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We describe the use of the matrix eigenvalue decomposition (EVD)
and pseudoinverse projection and a tensor higher-order EVD
(HOEVD) in reconstructing the pathways that compose a cellular
system from genome-scale nondirectional networks of correlations
among the genes of the system. The EVD formulates a genes �
genes network as a linear superposition of genes � genes decor-
related and decoupled rank-1 subnetworks, which can be associ-
ated with functionally independent pathways. The integrative
pseudoinverse projection of a network computed from a ‘‘data’’
signal onto a designated ‘‘basis’’ signal approximates the network
as a linear superposition of only the subnetworks that are common
to both signals and simulates observation of only the pathways
that are manifest in both experiments. We define a comparative
HOEVD that formulates a series of networks as linear superposi-
tions of decorrelated rank-1 subnetworks and the rank-2 couplings
among these subnetworks, which can be associated with indepen-
dent pathways and the transitions among them common to all
networks in the series or exclusive to a subset of the networks.
Boolean functions of the discretized subnetworks and couplings
highlight differential, i.e., pathway-dependent, relations among
genes. We illustrate the EVD, pseudoinverse projection, and HO-
EVD of genome-scale networks with analyses of yeast DNA mi-
croarray data.

DNA microarrays � eigenvalue decomposition � higher-order eigenvalue
decomposition � pseudoinverse projection � yeast Saccharomyces
cerevisiae cell cycle and mating

DNA microarrays make it possible to record the complete
genomic signals, such as mRNA expression (e.g., refs. 1 and

2) and DNA-bound proteins’ occupancy levels (e.g., ref. 3), that
are generated and sensed by cellular systems. The underlying
genome-scale networks of relations among all genes of the
cellular systems can be computed from these signals (e.g., refs.
4–6). These relations among the activities of genes, not only the
activities of the genes alone, are known to be pathway-
dependent, i.e., conditioned by the biological and experimental
settings in which they are observed (e.g., ref. 7). For example, the
mRNA expression patterns of the yeast Saccharomyces cerevisiae
genes KAR4 and CIK1 are correlated during mating yet anti-
correlated during cell-cycle progression (8). A single genome-
scale nondirectional network of correlations cannot describe the
pathway-dependent differences in relations, such as those be-
tween the expression patterns of KAR4 and CIK1.

Recently, we showed that the matrix singular-value decom-
position (SVD), generalized SVD, and pseudoinverse projection
separate genome-scale signals, i.e., gene and array patterns of,
e.g., mRNA expression and proteins’ DNA binding, into math-
ematically defined patterns that correlate with the independent
biological and experimental processes and cellular states that
compose the signals (9–12). For example, the comparative
generalized SVD of yeast and human mRNA expression during
their cell cycles formulates the yeast expression as a linear
superposition of cell-cycle oscillations, which are common to the

yeast and human, and response to synchronization by the mating
pheromone, which is exclusive to the yeast, and describes a
differential relation in the expression of genes such as KAR4 and
CIK1 that is in agreement with their pathway-dependent activ-
ities (11).

Now, we describe the use of the matrix eigenvalue decom-
position (EVD) and pseudoinverse projection and a tensor
higher-order EVD (HOEVD) in reconstructing the pathways,
or genome-scale pathway-dependent relations among the
genes of a cellular system, from nondirectional networks of
correlations, which are computed from measured genomic
signals and tabulated in symmetric matrices. The EVD for-
mulates a genes � genes network, which is computed from a
‘‘data’’ signal, as a linear superposition of genes � genes
decorrelated and decoupled rank-1 subnetworks. We show
that significant EVD subnetworks might represent functionally
independent pathways that are manifest in the data signal. The
integrative pseudoinverse projection of a network, computed
from a data signal, onto a designated ‘‘basis’’ signal approxi-
mates the network as a linear superposition of only the
subnetworks that are common to both signals, i.e., pseudoin-
verse projection filters off the network the subnetworks that
are exclusive to the data signal. We show that the pseudoin-
verse-projected network simulates observation of only the
pathways that are manifest under both sets of the biological
and experimental conditions where the data and basis signals
are measured. We define a comparative HOEVD that formu-
lates a series of networks computed from a series of signals as
linear superpositions of decorrelated rank-1 subnetworks and
the rank-2 couplings among these subnetworks. We show that
significant HOEVD subnetworks and couplings might repre-
sent independent pathways or transitions among them com-
mon to all or exclusive to a subset of the signals. Boolean
functions of the discretized subnetworks and couplings high-
light known as well as previously unknown differential, i.e.,
pathway-dependent relations between genes. We illustrate the
EVD, pseudoinverse projection, and HOEVD of genome-scale
networks with analyses of mRNA expression data from the
yeast Saccharomyces cerevisiae during its cell cycle (1) and
DNA-binding data of yeast transcription factors that are
involved in cell-cycle, development, and biosynthesis pro-
grams (3).

