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We describe a comparative mathematical framework for two
genome-scale expression data sets. This framework formulates
expression as superposition of the effects of regulatory programs,
biological processes, and experimental artifacts common to both
data sets, as well as those that are exclusive to one data set or the
other, by using generalized singular value decomposition. This
framework enables comparative reconstruction and classification
of the genes and arrays of both data sets. We illustrate this
framework with a comparison of yeast and human cell-cycle
expression data sets.
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Recent advances in high-throughput genomic technologies
enable acquisition of different types of molecular biological

data, e.g., DNA-sequence and mRNA-expression data, on a
genomic scale. Comparative analysis of these data among two or
more model organisms promises to enhance fundamental un-
derstanding of the universality as well as the specialization of
molecular biological mechanisms. It also may prove useful in
medical diagnosis, treatment, and drug design. Comparisons of
the DNA sequence of entire genomes already give insights into
evolutionary, biochemical, and genetic pathways.

Comparative analysis of mRNA-expression data requires
mathematical tools that are able to distinguish the similar from
the dissimilar among two or more large-scale data sets. These
tools should provide mathematical frameworks for the descrip-
tion of the data, where the variables and operations may
represent some biological reality. Recently we showed that
singular value decomposition (SVD) provides such a framework
for genome-wide expression data (refs. 1–3; see also refs. 4–7).

Now we show that generalized SVD (GSVD) (8) provides a
comparative mathematical framework for two genome-scale
expression data sets. GSVD is a linear transformation of the two
data sets from the two genes 3 arrays spaces to two reduced and
diagonalized ‘‘genelets’’ 3 ‘‘arraylets’’ spaces. The genelets are
shared by both data sets. Each genelet is expressed only in the
two corresponding arraylets, with a corresponding ‘‘angular
distance’’ indicating the relative significance of this genelet, i.e.,
its significance, in one data set relative to that in the other.

We show that a genelet of equal significance in both data sets
may represent a process common to both data sets. The two
corresponding arraylets may represent the cellular states in each
data set that correspond to this common process. A genelet of
no significance in one data set relative to the other may represent
a process exclusive to the latter data set. The corresponding
arraylet of this data set may represent the cellular state that
corresponds to this exclusive process.

We also show that mathematical reconstruction of gene
expression in a subset of genelets may simulate experimental
observation of only the process that these genelets are inferred
to represent. Similarly, reconstruction of array expression in the
subset of corresponding arraylets may simulate observation of
only the corresponding cellular state. Reconstruction of each

data set in two or more subspaces may simulate observation of
genome-scale differential expression in the processes, which
these subspaces are inferred to span. We demonstrate compar-
ative classification of both sets of genes and arrays based on
similarity in their reconstructed rather than overall expression.

We illustrate this framework with a comparison of yeast (9)
and human (10) cell cycle-expression data sets.

Mathematical Methods: GSVD
A single microarray probes the relative expression levels of N1
genes in a single sample. A series of M1 arrays probes the
genome-scale expression levels in M1 different samples, i.e.,
under M1 different experimental conditions. Let the matrix ê1,
of size N1-genes 3 M1-arrays, tabulate the full expression data.
The vector in the nth row of the matrix ê1, ^g1,nu [ ^nuê1, lists the
expression of the nth gene across the different samples that
correspond to the different arrays.§ The vector in the mth
column of the matrix ê1, ua1,m& [ ê1um&, lists the genome-scale
expression measured by the mth array. Let the matrix ê2, of size
N2-genes 3 M2-arrays, tabulate the relative expression levels of
N2 genes under M2 5 M1 [ M , max{N1, N2} experimental
conditions that correspond one to one to the M1 conditions
underlying ê1. This one-to-one correspondence between the two
sets of conditions is at the foundation of the GSVD comparative
analysis of the two data sets and should be mapped out carefully.

