of evaluating everything
from visualization methods [SZB∗09, LKJ∗05] to complex
environments such as airplane cockpits [SW94] and surgical
simulators [RBBS06]. These classes of user studies gener-
ally use post-experiment surveys in conjunction with timing
and task-related data to form a foundation for additional sta-
tistical analysis. These user studies leverage both empirical
data collected during the user task as well as subjective data
collected after the experiment.

While user studies have become an important tool in the
assessment of visualization methods, they are not always
the best evaluation technique. Kosara, et al. [KHI∗03] show
that user studies are effective at answering specific ques-
tions, such as “Does a specific method of streamline render-
ing show areas of high vorticities better than others?” Sim-
ilarly, Cleveland and McGill [CM84] use evaluation studies
to answer focused questions about data visualized in differ-
ent ways.

Human factors play an important role in the study of
the impact of scientific visualization on research. They are
particularly important during the evaluation of visualization
systems. An example of this type of system is Kosara, et
al. using semantic depth of field [KMH01] in which render-
ings strive to induce perceptual changes in the user. Tory and
Möller [TM04] offer a thorough discussion of human factors
in not only user study methods, but also in visualization de-
sign.

3. Cognitive Load: A Review
Cognition is defined as the process of knowledge acquisi-
tion and reasoning, and is responsible for our understanding
of visualizations through ingestion and interpretation of an
image. Working memory is a central construct of the cog-
nitive process, and the burden placed on working memory
and cognitive load can be used as a means to measure the
efficacy of a visualization. Inspecting brain activity during a

cognitive task offers an opportunity to assess the cognitive
performance associated with various visualization methods.

Cognitive load and working memory are linked concepts
[Eng02]. Working memory is the aspect of short-term mem-
ory responsible for the retrieval, processing, and integration
of data during executive decision making [Bad92]. Figure 1
represents the general sensory and cognitive pathway used
during the interpretation of a visualization. Imagery is first
processed by the visual system and is then organized and
evaluated by the working memory and cognition centers.
Prior knowledge is then used to determine the appropriate
cognitive schema for data interpretation.

The capacity and performance of the neural circuitry that
implements working memory plays a vital role in cognitive
activities. Figure 2 depicts the relationship between work-
ing memory capacity and the various types of cognitive load
present during a single trial [PRS03]. It is useful to distin-
guish between working memory performance and task per-
formance. Task performance is typified by a participants ex-
ternal performance of a task; for example, the time it takes to
complete the task or the ratio of incorrect responses to cor-
rect ones. Working memory performance is measured by the
spectral changes in the alpha and theta frequency bands as
measured by EEG (as described by Klimesch [Kli99]). As
Figure 2 shows, the various cognitive load sub-types remain
constant for a given task, but the working memory capacity
and performance are inversely proportional. This relation-
ship provides a measurable quantity that is used to determine
the overall cognitive load associated with the task.

3.1. Working Memory
Working memory is responsible for the retrieval, manipu-
lation, and processing of task-related information and has
functional importance to a variety of cognitive activities in-
cluding learning, reasoning, and comprehension [Bad92]. It
is often useful to think of the working memory system in
terms of a computer architecture in which working mem-
ory acts as the central processing unit (CPU) with direct
connections to temporary data buffers (RAM) in the form
of short-term memory, and external communications (IO)
through sensory perceptions and resulting reactions [Bad92].
Of course, the actual working memory system is much more
complex than a computer, and therefore dividing up the pro-
cesses of the system is not always possible, as many of the
functions occur across the same neural substrate [CPB∗97].
Although a strict spatial segmentation of the brain in terms of
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Figure 2: The combination of germane, intrinsic, and extra-
neous load to form working memory capacity and the im-
pact of higher cognitive load (bottom curve) on task perfor-
mance(top curve). Note that cognitive load peaks prior to
the user’s response to the task.

working memory activity is impossible, Braver, et al. show
that the working memory processing is measurable in the
prefrontal cortex of the brain [BCN∗97] while Constantini-
dis, et al. explore a more complete neural circuit for spa-
tial working memory [CW04]. Working memory is also di-
vided into visuo-spatial, phonological, and executive sub-
systems [Bad83]. In this work, our processing techniques
focus on the visuo-spatial and executive working memory
circuits by weighting contributions from the prefrontal cor-
tices more heavily than those of the parietal regions.