Mathematical Methods: EVD, Pseudoinverse Projection, and
HOEVD of Networks
Eigenvalue Decomposition. Let the symmetric matrix â1 of size
N-genes � N-genes tabulate the genome-scale nondirectional
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network of correlations among the genes of a cellular system.¶
The network â1 is computed from a genome-scale signal, des-
ignated the data signal, of, e.g., mRNA expression levels mea-
sured in a set of M1 samples of the cellular system using M1 DNA
microarrays and tabulated in the N-genes � M1-arrays matrix ê1,
such that â1 � ê1ê1

T. We compute the EVD of the network â1,

â1 � û1�̂1
2û1

T, [1]

from the SVD of the data signal ê1 � û1�̂1v̂1
T (9, 10, 13). The

M1-‘‘eigenarrays’’ � M1-‘‘eigengenes’’ diagonal matrix �̂1 defines
the M1 nonnegative ‘‘eigenexpression’’ levels, such that the
expression of the mth eigengene in the mth eigenarray is the mth
eigenexpression level of ê1, �1,m � �m��̂1�m� � 0. The orthogonal
transformation matrices û1 and v̂1

T define the N-genes � M1-
eigenarrays and the M1-eigengenes � M1-arrays subspaces,
respectively. The mth column of û1, ��1,m� � û1�m�, lists the
genome-scale expression of the mth eigenarray of ê1. The nth row
of v̂1

T, ��1,n� � �n�v̂1
T, lists the expression of the nth eigengene.

EVD formulates the network â1 as a linear superposition of a
series of M1 rank-1 symmetric ‘‘subnetworks’’ of size N-genes �
N-genes each, where the mth subnetwork is the outer product of
the mth eigenarray with its transpose ��1,m���1,m� (Fig. 5 in
Supporting Appendix, which is published as supporting informa-
tion on the PNAS web site),

â1 � �
m�1

M1

�1,m
2 ��1,m���1,m�. [2]

The significance of the mth subnetwork is indicated by the mth
‘‘fraction of eigenexpression’’ p1,m � �1,m

2 �(�m�1
M1 �1,m

2 ), i.e., the
expression correlation captured by the mth subnetwork relative
to that captured by all subnetworks. Each subnetwork is deco-
rrelated of all other subnetworks, i.e., ��1,m���1,m��1,n���1,n� � 0
for all m � n, since û1 is orthogonal. Each subnetwork is also
decoupled of all other subnetworks, such that there are no
contributions to the network â1 from the M1(M1 � 1)�2 rank-2
symmetric ‘‘couplings’’ among the subnetworks, i.e., ��1,m���1,n�
	 ��1,n���1,m� for all m � n, since �̂1 is diagonal. For a real data
signal ê1, the eigenarrays are unique up to phase factors of 
1,
and therefore the subnetworks are also unique, i.e., data-driven,
except in degenerate subspaces defined by subsets of equal
eigenexpression levels.

