
Integrative analysis of genome-scale data by using
pseudoinverse projection predicts novel correlation
between DNA replication and RNA transcription
Orly Alter*‡ and Gene H. Golub§

*Department of Biomedical Engineering and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712; and §Scientific Computing
and Computational Mathematics Program and Department of Computer Science, Stanford University, Stanford, CA 94305

Contributed by Gene H. Golub, September 13, 2004

We describe an integrative data-driven mathematical framework
that formulates any number of genome-scale molecular biological
data sets in terms of one chosen set of data samples, or of profiles
extracted mathematically from data samples, designated the ‘‘ba-
sis’’ set. By using pseudoinverse projection, the molecular biolog-
ical profiles of the data samples are least-squares-approximated as
superpositions of the basis profiles. Reconstruction of the data in
the basis simulates experimental observation of only the cellular
states manifest in the data that correspond to those of the basis.
Classification of the data samples according to their reconstruction
in the basis, rather than their overall measured profiles, maps the
cellular states of the data onto those of the basis and gives a global
picture of the correlations and possibly also causal coordination of
these two sets of states. We illustrate this framework with an
integration of yeast genome-scale proteins’ DNA-binding data
with cell cycle mRNA expression time course data. Novel correla-
tion between DNA replication initiation and RNA transcription
during the yeast cell cycle, which might be due to a previously
unknown mechanism of regulation, is predicted.

singular value decomposition � generalized singular value decomposition �
DNA microarrays � yeast Saccharomyces cerevisiae cell cycle

Recent advances in high-throughput technologies enable moni-
toring molecular biological signals, e.g., mRNA expression

levels and proteins’ DNA-binding occupancy levels, that corre-
spond to activities of cellular systems, e.g., DNA replication, RNA
transcription, and proteins’ DNA-binding on a genomic scale.
Integrative analysis of these global signals promises to give new
insights into cellular mechanisms of regulation, i.e., global causal
coordination of cellular activities. Integrative analysis of different
types of large-scale molecular biological data requires mathematical
tools that are able to formulate any number of large-scale data sets
in terms of a common frame of reference, while reducing the
complexity of the data to make them comprehensible (1, 2). These
tools should provide data-driven models or mathematical frame-
works for the description of the data, where the variables, i.e., the
patterns that they uncover in the data, and operations, i.e., data
reconstruction and classification in subspaces spanned by these
patterns, may represent some biological reality.

Recently we showed that singular value decomposition (SVD) (3,
4) and generalized SVD (GSVD) (5) provide such data-driven
frameworks for genome-scale molecular biological data. For ex-
ample, the variables of SVD, ‘‘eigengenes’’ and corresponding
‘‘eigenarrays,’’ in the analyses of yeast Saccharomyces cerevisiae cell
cycle time course mRNA expression data (6), and those of GSVD,
‘‘genelets’’ and corresponding ‘‘arraylets,’’ in the comparative anal-
ysis of yeast and human (7) cell cycle time course mRNA expression
data, were shown to correlate with observed genome-scale effects
of known cell cycle regulators and measured samples of the cell
cycle stages that they regulate, respectively. Mathematical recon-
struction of the yeast data in these subsets of eigengenes and
corresponding eigenarrays, or genelets and corresponding arraylets,
was shown to simulate approximately the experimental observation

of the cell cycle progression alone, rather than the cell cycle
progression together with concurrent biological processes and
experimental artifacts. Mathematical classification of yeast genes
and arrays according to their expression of these eigengenes and
eigenarrays, or genelets and arraylets, rather than overall expres-
sion, mapped the data onto cell cycle stages and outlined the
progression of the cell cycle along genes and in time, respectively.

Now we show that pseudoinverse projection (8) provides an
integrative data-driven framework that formulates any number of
genome-scale data sets in terms of a chosen set of data samples, or
profiles extracted mathematically from data samples, which is
designated the ‘‘basis’’ set. Pseudoinverse projection of a data set
onto the basis set is a linear transformation of the data set from the
open reading frames (ORFs) � data-samples space to the data-
samples � basis-samples space, where each of the data samples is
least-squares-approximated as a linear superposition of the basis
profiles. We show that mathematical reconstruction of the data in
the basis may simulate experimental observation of only the cellular
states manifest in the data that correspond to those of the basis.
Mathematical classification of the data samples according to their
reconstruction in the basis, rather than their overall molecular
biological profiles, maps the cellular states of the data onto those of
the basis and gives a global picture of the correlations and possibly
also coordination of these two sets of cellular states. Novel corre-
lations between data samples and basis profiles might be due to
previously unknown mechanisms of regulation.