3.2. Cognitive Load Theory
Cognitive load theory [Swe05] describes the relationship be-
tween the capacity of working memory and the cognitive
demands of a particular task. The core of the theory is that
people have a limited cognitive capacity during learning and
problem solving tasks. The way in which information is pre-
sented can affect the amount of load placed on the work-
ing memory system and thus affect performance [Eng02].
Cognitive load theory distinguishes three types of cognitive
load: germane, intrinsic, and extraneous [CS91]; each dis-
tinctly affecting learning and decision making. The combi-
nation of the three types characterize the overall cognitive
load [SJB07] (Figure 2).
Germane Cognitive Load: Germane cognitive load is the
load devoted to learning new cognitive schema [Swe05].
These schema are internal representations formed in the
learning process which are used over and over and may be
relevant to many tasks. Once these cognitive schema are in
place, the contribution of germane cognitive load to the over-
all load is minimal.
Intrinsic Cognitive Load: Intrinsic cognitive load de-
scribes the demands on working memory capacity gener-
ated by the innate complexity of the information being ex-
amined [Swe05]. This load represents the portion of over-
all cognitive load that is influenced by the difficulty of the
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Figure 3: An example of extraneous cognitive load. Both
figures represent the underlying data; however, the visual
nature the box plot facilitates understanding by taxing the
working memory system less than the numerical description.

underlying task at hand and cannot be manipulated by the
design of the task. An example of intrinsic cognitive load
is the inherent challenge involved in adding two numbers
compared to the greater challenge in solving more advanced
arithmetic problems.

Extraneous Cognitive Load: Extraneous cognitive load
measures the additional load placed on users by the design
of a task [PRS03]. This type of load can be controlled by
the way information is presented [SJB07]. For example, Fig-
ure 3 shows two ways to describe data. On the left, is a nu-
merical description and on the right is a visual one. The box
plot quickly gives a summary of the data through a visual
presentation, while the numerical display requires more ex-
traneous cognitive load to extract the properties of the data.

3.3. Measuring Cognitive Load
One method of measuring the various types of cognitive
loads is by using task completion time and accuracy. An-
other method of measuring cognitive load is the NASA-TLX
test [HKD∗99]. This test describes cognitive load in terms
of subjective responses to a post-experiment survey. How-
ever, EEG-based processing is capable of determining cog-
nitive load magnitude by analyzing the temporal, spectral,
and spatial patterns of brain activity. The Aegis simulation
environment [BLR∗05] was evaluated using EEG to monitor
the amplitude of brain activity induced by situational prop-
erties of the task. In this way, cognitive strains placed on the
participants involved in the study were measured.

In our study, we employ EEG to measure brain activ-
ity related to cognitive load and working memory; however,
other physiological measures, such as pupil dilation or gal-
vanic skin response have also proven useful in assessing
cognitive load [SRT∗07, KTH11]. Physiological measures
in user studies do not always attempt to measure cogni-
tive stresses directly. Recently, eye tracking technology has
shown great utility in studying topics ranging from graph
comprehension [CS98] to the use of contextual cues in vi-
sualization [PCVDW01]. However, it is still unclear to what
degree these techniques capture cognitive responses elicited
by visualization.
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We exploit the spatial, temporal, and spectral organization
of the neural circuits subserving working memory to mea-
sure its performance, as in [CPB∗97]. The neural circuitry is
monitored throughout the experiment using EEG. Although
brain activity used to measure cognition is not visible in the
raw EEG data, each data channel is processed to extract the
spectral components associated with cognition and specif-
ically, working memory [Kli99]. By measuring the perfor-
mance of working memory, we measure the overall cognitive
load imposed on a user in real-time. This real-time measure-
ment cannot easily distinguish one cognitive load sub-type
from another; however, the processing techniques allow us
to make temporally sensitive analyses.