GSVD then is simultaneous linear transformation of the two
expression data sets ê1 and ê2 from the two N1-genes 3 M-arrays
and N2-genes 3 M-arrays spaces to the two reduced M-genelets
3 M-arraylets spaces (see Fig. 5, which is published as supporting
information on the PNAS web site, www.pnas.org, and also at
http:yygenome-www.stanford.eduyGSVDy),

ê1 5 û1«̂1x̂21,

ê2 5 û2«̂2x̂21.
[1]

In these spaces the data are represented by the diagonal non-
negative matrices «̂1 and «̂2, which satisfy ^ku«̂1um& [ «1,mdkm $
0 and ^ku«̂2um& [ «2,mdkm $ 0 for all 1 # k, m # M. The mth
genelet is expressed only in the two mth arraylets, each of
which corresponds to one of the two data sets. Therefore, each
genelet is decoupled from all other genelets in both data sets
simultaneously.

The antisymmetric angular distance between the data sets,

um 5 arctan~«1,my«2,m! 2 py4, [2]

indicates the relative significance of the mth genelet, i.e., its
significance in the first data set relative to that in the second in

Abbreviations: SVD, singular value decomposition; GSVD, generalized SVD.
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§In this article m̂ denotes a matrix, uv& denotes a column vector, and ^uu denotes a row vector
such that m̂uv&, ^uum̂, and ^uuv& all denote inner products, and uv&^uu denotes an outer
product.
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terms of the ratio of the expression information captured by this
genelet in the first data set to that in the second. An angular
distance of 0 indicates a genelet of equal significance in both data
sets, with «1,m 5 «2,m; 6py4 indicates no significance in the
second data set relative to the first, with «1,m .. «2,m, or in the
first relative to the second, respectively. The angular distances
are arranged in decreasing order of significance in the first data
set relative to the second such that py4 $ u1 $ z z z $ uM $
2py4. The “generalized fractions of eigenexpression” of each
data set separately indicate the significance of each genelet and
its corresponding arraylet in this data set in terms of the fraction
of the overall expression information that they capture in this
data set alone (see Appendix, Eqs. 4 and 5, and Fig. 6, which are
published as supporting information on the PNAS web site).

The transformation matrix x̂21 defines the M-genelets 3
M-arrays basis set that is shared by both data sets. The trans-
formation matrices û1 and û2 define the N1-genes 3 M-arraylets
and N2-genes 3 M-arraylets basis sets that correspond to the first
and second data sets, respectively. The vector in the mth row of
x̂21, ^gmu [ ^mux̂21, lists the expression of the mth genelet across
the different arrays in both data sets simultaneously. The vectors
in the mth columns of û1 and û2, ua1,m& [ û1um& and ua2,m& [
û2um&, list the genome-scale expression in the mth arraylets of
the first and second data sets, respectively. The genelets are
normalized, such that ^gmugm& 5 1 for all 1 # m # M, but not
necessarily orthogonal superpositions of the genes of the first
and, at the same time, the second data set. The arraylets of either
data set are orthonormal superpositions of the arrays of this data
set such that, in general, x̂21 is nonorthogonal, whereas û1 and
û2 are both orthogonal,

x̂21~x̂21!T Þ Î 5 û1
Tû1 5 û2

Tû2, [3]

where Î is the identity matrix. Therefore, each arraylet of either
data set is decoupled and decorrelated from all other arraylets
of this data set. The genelets and arraylets are unique, and
therefore also data-driven, up to a phase factor of 61, because
each genelet and arraylet capture both parallel and antiparallel
gene- or array-expression patterns, respectively, except in de-
generate subspaces, defined by subsets of equal angular
distances.

GSVD Calculation. From Eqs. 1 and 3, the M-arrays 3 M-arrays
symmetric correlation matrices â1 5 ê1

Tê1 5 (x̂21)T«̂1
2x̂21 and

â2 5 ê2
Tê2 are represented in the M-genelets 3 M-genelets

space by the simultaneously diagonal matrices «̂1
2 and «̂2

2, respec-
tively. In theory, it is possible to calculate the GSVD of the two
data sets ê1 and ê2 by (i) diagonalizing â2

21â1 5 x̂(«̂2
21«̂1)2x̂21 to

obtain x̂; (ii) projecting x̂ onto ê1 and ê2 to obtain «̂1
2 5

(û1«̂1)T(û1«̂1) 5 (ê1x̂)T(ê1x̂) and «̂2
2; and (iii) projecting x̂, «̂1, and

«̂2 onto ê1 and ê2 to obtain û1 5 ê1x̂«̂1
21 and û2. In practice, we

avoid computing the quotient of the correlation matrices, â2
21â1,

and use the numerically robust GSVD algorithm (8, 9) to ob-
tain x̂.