We illustrate this framework with an integration of yeast
genome-scale proteins’ DNA-binding occupancy data (9) of nine
cell cycle transcription factors (10) and four DNA replication
initiation proteins (11) with the cell cycle time course mRNA
expression data, using as basis sets the eigenarrays and arraylets
determined by SVD and GSVD, respectively.¶

Mathematical Methods: Pseudoinverse Projection
Let the basis matrix b̂, of size N-ORFs or genomic sites � M-basis
profiles, tabulate M genome-scale molecular biological profiles,
measured from a set of M samples or extracted mathematically from
a set of M or more measured samples. The vector in the nth row of
the matrix b̂, �n�b̂, lists the signal of the nth ORF across the different
samples which correspond to the different arrays.� The vector in the
mth column of the matrix b̂, �bm� � b̂�m�, lists the measured
genome-scale signal levels of the mth basis sample. Let the data
matrix d̂, of size N-ORFs � L-data samples, tabulate a genome-
scale molecular biological data set of a different type of data and
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for the same ORFs in the same genome, measured in L samples.
The vector in the lth column of the matrix d̂, �dl� � d̂�l�, lists the
measured genome-scale signal levels of the lth data sample.

Moore–Penrose pseudoinverse projection (8) of the data matrix
d̂ onto the basis matrix b̂ is then a linear transformation of the data
d̂ from the N-ORFs � L-data samples space to the M-basis
profiles � L-data samples space (see Fig. 5 and Appendix, which are
published as supporting information on the PNAS web site),

d̂3 b̂ĉ, b̂†d̂ � ĉ, [1]

where the matrix b̂†, i.e., the pseudoinverse of b̂, satisfies

b̂b̂†b̂ � b̂, �b̂b̂†�T � b̂b̂†, [2]

b̂†b̂b̂† � b̂†, �b̂†b̂�T � b̂†b̂,

such that the transformation matrices b̂b̂† and b̂†b̂ are orthogonal
projection matrices. The pseudoinverse of b̂ is data-driven and
unique. In this space the data matrix d̂ is represented by the matrix
ĉ, which tabulates the correlations between the M vectors that span
the pseudoinverse b̂†, {��m

† �} � {�m�b̂†}, and the L profiles of the
samples that span the data matrix d̂, {�dl�}, such that cml � �m�ĉ�l�
� ��m

† �dl� for all 1 � m � M and 1 � l � L.

Pseudoinverse Computation. We use the SVD of the basis matrix
b̂ � ûŵv̂T, where ŵ is a diagonal nonnegative matrix, ûTû � v̂Tv̂ �
Î, and Î is the identity matrix, to compute the pseudoinverse b̂† �
v̂ŵ�1ûT, such that Eq. 2 is satisfied, and b̂b̂† � ûûT and b̂†b̂ � v̂v̂T

are orthogonal projection matrices. We then compute the pseudo-
inverse correlations ĉ from b̂† and d̂. We also compute the canonical
correlation of each data profile with the basis, 0 � cos �l �
(	m�1

M ��m�ûT�dl��2��dl�dl�)�1�2 � 1.

Integrative Data Reconstruction. The pseudoinverse projection of d̂
onto b̂ allows reconstruction of the data, d̂3 b̂b̂†d̂, where each of
the data samples is least-squares-approximated by a linear super-
position of the basis profiles, �dl� 3 	m�1

M cml�bm�, without elimi-
nating ORFs or samples. For reconstruction and visualization, we
set the arithmetic mean of each ORF across the samples and that
of each sample across the ORFs to zero, such that each ORF and
sample in the reconstructed data set is centered at its sample- or
ORF-invariant level, respectively.

Integrative Data Classification. The reconstructed data samples are
classified by similarity in the contributions of the basis profiles to
their overall measured profiles rather than by their overall mea-
sured profiles alone.