Pseudoinverse Projection. Let the matrix b̂ of size N-genes �
L-arrays tabulate the genome-scale signal, designated the ‘‘ba-
sis’’ signal, of, e.g., proteins’ DNA-binding occupancy levels
measured in a set of L samples of the cellular system using L
arrays. We compute the pseudoinverse projection (12, 13) of the
network â1 onto the basis signal b̂,

â13 â2 � �b̂b̂†�â1�b̂b̂†�, [3]

from the projection of the data ê1 onto the basis b̂, ê1 3 ê2 �
b̂b̂†ê1, using the SVD of the basis b̂ � Û�̂V̂T to compute its
pseudoinverse b̂† � V̂�̂�1ÛT. The lth column of Û, ��l� � Û�l�, lists
the genome-scale binding of the lth eigenarray of b̂. The pseudo-
inverse-projected network â2 is unique, i.e., data-driven. For a
real basis signal b̂, b̂b̂† is an orthogonal projection matrix, and the
projected network â2 is symmetric.

We compute the EVD of the projected network â2,

â2 � û2�̂2
2û2

T � �
m�1

M2

�2,m
2 ��2,m���2,m�, [4]

where M2 � min{L, M1}, from the SVD of the projected signal
ê2 � û2�̂2v̂2

T, where the mth column of û2, ��2,m� � û2�m�, lists the
genome-scale expression of the mth eigenarray of ê2. In recon-
structing â2, the pseudoinverse projection filters out of â1 each
of its subnetworks ��1,m���1,m�, which is decorrelated of the series
of L rank-1 symmetric subnetworks ��l���l� that compose the
network b̂b̂T computed from the basis signal b̂, such that
��l���l��1,m���1,m� � 0 for all l � 1, 2, . . . , L (Fig. 6 in Supporting
Appendix).

Higher-Order EVD (HOEVD). Let the third-order tensor {âk} of size
K-networks � N-genes � N-genes tabulate a series of K genome-
scale networks computed from a series of K genome-scale signals
{êk}, of size N-genes � Mk-arrays each, such that âk � êkêk

T for
all k � 1, 2, . . . , K. We define and compute a HOEVD of the
tensor of networks {âk},

â � �
k�1

K

âk � û� �
k�1

K

�̂k
2�ûT � û�̂2ûT, [5]

using the SVD of the appended signals ê � (ê1, ê2, . . . , êK) �
û�̂v̂T, where the mth column of û, ��m� � û�m�, lists the
genome-scale expression of the mth eigenarray of ê. Whereas the
matrix EVD is equivalent to the matrix SVD for a symmetric
nonnegative matrix, this tensor HOEVD is different from the
tensor higher-order SVD (14–16) for the series of symmetric
nonnegative matrices {âk}, where the higher-order SVD is
computed from the SVD of the appended networks (â1, â2, . . . , âK)
rather than the appended signals. This HOEVD formulates the
overall network computed from the appended signals â � êêT as
a linear superposition of a series of M � �k�1

K Mk rank-1
symmetric ‘‘subnetworks’’ that are decorrelated of each other,
â � �m�1

M �m
2 ��m���m�. Each subnetwork is also decoupled of all

other subnetworks in the overall network â, since �̂ is diagonal.
This HOEVD formulates each individual network in the

tensor {âk} as a linear superposition of this series of M rank-1
symmetric decorrelated subnetworks and the series of M(M-1)�2
rank-2 symmetric couplings among these subnetworks (Fig. 7 in
Supporting Appendix), such that

âk � �
m�1

M

�k,m
2 ��m���m�

� �
m�1

M �
l�m	1

M

�k,lm
2 ���l���m� � ��m���l��, [6]

for all k � 1, 2, . . . , K. The subnetworks are not decoupled in any
one of the networks {âk}, since, in general, {�̂k

2} are symmetric but
not diagonal, such that �k,lm

2 � �l��̂k
2�m� � �m��̂k

2�l� � 0. The
significance of the mth subnetwork in the kth network is indi-
cated by the mth fraction of eigenexpression of the kth network
pk,m � �k,m

2 �(�k�1
K �m�1

M �k,m
2 ) � 0, i.e., the expression correlation

captured by the mth subnetwork in the kth network relative to
that captured by all subnetworks (and all couplings among them,
where �k�1