4. User Study of Cognitive Load
This user study is designed to evaluate different visualization
techniques by measuring the amount of extraneous cognitive
load each rendering imposes on the viewer. Because extra-
neous cognitive load is influenced by the way in which infor-
mation is presented to the viewer, measuring its differences
between visualization types provides insight into how the
presentation of the data affects working memory and cogni-
tion. In order to reduce the complexity of this task, we have
chosen to use simple visualization methods in this study. To
this end, we compare variations of the box plot to see which
is most effective in displaying a statistical data distribution.

The box plot is a graphical data analysis construct used
to visually describe the distribution of a data set by indi-
cating the minimum, median, and maximum data values, as
well as the interquartile range (that is, the range between the
25th and 75th percentile). The canonical box plot [Tuk77],
(Figure 4a), does this by encompassing the central 50% of
the data with a box, indicating the median with a crossbar,
and extending lines out to the minimum and maximum val-
ues. Due to the box plot’s simplistic representation of the
underlying data, its use has become prolific in the scientific
community, most notably to express error or a range of vari-
ability within a data set. The extensive use of the box plot
has supported various visual modifications, such as reducing
the number of lines used to depict the plot [PKRJ10, Tuf83]
(Figure 4b-c), or adding information about the density of the
underlying data distribution [Ben88, PKRJ10, HN98] (Fig-
ure 4d-f).

The collection of box plots shown in Figure 4 were com-
pared in this study in order to determine the extraneous cog-
nitive load of each plot type. The plots were created based on
500 different normal distributions of size 100. For each dis-
tribution, the mean and standard deviation were picked uni-
formly random from [0,1] and [0.25, 0.75] respectively. For
a single trial, two data distributions are chosen and displayed
using two types of box plots and the participant is asked to
choose which of the distributions has a larger interquartile
range.

4.1. Extracting Extraneous Cognitive load
EEG measures of cognition account only for overall load
through the tracking of working memory performance; how-

Figure 4: The plots used in the study. The left 3 plots are
variations of the box plot: a) The Box Plot [Tuk77], b) Ab-
breviated Box Plot [PKRJ10], c) Interquartile Plot [Tuf83].
The right 3 are box plots with additional density informa-
tion: d) Vase Plot [Ben88], e) Density Plot [PKRJ10], f) Vi-
olin Plot [HN98].

ever, our interest lies in measuring extraneous cognitive load.
In order to extract extraneous cognitive load from overall
cognitive load, the design of the user study must effectively
control for the other cognitive load sub-types.

Germane cognitive load is controlled for by collecting
subjective data relating to participant expertise. In a post-
experiment survey, each participant rates their ability in in-
terpreting the visualizations, and this information is used
to approximate germane load on a per-user basis. The re-
sponses to each question on the survey are given on a Lik-
ert scale [Lik32], which asks respondents to specify their
level of agreement to a statement. The survey questions are
specifically designed to capture both user expertise in the
interpretation of statistical data as well as the aesthetic qual-
ities of each visualization technique. To negate the cognitive
contribution of germane load, participants were required to
be familiar with one-dimensional distribution data, and thus
had pre-formed cognitive schemas. Germane cognitive load
per participant was then judged to be negligible.

Intrinsic cognitive load is represented by task difficulty.
When comparing various types of box plots, task difficulty
refers to the complexity intrinsicly present in deciphering
differences in the interquartile range of two data sets, inde-
pendent of the plotting method. When comparing images,
the task is facilitated by examining common reference points
within the two images. In the case of assessing which of two
box plots has a larger interquartile range, the relevant com-
mon reference points are the locations of the first and third
quartiles, and the median. The greater the similarity between
the medians, the better the correspondence between the im-
ages, making the underlying task easier. However, as the in-
terquartile ranges of each distribution become similar, deter-
mining which distribution has a larger range becomes more
difficult.