Comparative Pattern Inference. The decorrelation of the arraylets
suggests that some of the significant arraylets of each data set,
i.e., these with the largest generalized fractions of eigenexpres-
sion (see Appendix, Eqs. 4 and 5, and Fig. 6), may represent
independent cellular states, where the corresponding genelets
represent the corresponding regulatory programs, biological
processes, or experimental artifacts that contribute to the overall
expression signal in each data set. The one-to-one correspon-
dence between the two sets of experimental conditions that
underlie the two data sets suggests that among these genelets, a
genelet of equal significance in both data sets with angular
distance of '0 may represent a process common to both data
sets; a genelet of no significance in one data set relative to

the other with angular distance of '6p

4
may represent a process

exclusive to the latter data set. We infer that a genelet represents
a process exclusive to one or common to both data sets when its
expression pattern across the corresponding one or both sets of
arrays is biologically or experimentally interpretable. We asso-
ciate this genelet with a biological process when this inference is
supported by one or two coherent biological themes, reflected in
the functions of the genes of the corresponding one or both data
sets, whose coefficients of this genelet in the GSVD expansion,
as listed in the corresponding one or both arraylets, are largest
in magnitude compared to those coefficients of all other genes.
With this we assume that the corresponding one or both arraylets
represent the cellular states of this exclusive or common process,
respectively. We estimate the probabilistic significance of these
associations by annotations using combinatorics (ref. 10; see
Appendix, Fig. 7, and Table 1, which are published as supporting
information on the PNAS web site).

Comparative Data Reconstruction. The decoupling of the genelets
and both sets of arraylets allows reconstructing either data set in
a given subspace of K-genelets and corresponding arraylets
without eliminating genes or arrays, êi 3 (k51

K «i,kuai,k&^gku,
where i 5 1, 2. For visualization and classification, we set the
arithmetic mean of each genelet across the arrays and that of
each arraylet across the genes to 0, such that the expression of
each gene and array in the reconstructed data set is centered at
its array- or gene-invariant level, respectively.

Comparative Data Classification. Inferring that subsets of genelets
and arraylets represent independent processes or states, exclu-
sive to one or common to both data sets, allows classifying the
genes and arrays of one or simultaneously both data sets by
similarity in their expression of these genelets or arraylets,
respectively, rather than their overall expression. We least-
squares-approximate a subspace spanned by K . 2 genelets with
that spanned by the two orthonormal vectors ux& and uy&, which
maximize (k51

K ^gku(ux&^xu 1 uy&^yu)ugk&. We plot the projection of
each gene of either data set ^gi,nu, where i 5 1, 2, from the
K-genelets subspace onto uy&, (k51

K «i,k^nuai,k&^gkuy&yNi,n, along
the y axis vs. that onto ux& along the x axis, normalized by its ideal
amplitude, where the contribution of each genelet to the overall
projected expression of the gene adds up rather than cancels out,
Ni,n

2 5 (k51
K (l51

K «i,k«i,lu^nuai,k&^ai,lun&^gku(ux&^xu 1 uy&^yu)ugl&u. In
this plot, the distance of each gene from the origin, ri,n, is the
amplitude of its normalized projection. An amplitude of 1
indicates that the genelets add up; 0 indicates that they cancel
out. The phase difference of each gene from the x axis, fi,n, is its
phase in the progression of expression across the genes from ux& to
uy& and back to ux&, going through the projections of all K-genelets
in this subspace (ux&^xu 1 uy&^yu)ugk&. We sort the genes according to
fi,n. Similarly, we plot the projection of each array, uai,m&, from the
K-arraylets subspace onto (k51

K uai,k&^gkuy&, (k51
K «i,k^yugk&^gkum&yNi,m,

along the y axis vs. that onto (k51
K uai,k&^gkux& along the x axis,

normalized by its ideal amplitude, Ni,m
2 5 (k51

K (l51
K «i,k

«i,lu^mugk&^glum&^gku(ux&^xu 1 uy&^yu)ugl&u. We sort the arrays according
to their phase differences from the x axis, fi,m.