K �k,lm
2 � 0 for all l � m) in all networks. Similarly, the

amplitude of the fraction pk,lm � �k,lm
2 �(�k�1

K �m�1
M �k,m

2 ) indicates
the significance of the coupling between the lth and mth
subnetworks in the kth network. The sign of this fraction
indicates the direction of the coupling, such that pk,lm 
 0
corresponds to a transition from the lth to the mth subnetwork
and pk,lm � 0 corresponds to the transition from the mth to the

¶In this article, m̂ denotes a matrix, �v� denotes a column vector, and �u� denotes a row
vector, such that m̂�v�, �u�m̂, and �u�v� all denote inner products, and �v��u� denotes an outer
product.
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lth. For real signals {êk}, the subnetworks are unique, and the
couplings among them are unique up to phase factors of 
1,
except in degenerate subspaces of �̂.

Interpretation of the Subnetworks and Their Couplings. We parallel-
and antiparallel-associate each subnetwork or coupling with most
likely expression correlations, or none thereof, according to the
annotations of the two groups of x pairs of genes each, with largest
and smallest levels of correlations in this subnetwork or coupling
among all X � N(N � 1)�2 pairs of genes, respectively. The P value
of a given association by annotation is calculated by using combi-
natorics and assuming hypergeometric probability distribution of
the Y pairs of annotations among the X pairs of genes, and of the
subset of y � Y pairs of annotations among the subset of x � X pairs
of genes, P(x; y, Y, X) � (x

X)�1�z�y
x (z

Y)(x�z
X�Y), where (x

X) � X!x!�1(X �
x)�1 is the binomial coefficient (17). The most likely association
of a subnetwork with a pathway or of a coupling between two
subnetworks with a transition between two pathways is that
which corresponds to the smallest P value. Independently, we
also parallel- and antiparallel-associate each eigenarray with
most likely cellular states, or none thereof, assuming hypergeo-

metric distribution of the annotations among the N-genes and
the subsets of n � N genes with largest and smallest levels of
expression in this eigenarray. The corresponding eigengene
might be inferred to represent the corresponding biological
process from its pattern of expression.

For visualization, we set the x correlations among the X pairs
of genes largest in amplitude in each subnetwork and coupling
equal to 
1, i.e., correlated or anticorrelated, respectively,
according to their signs. The remaining correlations are set equal
to 0, i.e., decorrelated. We compare the discretized subnetworks
and couplings using Boolean functions (6).

Biological Results: Yeast Pathways from mRNA Expression and
Proteins’ DNA-Binding Signals
Significant EVD Subnetworks Are Associated with Functionally Inde-
pendent Pathways. We compute the network â1 from the data
signal ê1, which tabulates relative mRNA expression levels of n �
4,153 yeast genes with valid data in at least 15 of the M � 18
samples of a cell cycle time course of a culture synchronized by
the mating pheromone � factor (1). The relative expression level
of the nth gene in the mth sample is presumed valid when the

Fig. 1. Discretized significant EVD subnetworks of the network â1 in the subsets of 150 correlations (red) and anticorrelations (green) largest in amplitude
among all traditionally classified cell-cycle genes of â1, color-coded according to their cell-cycle classifications, M�G1 (yellow), G1 (green), S (blue), S�G2 (red), and
G2�M (orange), and separately also according to their pheromone-response classifications, up-regulated (black) and down-regulated (gray). (a) The first
subnetwork shows pheromone-response-dependent and cell-cycle-independent relations among the genes. (b) The second subnetwork shows pheromone-
response- and cell-cycle-dependent relations. (c and d) The third and fourth subnetworks show cell-cycle-dependent relations that are orthogonal to each other.
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ratio of the measured expression to the background signal is

1.5 for both the synchronized culture and asynchronous ref-
erence. Before computing â1, we use SVD to estimate the
missing data in ê1 (10, 18) and to approximately center the
expression pattern of each gene in ê1 at its time-invariant level
(Supporting Appendix).