The measure of task difficulty takes into account both the
interquartile range, IQR, defined as the difference between
the first and third quartiles, IQR = Q3−Q1, and the median,
m̃, of the two underlying data distributions. Since we restrict
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Figure 5: A participant is fit with the EEG headset to moni-
tor brain activity for the duration of the 100 trial experiment.
Distribution visualization pairs are presented side-by-side
during each trial and a keyboard is used to enter responses.

the range of the generated distribution to be [0,1], we can
define task difficulty between two distributions, i and j, as
d(i, j) = 0.5(1−|IQRi−IQR j|+ |m̃i−m̃ j|). By formulating
task difficulty in this way, we are guaranteed that each single
trial has a difficulty in the range [0,1] in which 1 represents
the highest degree of difficulty. In practice, task difficulty
and thus intrinsic cognitive load, was uniformly distributed
in the range [0.4,0.8].

5. Data Analysis
Investigating the effects of different visualization techniques
in terms of cognitive load requires the analysis of the var-
ious data products generated during the experiment. Time
series data collected by EEG hardware must be rigorously
processed to extract relevant working memory and cognitive
load measures. Similarly, specific values acquired from user
interaction must be manipulated to determine the task dif-
ficulty and reaction times experienced during each trial. Fi-
nally, each of the various data products must be statistically
analyzed to ensure cognitive load measures are appropriate
for visualization evaluation.

5.1. Data Acquisition
A group of 17 individuals consisting of 10 males and 7 fe-
males participated in the user study. The user study consists
of 100 independent single trials preceded by a resting period
of one minute during which baseline values for EEG are col-
lected. Figure 5 shows a participant during a single trial of
the experiment. Each trial begins with a two second period in
which no images are shown, and is followed by the display
of two box plots, side by side, as shown as the stimulus at the
top of Figure 6. The participant is asked to choose the plot
with the largest interquartile range as quickly as possible,
and respond by pressing the appropriate directional arrow
button on a standard keyboard.

Timing and response data is recorded during the exper-
iment through custom-written display and acquisition soft-
ware. A timer with 10 microsecond resolution was used to
record response times during each of the single trials. In ad-
dition to the timing data used to determine reaction time,

Figure 6: The experimental data collection and analysis
workflow. EEG is collected during each of the 100 trials and
then segmented into Baseline and Stimulus Epochs. These
epochs are then processed using the S-Transform for each
sensor. The resulting time-frequency planes are further pro-
cessed to extract the gravity frequency and energy density
for the theta and alpha bands of frequencies in each epoch.
These values are combined in the Cognitive Analysis result-
ing in a single time series of cognitive load for each sensor.
These time series are then combined through spatially-aware
averaging to form the overall cognitive load for the trial.

each distribution’s central moments and the response given
by the participant are recorded for later analysis.

EEG data is collected at 128 Hz from an Emotiv
EPOC wireless EEG headset (http://www.emotiv.
com). The Emotiv headset exposes 14 data channels with
two bipolar reference electrodes spatially organized using
the International 10–20 system, as seen in Figure 7. The
Emotiv Software Development Kit (SDK) provides a packet
count functionality to ensure no data is lost, a writable
marker trace to ease single trial segmentation tasks, and real-
time sensor contact to ensure quality measurements.

During the experiment, a unique marker value is inserted
into the marker trace to signal the end of the one minute rest-
ing period. Additional markers are inserted to record the on-
set of each new trial, the presentation of each pair of distribu-
tions, and the user response which signals the end of a single
trial. The EEG record is then segmented, using the marker
trace, into the resting segment, used as a baseline measure-
ment of brain activity, and 100 single trials. A single trial
includes a 2 second resting period used to form inter-trial
baseline measurements, followed by the presentation of the
distribution pair. Each trial may be of variable length due to
reaction time differences, so a window of 1.0 seconds sur-
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Figure 7: Sensor placement around the prefrontal cortex of
the 14 data channels in the Emotiv EEG. The regions in red
show the Gaussian weighting used to emphasize the regions
of the brain most related to working memory.

rounding the user response is extracted to form the epoch
collection.