Consider a basis that is determined by SVD analysis of a set of
measured samples, and is spanned by M 
 2 eigenarrays, {�bm�}, two
of which, �b1� and �b2�, span a subspace of interest. We plot the
correlation of ��2

†� with each reconstructed data sample �dl�,
c2l�dl�b̂b̂†�dl��1�2, along the y-axis vs. that of ��1

†� along the x-axis. In
this plot, the distance of each sample from the origin is its amplitude
in the subspace spanned by �b1� and �b2� relative to its overall
reconstructed amplitude, rl � (c1l

2 � c2l
2 )1�2 �dl�b̂b̂†�dl��1�2. The

angular distance of each sample from the x-axis is its phase in the
transition from the profile �b1� to �b2� and back to �b1�, tan �l �
c2l�c1l. We sort the reconstructed samples according to their
angular distances from the x-axis, �l.

Consider also a basis that is determined by GSVD comparative
analysis of two sets of measured samples and is spanned by M 
 2
arraylets of one of these sets, {�bm�}. We approximate this basis with
that spanned by the two vectors 	m�1

M �bm���m�x� and 	m�1
M �bm���m�y�,

where the vectors �x� and �y� least-squares-approximate the corre-
sponding M-genelets subspace, {��m�}, and maximize 	m�1

M

��m�(�x��x� � �y��y�)��m�. We plot the projection of each data sample,
�dl�, from the M-arraylets subspace onto 	m�1

M �bm���m�y�, that is Nl
�1

	m�1
M cml�y��m� along the y-axis vs. that onto 	m�1

M �bm���m�x� along
the x-axis, normalized by its ideal amplitude, where the contribution
of each arraylet to the overall projected sample adds up rather than
cancels out, Nl

2 � 	m�1
M 	k�1

M cmlckl���m�(�x��x� � �y��y�)��k��. In this
plot, the distance of each sample from the origin, rl, is the amplitude
of its normalized projection. An amplitude of 1 indicates that the
contributions of the arraylets add up, and an amplitude of 0
indicates that they cancel out. The angular distance of each sample
from the x-axis, �l, is its phase in the transition from the profile
	m�1

M �bm���m�x� to 	m�1
M �bm���m�y� and back, going through the

projections of all M arraylets in this subspace. Again, we sort the
reconstructed samples according to �l.

Independently, we also parallel- and antiparallel-associate each
data sample with most likely parallel and antiparallel cellular states,
or none thereof, according to the annotations of the two groups of
n ORFs each, with largest and smallest levels of biological signal in
this sample among all N ORFs, respectively. The P value of a given
association by annotation is calculated by using combinatorics and
assuming hypergeometric probability distribution of the K annota-
tions among the N ORFs, and of the subset of k � K annotations
among the subset of n � N ORFs, P(k; n, N, K) � (n

N)�1 	l�k
n

(l
K)(n�l

N�K), where (n
N) � N!n!�1(N � n)!�1 is the binomial coefficient

(12). We define the most likely association of a data sample with a
cellular state as the association which corresponds to the smallest
P value.