EVD of the network â1 uncovers four significant subnetworks,
which capture 
60%, 10%, 5%, and 5%, respectively, of the
expression correlation of â1. These subnetworks are associated
with the independent pathways manifest in the data signal ê1,
following the P values for the distribution of the Y � 1,035 pairs
of the 46 genes that were microarray-classified as pheromone-
regulated (2) among all X � 2,926 pairs of the 77 genes that were
traditionally classified as cell-cycle-regulated (1), and among
each of the subsets of x � 150 pairs of genes with largest and
smallest levels, respectively, of expression correlation (Table 2 in
Supporting Appendix). The associations of the EVD subnetworks
of â1 are consistent with those of the corresponding SVD
eigenarrays of ê1 following the P values for the distribution of the
284 pheromone-regulated genes and that of the 574 genes, which
were traditionally or microarray-classified as cell-cycle-
regulated, among all 4,153 genes and among each of the subsets
of 150 genes with largest and smallest levels, respectively, of
expression (Table 1 in Supporting Appendix). The associations of
the EVD subnetworks of â1 are also consistent with the patterns
of expressions of the corresponding SVD eigengenes of ê1 (Fig.
8 in Supporting Appendix). We visualize the discretized four
subnetworks and their Boolean functions in the subset of 70
genes that constitute the x � 150 correlations in each subnetwork
that are largest in amplitude among the X � 2,926 pairs of
traditionally classified cell-cycle-regulated genes.

The first and most significant subnetwork is associated with
the � factor signal-transduction pathway, where the relations
among the genes depend only on their pheromone-response
classifications. Genes that are up-regulated in response to pher-
omone, and separately also genes that are down-regulated, are
correlated, even when these genes are classified into antipodal
cell-cycle stages. Genes that are up-regulated in response to
pheromone are anticorrelated with genes that are down-
regulated, even when these genes are classified into the same
cell-cycle stages. For example, KAR4, which is up-regulated in
response to pheromone, is correlated with CIK1, which is also
up-regulated, and anticorrelated with CLN2, which is down-
regulated (Fig. 1a), even though the expression of both KAR4
and CLN2 peaks at the cell-cycle stage G1 while the expression
of CIK1 peaks at the antipodal stage S�G2. In the second

subnetwork, which is associated with the exit from the �
factor-induced cell-cycle arrest in M�G1 and the entry into
cell-cycle progression at G1, genes that are up-regulated in
response to pheromone are correlated, independent of their
cell-cycle classification. The relations among genes that are
down-regulated, however, depend on their cell-cycle, rather than
their pheromone-response, classification. For example, CLN2
and CLB2, which encode cyclins of the antipodal stages G1 and
G2�M, respectively, are anticorrelated, even though both are
down-regulated in response to pheromone; and SWI4, which
encodes a G1 transcription factor, is correlated with CLN2 and
anticorrelated with CLB2 (Fig. 1b). In the third and fourth
subnetworks, which are associated with the two pathways of
antipodal cell-cycle-expression oscillations that are orthogonal,
i.e., 	�2 out of phase relative to one another, the relations among
genes depend only on their cell-cycle classifications. For exam-
ple, in the third subnetwork, which is associated with the
cell-cycle-expression oscillations at S vs. those at M, KAR4 is
anticorrelated with CIK1, where KAR4 is correlated, and CIK1
is anticorrelated with ASH1 (Fig. 1c). In the fourth subnetwork,
which is associated with expression at G1 vs. that at G2, KAR4 is
correlated with CLN2 (Fig. 1d).

Boolean functions of the discretized subnetworks highlight
known pathway-dependent relations among genes, common to a
subset of the subnetworks or antipodal across the subnetworks
(Fig. 9 in Supporting Appendix).