Since our cognitive load measure is computed from EEG,
care must be taken to account for the spatial organization
of the brain. Rowe, et al. discuss the roll of the prefrontal
cortex of the brain in various aspects of working mem-
ory [RTJ∗00]. The spatial activation sites were found to be
quite localized; however, EEG experiences volume conduc-
tion causing activity generated at a single point to be mea-
sured at multiple sensors. To help account for this, spatial
averaging was performed using Gaussian weights centered
at the prefrontal cortex on each brain hemisphere defined in
the 10-20 electrode placement system, as shown in Figure 7.
The parametrization of the Gaussian was set to encompass
sensors F7 and F3 and their contra-lateral pair F4 and F8 in
the first standard deviation. There were no substantial differ-
ences between the left and right hemispheres found during
later analysis.

5.2. EEG Signal Analysis
The first step in processing the raw EEG signals is to seg-

ment the 14 time series (one for each sensor) into individual
trials. Next, each trial is divided into the inter-trial baseline
and the trial stimulation. Both of these tasks use the mark-
ers inserted into the EEG record, as discussed in Section 5.1.
The baseline and stimulus signals are then transformed, us-
ing the S-Transform to determine the power change and fre-
quency shift induced by the stimulation. These values are
used to calculate the cognitive load experienced at each of
the 14 sensors for the trial in question. Spatially averaging
these 14 values gives a single measurement for cognitive
load. Figure 6 shows the workflow of the experiment from
data collection through analysis.

5.2.1. Artifact Detection and Removal
Since EEG measures voltages at the scalp, there are many
possible sources for data contamination that must be ad-
dressed. Artifacts related to eye blinks and other muscle

movements in addition to physical movements of the sen-
sors themselves must be removed before the EEG traces
can be processed. We have adapted work by Berka, et al.
to decontaminate EEG signals generated by Emotiv hard-
ware [BLC∗04] and rely on the Emotiv SDK to automati-
cally detect eye blinks. Since muscle contraction and con-
trol are generally governed outside of the frequency range of
interest [SPK∗97], we are able to use frequency band limit-
ing procedures such as low-pass, high-pass and notch filters
to adequately remove these signal components. If, after re-
moving EEG artifacts, the energy densities of the alpha or
theta frequency bands are changed by more than 20% of
their original values, the trial is removed from all further
analysis. This criterion is informed by the bad-channel re-
moval method discussed by Anderson, et al. [APS07]. In
this study, we threw out 3% of the trials due to excessive
signal degradation from movement and 1.5% due to high
change in spectral densities, totalling 4.47% of the total trials
being removed from further analysis.

5.2.2. Spectral Decomposition of Cognitive Load
In order to understand cognitive load, we must examine the
spectral characteristics of the EEG signals. Based on the
work of Klimesch [Kli99], we focus our analysis on the al-
pha (7.5 – 12.5 Hz) and theta (4 – 7.5 Hz) frequency bands,
which have been identified as reflecting cognitive and mem-
ory performance. We use the S-Transform [Sto07] to decom-
pose the signal into an appropriate time-frequency represen-
tation. The S-Transform was chosen over other transforma-
tions because it offers adaptive spectral and temporal resolu-
tion similar to the Wavelet Transform and is a direct mapping
to the complex Fourier Domain.

To be able to properly assess the spectral evolution of
EEG associated with working memory, each trial is pro-
cessed with respect to its own inter-trial rest period. The
individual alpha and theta frequencies are determined for
both the trial and rest period and their amplitudes mea-
sured [Kli99]. By comparing these values, a shift of both
the individual frequencies as well as their amplitudes are re-
vealed. The degree of change in these amplitudes, weighted
by the amount of shift in the frequency domain, determine
the working memory and cognitive load characteristics for
each single trial, as described in Equation 2.