Biological Results: Integrative Analysis of mRNA Expression
and Proteins’ DNA-Binding Data
Basis Sets. (i) SVD cell cycle mRNA expression basis. SVD analysis
(3, 4) of relative mRNA expression levels of 4,579 ORFs in 22 yeast
samples measured by Spellman et al. (6) determined two dominant
orthogonal eigenarrays and corresponding eigengenes of similar
significance that span the yeast cell cycle expression subspace (see
Data Sets 1 and 2 and Mathematica Notebook 1, which are
published as supporting information on the PNAS web site). The 22
samples correspond to 18 samples of a cell cycle time course of an
�-factor-synchronized culture, and two samples each of strains with
overexpressed CLN3 and CLB2, which encode G1 and G2�M
cyclins, respectively. One eigenarray was shown to correlate and
anticorrelate with the samples of overexpressed CLN3 and CLB2,
respectively (Fig. 1a). The corresponding eigengene was shown to
correlate with CLN3 and its targets, i.e., genes for which expression
peaks at the transition from G1 to S, and anticorrelate with CLB2
and its respective targets, for which expression peaks at that from
G2�M to M�G1 (Fig. 1b). Classification of the yeast arrays and genes
in the subspaces spanned by these two eigenarrays and eigengenes
gives a picture that resembles the traditional understanding of yeast
cell cycle regulation (13): G1 cyclins, such as Cln3, and G2�M
cyclins, such as Clb2, drive the cell cycle past either one of two
antipodal checkpoints, from G1 to S and from G2�M to M�G1,
respectively (Fig. 1c). The SVD cell cycle mRNA expression basis
we use is spanned by the M � 9 most significant eigenarrays across
the N � 4,579 ORFs, including the two eigenarrays that span the
SVD cell cycle expression subspace. (ii) GSVD cell cycle mRNA
expression basis. GSVD comparative analysis (5) of mRNA expres-
sion of 4,523 yeast and 12,056 human ORFs in 18 samples each of
time courses of �-factor-synchronized yeast culture (6), and double
thymidine block-synchronized HeLa cell line culture measured by
Whitfield et al. (7), determined six dominant genelets and corre-
sponding six yeast and six human arraylets, at ���3, 0 and ��3
initial phases, of similar significance in both data sets that span the
yeast and human common cell cycle expression subspace (Data Sets
2, 3, and 4 and Mathematica Notebook 1, which are published as
supporting information on the PNAS web site). The two 0-phase
yeast arraylets were shown to correlate with cell cycle transition
from G2�M to M�G1, in which the yeast culture is synchronized
initially, and anticorrelate with that from G1 to S (Fig. 1d). The two
0-phase human arraylets were shown to anticorrelate with the
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transition from G2�M to M�G1, and to correlate with that from G1
to S, in which the human culture is synchronized initially. The two
shared 0-phase genelets were shown to correlate with 0-phase
oscillations of both yeast and human genes (Fig. 1e). Simultaneous
classification of the yeast and human arrays and genes in the
subspaces spanned by the six yeast and six human arraylets, and six
shared genelets, respectively, gives a picture that resembles the
traditional understanding of the biological similarity in the regula-
tion of the yeast and human cell cycles (13), i.e., two antipodal
checkpoints, at the transition from G1 to S and at that from G2�M
to M�G1, that are regulated independently of other cell cycle events
(Fig. 1f). The GSVD cell cycle mRNA expression basis we use is
spanned by the six yeast arraylets across the 4,523 ORFs.

Data Sets. (i) Proteins’ DNA-binding data. This data set tabulates
the relative DNA-bound protein occupancy levels of the N �
2,928 ORFs with at least one valid data point in any one of L �
13 samples, which correspond to the nine yeast cell cycle
transcription factors measured by Simon et al. (10) and four yeast
replication initiation proteins measured by Wyrick et al. (11)
(Data Set 5, which is published as supporting information on the
PNAS web site). The relative binding occupancy level of the nth
ORF in the lth sample is presumed valid when the P value
calculated by either Simon et al. or Wyrick et al. that is associated
with the measured relative binding occupancy signal is �0.1. We
divide each ORF measurement by the arithmetic mean of the
measurements for that ORF, thus converting the data to binding
levels of each protein relative to those of all other proteins.
(ii) �-Factor mRNA expression data. This set tabulates the

relative mRNA expression levels of the 4,636 ORFs with valid
data in all of the 18 samples of a cell cycle time course of an
�-factor-synchronized culture (6) (Data Set 6, which is published
as supporting information on the PNAS web site). The relative
expression level of the nth ORF in the lth sample is presumed
valid when the ratio of the measured expression signal to that of
the background is 
1 for both the synchronized culture and the
asynchronous reference. (iii) CLB2 and CLN3 mRNA overex-
pression data. This set tabulates mRNA expression of 5,840
ORFs with valid data in four samples, two samples each of strains
with overexpressed CLN3 and CLB2, which encode G1 and
G2�M cyclins, respectively (6) (Data Set 7, which is published as
supporting information on the PNAS web site). (iv) CDC15
mRNA expression data. This set tabulates mRNA expression of
4,122 ORFs with valid data in all 24 samples of a cell cycle time
course of a yeast CDC15 mutant culture synchronized by
temperature change (6) (Data Set 8, which is published as
supporting information on the PNAS web site).