Integrative Pseudoinverse-Projected Networks Simulate Observation
of only the Pathways Manifest in both the Data and Basis Signals. We
compute the network â2 by pseudoinverse-projecting the network
â1 onto the basis signal, which tabulates the relative DNA-bound
protein occupancy levels of the 2,120 genes with at least one valid
data point in any one of L � 12 samples that correspond to 12
yeast-cell-cycle transcription factors (3). The relative binding oc-
cupancy level of the nth gene in the lth sample is presumed valid
when the associated P value is �0.1. Similarly, â3 is computed by
projecting â1 onto the basis signal, which tabulates the occupancy
levels of 2,476 genes in 12 samples of transcription factors involved
in developmental programs, such as mating; and â4 is computed by
projecting â1 onto the basis signal, which tabulates the occupancy
levels of 2,943 genes in eight samples of factors involved in
biosynthesis, such as DNA replication. Before computing â2, â3, and
â4 for the 1,588, 1,827, and 2,254 genes at the intersections of â1 and
the proteins’ DNA-binding basis signals, we divide each gene
measurement in each basis signal by the arithmetic mean of the
measurements for that gene in that signal, thus converting the

Fig. 2. Boolean AND intersections of the discretized EVD subnetworks of the pseudoinverse-projected â2 and â3, in the subsets of 200 correlations largest in
amplitude among all traditionally classified cell-cycle genes of â2 and â3, respectively, with these of â1. (a) The first subnetwork of â2 AND fourth subnetwork
of â1. (b) The second subnetwork of â2 AND third subnetwork of â1. (c) The subnetwork of â3 AND first subnetwork of â1.
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signals to DNA-binding levels of each transcription factor relative
to those of all other factors. We also approximately center the
binding pattern of each gene at its transcription factor-invariant
level using SVD (Supporting Appendix).

EVD of the cell-cycle-projected network â2 uncovers only two
significant subnetworks, which capture �55% and 30% of the
expression correlation of â2, respectively, and are associated with
the two pathways of antipodal cell-cycle-expression oscillations at

G1 vs. those at G2 and at S vs. M, respectively [Table 4 (row a) in
Supporting Appendix]. Boolean AND intersection of the discretized
first subnetwork of â2, in the subset of 200 correlations largest in
amplitude among all traditionally classified cell-cycle genes of â2,
with the discretized fourth subnetwork of â1 highlights correlations
among traditionally classified M�G1, G1, and S genes, and anticor-
relations among these genes and G2�M genes, independent of their
responses to pheromone (Fig. 2a). Boolean AND of the second

Fig. 3. Discretized significant HOEVD subnetworks of the series of networks {â1, â2, â3} and their couplings, in the subsets of 100 correlations largest in amplitude
among all traditionally classified cell-cycle genes of {â1, â2, â3}. (a) The first subnetwork shows pheromone-response-dependent only relations among the genes.
(b and c) The second and third subnetworks show orthogonal cell-cycle-dependent relations. (d and e) The couplings between the first and second, and first and
third subnetworks, respectively, both show pheromone-response- and cell-cycle-dependent relations. ( f) The coupling between the second and third
subnetworks shows cell-cycle-dependent only relations.

Fig. 4. Fractions of eigenexpression of the HOEVD subnetworks (a) and their couplings (b) in the individual networks â1 (red), â2 (blue), and â3 (green). The
contributions of each coupling in each individual network cancel out in the overall network â � â1 	 â2 	 â3.
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subnetwork of â2 with the third subnetwork of â1 highlights
correlations among M�G1 genes and their anticorrelations with S
and S�G2 genes (Fig. 2b). The � factor signal-transduction pathway
that is manifest in the data but not in the basis signal is not
associated with either one of the subnetworks of â2. Similarly, EVD
of the development-projected network â3 uncovers only one sig-
nificant subnetwork, which captures 
90% of the expression cor-
relation of â3 and is associated with the � factor signal-transduction
pathway [Table 4 (row b) in Supporting Appendix]. Boolean AND
of the subnetwork of â3 with the first subnetwork of â1 highlights
correlations among genes that are up-regulated in response to
pheromone and their anticorrelations with down-regulated genes,
independent of their cell-cycle classifications (Fig. 2c). The cell-
cycle-expression oscillation pathways that are manifest in the data
but not in the basis signal are not associated with either one of the
subnetworks of â3. EVD of the biosynthesis-projected network â4
uncovers three significant subnetworks, which capture together

90% of the expression correlation of â4, all of which are associated
with the activity of histones that peaks during DNA replication at
the cell-cycle stage S [Table 4 (row c) and Fig. 13 in Supporting
Appendix].