Our computation of cognitive load derived from EEG uses
the individual mean frequencies in both the alpha and theta
frequency bands. The mean frequency is computed as:

f (ω) =

n−1

∑
i=0

Iω(i) fω(i)

n−1

∑
i=0

Iω(i)

(1)

where ω is the frequency band in question, n is the number
of frequency bins in ω, fi is the frequency at bin i and Ii is
the energy density of ω at frequency bin i. This formulation
of mean frequency is used to compute the frequency shifts
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Figure 8: Results from this experiment suggest a corre-
lation between greater task difficulty and higher cognitive
load. Here, task difficulty is plotted against computed cog-
nitive load and reaction time for each valid trial across all
participants.

in both the alpha and theta wavebands. The frequency shift
of a waveband is given by ft(ω)− fb(ω) where ft is the fre-
quency content determined from EEG collection during each
trial and fb is the frequency content collected during inter-
trial rest periods. Additionally, the change in energy density
in a waveband, ∆| f (ω)|, is the difference of energy densities
at the mean frequencies: ∆| f (ω)|= | ft(ω)|− | fb(ω)|.

Klimesch identified working memory performance de-
creases during task-related stimulation expressed as theta
power decreases with simultaneous alpha power increases
with respect to baseline measurements [Kli99]. We form our
model of cognitive load per trial, L(t), as the combination
of frequency and power changes in both the alpha and theta
bands.

L(t) = ∆| ft(α)| ft(α)−∆| ft(θ)| ft(θ) (2)

6. Cognitive Load User Study Results
Using direct inspection of brain activity during a visualiza-
tion task provides us with additional empirical data regard-
ing the effectiveness of different rendering methods. Be-
cause EEG measurements are not corrupted by the partici-
pant’s subjectivity or the benefit of hindsight, as may be the
case during post-experiment surveys, they are well-suited for
determining the effectiveness of visualization.

Based on our EEG recordings and subsequent analysis,
the canonical Box Plot was found to place the least amount
of strain on the user’s cognitive resources for the task at
hand. Table 1 shows the computed cognitive load for each
plot type using both Gaussian and constant spatial averag-
ing. The table indicates the Box plot and the Density Plot in-
curred the lowest cognitive load scores (in bold) using Gaus-
sian and constant weighting, respectively. This result high-
lights the effect of the spatial averaging on overall cognitive
load. Using Gaussian weights helps account for the brain’s

Box Abbrv. Interquartile Vase Density Violin
Constant 1.101 1.284 1.214 1.571 0.830 1.619
Gaussian 0.815 0.833 1.563 1.203 1.285 1.492

Table 1: Computed cognitive load for each plot type. Con-
stant and Gaussian spatial averaging are shown. Lowest
cognitive load scores are highlighted in bold while highest
scores are italicized.

natural spatial organization, providing a more reliable mea-
sure. Interestingly, the Violin and Interquartile plots induced
the highest cognitive load (in italics). This may be due to
greater visual complexity or the reduction of distinguishable
visual elements; however, the validation of such claims war-
rants additional study.

Reaction time is important in determining working mem-
ory performance and capacity [Ste69]. While reaction time
cannot measure working memory performance directly, it
is an appropriate means of capturing the aggregated perfor-
mance and capacity of working memory. As the role of re-
action time in determining working memory performance is
well-explored [APS07, PAS∗10], we focus our analysis on
the assessment of brain activity via EEG measurement and
processing.

Figure 8 plots the computed cognitive load and the re-
action time from this experiment against the task difficulty
for each trial spanning all participants in the user study.
The figure suggests correlation between task difficulty and
both reaction time as well as the measurement of cognitive
load; as the difficulty of the task increases, so does the com-
puted cognitive load and reaction times. However, there is
a relatively large variance in both cognitive load and reac-
tion times, particularly in the investigation of high-difficulty
tasks. One explanation for this large variance is an incorrect
model for task difficulty. The computed task difficulty (Sec-
tion 5) uses only the median and interquartile range of each
distribution. Exploring different formulations for task diffi-
culty may result in a more robust correlation between each
trial’s computed difficulty and the cognitive load computed.
Additionally, our cognitive load measure weights contribu-
tions from the alpha and theta frequencies equally. It is possi-
ble that a more advantageous combination of theta and alpha
spectral changes exist, but adequately exploring the nuances
of these formulations is beyond the scope of this paper.