Pseudoinverse Reconstruction of the Proteins’ DNA-Binding Data in
the mRNA Expression Bases. Of the 2,227 and 2,139 ORFs in the
intersections of the 2,928 ORFs of the proteins’ DNA-binding data
set and the 4,579 and 4,523 ORFs of the SVD- and GSVD-cell cycle
mRNA expression bases, 400 and 377 ORFs were microarray-
classified, and 58 and 60 were traditionally classified as cell cycle-
regulated, respectively. In these intersections, at least one canonical
correlation of each binding profile with either the SVD or GSVD
bases is 
0.1 (see Fig. 6 and Mathematica Notebook 2, which are
published as supporting information on the PNAS web site). We

Fig. 1. The SVD (3, 4) and GSVD (5) cell cycle mRNA expression subspaces. (a) Normalized array correlation with the ��2-phase eigenarray along the y-axis vs.
that with the 0-phase along the x-axis, color-coded according to the classification of the arrays into the five cell cycle stages by using combinatorics: M�G1 (yellow),
G1 (green), S (blue), S�G2 (red), and G2�M (orange). The dashed unit and half-unit circles outline 100% and 25% of overall normalized array expression in this
subspace. (b) Normalized correlation of each of the 646 cell cycle-regulated genes with the two corresponding eigengenes, color-coded according to either the
traditional or microarray classifications. (c) The SVD picture of the yeast cell cycle. (d) Array expression, projected from the six-arraylets GSVD subspace onto
��2-phase along the y-axis vs. that onto 0-phase along the x-axis. The dashed unit and half-unit circles outline 100% and 50% of added up (rather than canceled
out) contributions of the six arraylets to the overall projected expression. The arrows describe the projections of the ���3-, 0-, and ��3-phase arraylets. (e)
Expression of the 612 cell cycle-regulated genes, projected from the six-genelets GSVD subspace onto ��2-phase along the y-axis vs. that onto 0-phase along the
x-axis. ( f ) The GSVD picture of the yeast cell cycle.
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reconstruct the proteins’ DNA-binding data in the SVD and GSVD
bases by using pseudoinverse projections in these intersections (Fig.
2). With the ORFs sorted according to their SVD and GSVD cell
cycle phases, the ORF variations of the SVD- and GSVD-
reconstructed binding profiles approximately fit cosine functions of
one period and of varying initial phases. With the nine transcription
factors ordered Mbp1, Swi4, Swi6, Fkh1, Fkh2, Ndd1, Mcm1, Ace2,
and Swi5, following Simon et al. (10), the SVD- and GSVD-
pseudoinverse correlations approximately fit cosine functions of
one period and of varying initial phases across the nine samples, and
are approximately invariant across the four samples of the replica-
tion initiation proteins, Mcm3, Mcm4, Mcm7, and Orc1 (Fig. 3).

The SVD- and GSVD-reconstructed transcription factors’ data
approximately fit traveling waves, cosinusoidally varying across the
ORFs as well as the nine samples. Simon et al. (10) observed a
similar traveling wave in the binding data of the nine transcription
factors, ordered as above, across only 213 ORFs in the intersection
of ORFs with a P value �0.001 for at least one data point in any
one of the nine samples, and ORFs that were microarray-classified
as cell cycle-regulated, sorted according to their cell cycle phases as
calculated by Spellman et al. (6). These traveling waves are in
agreement with current understanding of the cell cycle’s progres-
sion of transcription along the genes and in time as it is regulated
by DNA binding of the transcription factors at the promoter regions

of the transcribed genes. Pseudoinverse reconstruction of the data
in both the SVD and GSVD bases, therefore, simulates experi-
mental observation of only proteins’ DNA-binding cellular states
that correspond to those of mRNA expression during the cell cycle.
The SVD- and GSVD-reconstructed replication initiation proteins’
data approximately fit standing waves, cosinusoidally varying across
the ORFs and constant across the four samples, that are antiparallel
to the reconstructed profiles of Mbp1, Swi4, and Swi6, and parallel
to that of Mcm1.

Pseudoinverse Mapping of the Proteins’ DNA-Binding Data onto the
Cell Cycle mRNA Expression Subspaces. We map the SVD- and
GSVD-reconstructed proteins’ DNA-binding data onto the SVD-
and GSVD-cell cycle mRNA expression subspaces, respectively,
associating with each binding profile cell cycle phase and amplitude
(Fig. 4). Projected from the SVD basis, that is spanned by nine
eigenarrays, onto the SVD-cell cycle subspace, which is spanned by
two of these eigenarrays, all SVD-reconstructed samples have at
least 25% of their binding profiles in this subspace, where their
distances from the origin satisfy 0.5 � rl � 1, except for Fkh2.
Projected from the six-dimensional GSVD-cell cycle subspace,
which is spanned by six arraylets, onto the two-dimensional sub-
space that approximates it, 50% or more of the contributions of the
six arraylets to each GSVD-reconstructed sample add up, where the
distance of each array from the origin satisfies 0.5 � rl � 1.