The associations of the EVD subnetworks of the projected
networks â2, â3, and â4 are consistent with the associations of the
corresponding SVD eigenarrays (Table 3 in Supporting Appen-
dix) and eigengenes (Figs. 10–12 in Supporting Appendix) of the
projected signals ê2, ê3, and ê4, respectively.

Comparative HOEVD Subnetworks and Their Couplings Are Associated
with Pathways and the Transitions Among Them Common to the Series
or Exclusive to a Subset of Networks. HOEVD of the series of
networks {â1, â2, â3} uncovers three significant subnetworks, which
capture �40%, 15%, and 9% of the expression correlation of the
overall network â � â1 	 â2 	 â3, respectively, and the three
couplings among these subnetworks, which capture expression
correlations only in the individual networks. The associations of the
HOEVD subnetworks and couplings of {â1, â2, â3} (Table 6 in
Supporting Appendix) are consistent with the associations of the
corresponding SVD eigenarrays (Table 5 in Supporting Appendix)
and eigengenes (Fig. 14 in Supporting Appendix) of the appended
signals ê � (ê1, ê2, ê3), computed for the 868 genes at the intersection
of ê1, ê2, and ê3.

The subnetworks are associated with the independent pathways
that are manifest in the overall network as well as the individual
networks. The first subnetwork, which is associated with the � factor
signal-transduction pathway (Fig. 3a), contributes to the expression
correlations of the network â1 as well as to the development-
projected network â3, but its contribution to the cell-cycle-projected
network â2 is negligible (Fig. 4a). The second and third subnet-
works, which are associated with the two pathways of antipodal

cell-cycle-expression oscillations at G1 vs. that at G2 and at S vs. that
at M, respectively (Fig. 3 b and c), contribute to â1 and â2 but not
to â3. The couplings are associated with the transitions among these
independent pathways that are manifest in the individual networks
only. The coupling between the first and second subnetworks is
associated with the transition between the two pathways of response
to pheromone and cell-cycle expression at G1 vs. that at G2, i.e., the
exit from pheromone-induced arrest and entry into cell-cycle
progression (Fig. 3d). The coupling between the first and third
subnetworks is associated with cell-cycle expression at G1�S vs. that
at M (Fig. 3e). The coupling between the second and third
subnetworks is associated with cell-cycle-expression oscillations at
the two antipodal cell-cycle checkpoints of G1�S vs. G2�M (Fig. 3f).
All these couplings contribute to the expression correlation of â2.
Their contributions to the expression correlations of â1 and â3 are
negligible (Fig. 4b).

Boolean functions of the discretized subnetworks and cou-
plings highlight known as well as previously unknown pathway-
dependent relations among genes that are in agreement with
current understanding of the cellular system of yeast (Fig. 15 in
Supporting Appendix) (19).

Discussion
We have shown that the matrix EVD and pseudoinverse projection
and a tensor HOEVD can separate genome-scale nondirectional
networks of, e.g., mRNA expression and proteins’ DNA-binding
relations among genes into mathematically defined subnetworks
and their couplings that can be associated with functionally inde-
pendent pathways and the transitions among them. In analyses of
genome-scale yeast networks, these subnetworks and couplings
uncover coordinated differential relations among cell-cycle- and
pheromone-regulated genes that are in agreement with reported
pathway-dependent activities of these genes. Possible additional
applications of EVD, pseudoinverse projection, and HOEVD
include reconstruction of pathways and transitions among these
pathways from nondirectional networks of correlations among sets
of orthologous genes, which are computed from genome-scale
signals of different types and from different organisms to elucidate
organism, as well as pathway, dependence of relations among genes
(e.g., refs. 6, 11, 20, and 21).
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