6.1. Statistical Analysis
In order to determine significant correlation between the
measured data and visualization type, we employ paired 2-
tailed T-tests. T-tests were used to determine significance
of spectral properties departing from baseline measurements
taken as well as spectral differences between visualization
types. All statistical tests used the null hypothesis that there
is no significant change between the two distributions being
analyzed. Each distribution tested was inspected to verify it
was not multimodal prior to analysis.
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Table 2 displays the maximum significance values (p-
values) as computed for cognitive load by the 2-tailed T-
tests. Of particular interest are the high degrees of similarity
between the Box Plot and Abbreviated Box Plot (Box and
Abbrv. in Table 2) and the Violin and Interquartile Plots (Vi-
olin and Interquartile in Table 2). All tests were performed
with cognitive loads computed using Gaussian weights as
discussed in Section 5.1.

7. Discussion
In this study, we explored different methods of visualizing
distribution data. For each method under consideration, the
cognitive load associated with interpreting the interquartile
range was determined. While each of the visualizations used
for this study displayed the interquartile range of a distri-
bution in some way, not each rendering displayed the same
amount of data associated with each underlying data set. For
example, the Violin Plot rendered the sample density as de-
scribed by its histogram whereas the Box Plot did not. These
differences enable a different set of questions to be asked
about these visualizations that cannot be asked about other
visual representations. This study, like others, focuses on the
effectiveness of visualization method with respect to a single
subset of appropriate interpretation tasks.

Until recently, the expense of EEG technology greatly
limited its application in the field of user studies. The Emo-
tiv EPOC headset used in this experiment provided a cost-
effective means of EEG acquisition. However, although this
system conforms to the international 10-20 standard for elec-
trode placement, getting each electrode in the proper posi-
tion is important and non-trivial. Additionally, the analysis
and interpretation of EEG data remains difficult, requiring
training and expertise.

The visualizations and interpretations required during this
user study were purposefully chosen to be elementary. The
simplicity of this study allowed participants to be cho-
sen from a wide range of potential candidates in order
to minimize the potential for schema creation and over-
representation of germane cognitive load. In addition to con-
trolling germane cognitive load, this decision allowed us to
more completely regulate and estimate the contribution of
intrinsic cognitive load during each single trial. By acknowl-
edging and controlling these two parameters, we were able
to more thoroughly process the resulting data without sub-
stantially complicating the analysis.

Minimizing the visualization and task complexity eased
requirements for the analysis and processing steps used in
this study; however, the experimental design was still diffi-
cult. After determining the appropriate visualizations to use
during the experiment, finding the proper interpretation task
proved to be arduous. Using too simple an interpretation task
did not create enough cognitive load to substantially influ-
ence working memory performance. Meanwhile, employing
too complex a task induced cognitive overload, complicat-
ing analysis. Cognitive overload was identified by the move-
ment of the individual alpha frequency outside of the 8–12

Box Abbrv. Interquartile Vase Density
Violin 0.001 0.001 0.134 0.0015 0.0015

Density 0.001 0.001 0.003 0.002 x
Vase 0.001 0.001 0.0015 x x

Interquartile 0.001 0.001 x x x
Abbrv. 0.216 x x x x

Table 2: Pairwise significance values for cognitive load
of the Box Plot (Box), Abbreviated Box Plot (Abbrv.), In-
terquartile Plot (Interquartile), Vase Plot (Vase), Density
Plot (Density) and Violin Plot (Violin). While most signif-
icance values are below 0.01, some pairs of comparisons
generated similar distributions. The Box Plot and abbrevi-
ated version score similarly as do the Interquartile and Vio-
lin Plots.

Hz band of frequencies, following the results of Klimesch
and Gevins, et al. [Kli99, GS00].