Fig. 2. Pseudoinverse reconstruction of the proteins’ DNA-binding data in the SVD (a and b) and GSVD (c and d) cell cycle mRNA expression bases, with the ORFs
sorted according to their SVD- and GSVD phases, respectively. Raster displays (a and c), with overexpression (red), no change in expression (black), and
underexpression (green), and line-joined graphs (b and d) of the SVD- and GSVD-reconstructed 13 binding profiles along 2,227 and 2,139 ORFs, centered at their
sample- and ORF-invariant levels, show a traveling wave in the nine transcription factors and a standing wave in the four replication initiation proteins.
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Sorting the samples according to their SVD or GSVD phases
gives an array order that is similar to that of Simon et al. (10) and
describes the yeast cell cycle progression from the cellular state of
Mbp1’s binding through that of Swi5’s. The SVD- and GSVD-
mappings of the transcription factors’ binding profiles onto the
expression subspaces are also in agreement with the current un-
derstanding of the cell cycle program. Mapping the binding of
Mbp1, Swi4, and Swi6 onto the cell cycle expression stage G1

corresponds to the biological coordination between the binding of
these factors to the promoter regions of ORFs and the subsequent
peak in transcription of these ORFs during G1. The mapping of
Mbp1, Swi4, and Swi6 onto G1, which is antipodal to G2�M, also
corresponds to their binding to promoter regions of ORFs that

exhibit transcription minima or shutdown during G2�M and to their
minimal or lack of binding at promoter regions of ORFs that have
transcription peaks in G2�M. Similarly, the mapping of Mcm1 onto
G2�M corresponds to its binding to the promoter regions of ORFs
that are subsequently transcribed during the transition from G2�M
to M�G1. The binding profiles of the replication initiation proteins
are SVD- and GSVD-mapped onto the cell cycle stage that is
antipodal to G1. This mapping is consistent with the reconstructed
profiles of Mcm3, Mcm4, Mcm7, and Orc1 being antiparallel to
those of Mbp1, Swi4, and Swi6 and parallel to that of Mcm1. Thus,
DNA binding of Mcm3, Mcm4, Mcm7, and Orc1 adjacent to ORFs
is shown to be correlated with minima or even shutdown of the
transcription of these ORFs during the cell cycle stage G1, suggest-

Fig. 3. Pseudoinverse correlations of the proteins’ DNA-binding data with the SVD (a and b) and GSVD (d and e) cell cycle mRNA expression bases. Shown are
raster displays of ĉ � b̂†d̂, the correlations of the 13 binding profiles with the nine eigenarrays (a) and six arraylets (c) that span the SVD and GSVD bases,
respectively. Also shown are line-joined graphs of the pseudoinverse correlations with the first (red) and second (blue) eigenarrays that span the SVD-cell cycle
expression subspace (b), the third (red), fourth (blue), and fifth (green) arraylets (d), and the 14th (red), 15th (blue), and 16th (green) arraylets that span the GSVD
cell cycle expression subspace (e).

Fig. 4. Pseudoinverse mapping of the proteins’ DNA-binding data onto the SVD (a) and GSVD (b) cell cycle mRNA expression subspaces. (a) Normalized sample
correlation with the ��2-phase eigenarray along the y-axis vs. that with the 0-phase along the x-axis. (b) Sample binding projected from the six-arraylets GSVD
subspace onto ��2-phase along the y-axis vs. that onto 0-phase along the x-axis.
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ing a previously unknown genome-scale coordination between
DNA replication initiation and RNA transcription during the cell
cycle in yeast.