Biological Results: Comparison of Yeast and Human Cell-Cycle
Expression Data Sets
Spellman et al. (11) monitored mRNA levels for 6,113 putative
ORFs of the yeast Saccharomyces cerevisiae over two cell-cycle
periods in a yeast culture synchronized initially in the cell-cycle
stage MyG1 by the pheromone a factor, relative to reference
mRNA from an asynchronous culture, at 7-min intervals for 119
min. The data set for the yeast experiments we analyze (see Data
Sets 1–4, which are published as supporting information on the
PNAS web site and MATHEMATICA notebook at http:yygenome-
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www.stanford.eduyGSVDy) tabulates the ratios of gene-
expression levels for the N1 5 4,523 genes with no missing data
in at least 15 of the M1 5 18 arrays. Of these genes, 604 were
classified as cell cycle-regulated by Spellman et al., and 77 were
classified by traditional methods. Whitfield et al. (12) monitored
mRNA levels for 43,198 human gene clones over two and a half
cell-cycle periods in a HeLa cell-line culture synchronized
initially in S by a double-thymidine block, relative to reference
mRNA from an asynchronous HeLa culture, at 2-h intervals for
34 h. The data set for the human experiments we analyze (see
Data Sets 5–8, which are published as supporting information on
the PNAS web site) tabulates the ratios of gene-expression levels
for the N2 5 12,056 clones with no missing data in at least 15 of
the M2 5 18 arrays. Of these clones, 750 were classified as cell
cycle-regulated by Whitfield et al., and 73 were classified by
traditional methods. We estimate the missing data in each data
set using SVD (ref. 2; see Appendix and Figs. 8–11, which are
published as supporting information on the PNAS web site) and
calculate the GSVD of both data sets.

Common Yeast and Human Cell-Cycle Subspace. The time, i.e., array
variations of the third, fourth, and fifth genelets, ^g3u, ^g4u, and
^g5u, that are almost equally significant in both data sets (slightly
more in the yeast data), with 0 , u3, u4, u5 , py16 (Fig. 1), fit
normalized cosine functions of two periods and initial phases of
py3, 0, and 2py3, respectively, superimposed on time-invariant
expression (Fig. 2). The genelets ^g14u, ^g15u, and ^g16u, which are
also almost equally significant in both data sets (slightly more in
the human data), with 2py6 , u14, u15, u16 , 0, fit normalized
cosines of two and a half periods and initial phases of 2py3, py3,
and 0, respectively. Coherent themes of yeast and human cell-
cycle programs emerge from the annotations of the 100 yeast and
100 human genes (13, 14), with largest parallel and separately
also antiparallel contributions from each one of these six gene-
lets as listed in the corresponding yeast and human arraylets (see
Data Sets 9 and 10, which are published as supporting informa-
tion on the PNAS web site). We associate all these six genelets
with the cell-cycle gene-expression oscillations common to both
the yeast and human genomes and manifested in both data sets.
We assume that the corresponding six yeast and six human
arraylets represent the yeast and human cell-cycle cellular states,
respectively. The probabilistic significance of these associations
by annotations, estimated using combinatorics, is high: Most of
the P values, calculated assuming hypergeometric probability
distribution of the annotations among the genes, are orders of
magnitude ,0.01 (ref. 10; see Appendix, Fig. 7, and Table 1).
Following the traditional classifications, the 0-phase genelet ^g4u
is associated in parallel with the yeast cell-cycle stage MyG1, in
which the yeast culture is initially synchronized, and both 0-phase
genelets ^g4u and 2^g16u are associated in parallel with the hu-
man cell-cycle stage S, in which the human culture is initially
synchronized.