Much work has been done to explore the effects of prac-
tice on cognitive measures, as the introduction of these ef-
fects often confound analysis. Berry, et al. [BZR∗09] found
that practice does not expand the capacity of working mem-
ory and cognition, as was previously thought, but instead
improves the efficiency of data encoding. This finding im-
plies that the inverse relationship between available working
memory capacity and cognitive load is maintained regard-
less of practice during an experiment. The spectral dynamics
of practice effects in cognition were explored by Gevins, et
al. [GSMY97]. Practice was found to decrease reaction time,
but also increase spectral organization. The spectral changes
induced by practice comprised an increase in power and fre-
quency modulation prior to the task onset. To mitigate the
effects of practice in this study, we re-evaluate baseline con-
ditions during the rest period before each trial begins. While
this helps minimize the practice effect in analysis for this
study, re-evaluating baseline performance may not be possi-
ble in more complex, or time-sensitive experiments.

The temporal, spatial, and spectral organization of brain
activity enable both analysis and interpretation. Despite an
adequate tool set for the processing and general analysis of
EEG signals, their interpretation requires domain experts.
The multidisciplinary nature of this study was essential for
proper examination of the results we collected. Without the
close collaboration between computer scientists, neuroscien-
tists, and psychiatrists, the success of this study would have
been jeopardized.

8. Conclusions
This work is not the first user study to take cognitive load
into account during exploration [RTJ∗00], but to the best of
our knowledge it is the first study directly measuring brain
activity using EEG to study cognitive load across multiple
visualization types. Measurements of cognitive load during
user studies provide a mechanism for objectively evaluat-
ing interpretation difficultly of visualizations. The evaluation
method presented here forms the basis for a new and poten-
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tially powerful physiological measurement for the evalua-
tion of visualization techniques during user studies.

Although the traditional methods for determining cogni-
tive load are applicable to general user studies, the methods
implemented here measure cognitive activity in a more di-
rect manner. By inspecting brain activity to determine cog-
nitive load, we prevent the corruption of the measurements
by insights gained after the trial as is possible with many
post-hoc methods. Unfortunately, this type of cognitive mea-
sure is highly sensitive to the specific tasks presented to the
participant. In the case of this study, all tasks focus on deter-
mining interquartile ranges resulting in analysis that is valid
only with respect to this task. Due to this specificity, it is
clear that cognitive load derived from EEG is more difficult
to apply to user studies of more complex tasks that cannot
be simply divided.

Such specificity in user studies is not a new or unexpected
result [KHI∗03]. In this view, user studies should be used to
measure specific relationships of visualization and percep-
tion. This work adds to this paradigm of user evaluations
by contributing an additional measure relating visualization
to cognition. However, because the study of brain activity
through EEG is itself complex, its direct application to the
evaluation of broad or complex visualization tasks may be
limited. We foresee the greatest impact of this work to be in
the evaluation of specific choices within a single visualiza-
tion technique.

9. Future Work
Additional studies exploring the relationship between cog-
nition, working memory, and the visual system may provide
further insights into human factors in scientific visualization.
Such studies would require the quantification of visual com-
plexity, and focus on both the working memory centers and
the visual system [EBJ∗88].

This study presents a basis on which other studies may
build. Of particular interest to the visualization community
is the investigation of cognitive load from more advanced vi-
sualization techniques. Additional experiments will investi-
gate the same data representation methods used in this study
with respect to a wider range of interpretation tasks. Also,
future experiments will be designed to incorporate 2 and 3-
dimensional scalar and vector fields to determine the cogni-
tive differences associated with each visualization technique.
Additionally, studying cognitive implications of visualiza-
tion with respect to a large collection of specific tasks may
result in a more profound understanding of the cognitive ef-
fects of more complex systems not directly addressable by
user studies involving EEG.

Other techniques have shown promise in the measurement
of cognitive performance. Eye tracking and pupillary re-
sponses [KTH11] may provide additional insights into cog-
nitive load with respect to visualization studies. Future ex-
periments must be performed to properly determine the ben-
efits and drawbacks associated with each approach to physi-

ological measurements, with particular attention given to the
appropriate application of the different techniques.

This user study framework can also be applied to the de-
sign of new visualization techniques. By examining extra-
neous and visual cognitive loads during the development of
visualization methods, more optimal design choices may be-
come apparent. By examining and minimizing the overall
cognitive load associated with new visualization techniques,
methods may be developed that are more easily adopted by
domain-specific users and students first learning the science.
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