Independently, we also parallel- and antiparallel-associate each
binding profile with most likely parallel and antiparallel cell cycle
stages, or none thereof (Table 1, which is published as supporting
information on the PNAS web site), by calculating the P value for
the distribution of the 506 and 77 ORFs that were microarray and
traditionally classified as cell cycle-regulated, respectively, among
all 2,928 ORFs and among each of the subsets of 200 ORFs with
largest and smallest levels of binding occupancy, respectively (Fig.
7, which is published as supporting information on the PNAS web
site). At least one of the four P values for each profile, following
either the microarray or traditional classification, for either parallel
or antiparallel association, is �0.01. Most of the P values are
��0.01. Almost all parallel and antiparallel associations of each
profile are consistently antipodal, i.e., half of a cell-cycle period
apart. Also, almost all associations following the microarray clas-
sification are consistent with the associations following the tradi-
tional classification. For example, following both the microarray
and traditional classifications, the profile of Mcm1 is associated in
parallel with G2�M and in antiparallel with G1. The SVD and
GSVD mappings of all of the binding profiles onto the cell cycle
transcription subspaces are consistent with these probabilistic as-
sociations by ORF annotations.

Pseudoinverse Integration of the mRNA Expression Data with the
mRNA Expression Bases. We integrate the �-factor cell cycle, CLB2
and CLN3 overexpression and CDC15 cell cycle mRNA expression
data sets with the SVD- and GSVD-cell cycle mRNA expression
bases by using pseudoinverse projections (see Figs. 8–18 and Tables
2 and 3, which are published as supporting information on the
PNAS web site). The results are all consistent and in agreement
with the current understanding of the cell cycle program.

Pseudoinverse Integration of the Replication Initiation Proteins’ DNA-
Binding Data with the Transcription Factors’ DNA-Binding Basis. We
integrate the replication initiation proteins’ DNA-binding data with
the transcription factors’ DNA-binding data after reconstruction in
either the SVD- or GSVD-cell cycle RNA transcription bases (see
Figs. 19 and 20, which are published as supporting information on
the PNAS web site). Again we find that the binding profiles of the
replication initiation proteins, Mcm3, Mcm4, Mcm7, and Orc1, are
anticorrelated with the profiles of Mbp1, Swi4, and Swi6 and
correlated with the profile of Mcm1.

Discussion
We showed that pseudoinverse projection can be used for integra-
tive analysis of different types of large-scale molecular biological

data. One consistent picture emerges upon integrating genome-
scale proteins’ DNA-binding data with the SVD- and GSVD-cell
cycle mRNA expression bases, which is in agreement with the
current understanding of the yeast cell cycle program. This picture
correlates the binding of replication initiation proteins with minima
or shutdown of the transcription of adjacent ORFs during the cell
cycle stage G1, under the assumption that the measured cell cycle
mRNA expression levels are approximately proportional to cell
cycle RNA transcription activity. It is known that replication
initiation requires binding of Mcm3, Mcm4, Mcm7, and Orc1 at
origins of replication across the yeast genome during G1 (14, 15) and
that these replication initiation proteins are involved with transcrip-
tional silencing at the yeast mating loci (16, 17). It was suggested
recently that the transcription factor Mcm1 also binds origins of
replication (18). Either one of at least two mechanisms of regulation
may be underlying this novel genome-scale correlation between
DNA replication initiation and RNA transcription during the yeast
cell cycle: The transcription of genes may reduce the binding
efficiency of adjacent origins, or the binding of replication initiation
proteins to origins of replication may repress, or even shut down, the
transcription of adjacent genes. Thus a data-driven mathematical
model, where the mathematical variables and operations represent
biological reality, has been used to predict a biological principle that
is truly on a genome-scale: The ORFs in either one of the basis or
data sets were selected on the basis of data quality alone and were
not limited to ORFs that are microarray or traditionally classified
as cell cycle-regulated, suggesting that the RNA transcription
signatures of yeast cell cycle cellular states may span the whole yeast
genome. This idea is in agreement with the recent observation that
a genome-wide oscillation in transcription gates DNA replication
and the cell cycle (19).

Possible additional applications of pseudoinverse projection in-
clude integrating additional data of different cellular programs, e.g.,
yeast meiosis or invasive growth, and of different type, e.g., DNA
sequence motif abundance in ORFs’ promoter regions, DNA copy
number, mRNA expression, or proteins’ DNA-binding levels, with
the basis set of yeast cell cycle mRNA expression to elucidate the
coordination of these programs in terms of their genomic signals.
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