Projecting the expression of the 18 yeast arrays from this
six-dimensional yeast arraylets subspace onto the two-
dimensional subspace that approximates it, $50% of the con-
tributions of the six arraylets add up (rather than cancel out) in
the overall expression of 16 arrays, the normalized amplitudes of
which satisfy 0.5 # r1,m , 1 (Fig. 3). Sorting the arrays according
to their phases, {f1,m}, gives an array order similar to that of the
cell-cycle time points measured by the arrays that describes the
yeast cell-cycle progression from the MyG1 stage through G1, S,
SyG2, and G2yM back to MyG1 twice. Because the projection of
the 0-phase arraylets ua1,4& and 2ua1,16&, which correspond to the
0-phase genelets, ^g4u and 2^g16u, is correlated with the arrays

Fig. 1. Yeast and human genelets. (a) Raster display of x̂ 2 1, the expression of
18 genelets in 18 yeast and human arrays simultaneously, centered at their
array-invariant levels. (b) Bar chart of the angular distances showing ^g1u and
^g2u highly significant in the yeast data relative to the human data, ^g3u, ^g4u, ^g5u,
^g6u, ^g14u, ^g15u, and ^g16u almost equally significant in both data sets and ^g17u
and ^g18u highly significant in the human data relative to the yeast data. All
other genelets are significant in neither the yeast data nor the human data
(see Appendix).

Fig. 2. Line-joined graphs of the expression levels of the genelets. (a) ^g3u (red), ^g4u (blue), and ^g5u (green), which are associated with the common yeast and
human cell-cycle gene-expression oscillations, fit dashed graphs of normalized cosines of two periods and initial phases of py3 (red), 0 (blue), and 2py3 (green),
respectively. (b) ^g14u (red), ^g15u (blue), and ^g16u (green), which also are associated with cell-cycle gene-expression oscillations, fit dashed graphs of normalized
cosines of two and a half periods and initial phases of 2py3 (red), py3 (blue), and 0 (green), respectively. (c) ^g1u (red) and ^g2u (blue) are associated with the
exclusive yeast pheromone response, ^g17u (orange) and ^g18u (green) are associated with the exclusive human stress response, and ^g6u (violet) is associated with
both the yeast and human transitions from synchronization response into the cell cycle.
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ua1,1&, ua1,2&, and ua1,10& and also ua1,9& and ua1,18&, we associate
both yeast 0-phase arraylets with the cell-cycle cellular state of
transition from G2yM to MyG1, in which the yeast culture is
synchronized initially. Projecting the expression of the 18 human
arrays from the six-dimensional human arraylets subspace onto
the two-dimensional subspace that approximates it, $50% of the
contributions of the six arraylets add up in the expression of 16
arrays. Sorting the arrays describes the human cell-cycle pro-
gression from S through G2, G2yM, MyG1, and G1yS back to S
two and a half times. Because the projection of the 0-phase
arraylets, ua2,4& and 2ua2,16&, is correlated with the arrays ua2,2&
and ua2,9&, we associate both human 0-phase arraylets with the
cell-cycle stage S, in which the human culture is synchronized.

Projecting the expression of the yeast and human genes from
the six-dimensional genelets subspace onto the two-dimensional
subspace that approximates it, $50% of the contributions of the
six genelets add up in the overall expression of 547 of the 604
yeast genes that were classified as cell cycle-regulated by Spell-
man et al. (11), 709 of the 750 human genes classified by
Whitfield et al. (12), and 71 of the 77 yeast and 71 of the 73
human genes classified by traditional methods (including, e.g., 14
of 16 human histones, that were not classified by Whitfield et al.
as cell cycle-regulated based on their overall expression). Simul-
taneous classification of the yeast and human genes into the five
cell-cycle stages describes the yeast and human cell cycles’
progression along the yeast and human genes, respectively, and
is in good agreement with the classifications by Spellman et al.

and Whitfield et al. and also the traditional ones. Because the
projection of the 0-phase genelets, ^g4u and 2^g16u, is correlated
with yeast genes that peak late in G2yM and early in MyG1 and
human genes that peak in S, we associate ^g4u and 2^g16u with
cell-cycle expression oscillations of yeast at the transition from
G2yM to MyG1 and human at S. This simultaneous classification
therefore outlines a correspondence between the groups of yeast
genes and those of human genes, e.g., yeast genes that peak at
MyG1 correspond to human genes that peak at S, the cell-cycle
stages in which the yeast and human cultures are synchronized
initially, respectively.

With all 4,523 yeast and 12,056 human genes sorted, the gene
variations of the six yeast and six human arraylets approximately
fit one-period cosines of py3, 0, and 2py3 initial phases (Fig. 4)
such that the initial phase of each arraylet is similar to that of its
corresponding genelet. Both sorted and reconstructed yeast and
human expressions approximately fit traveling waves of one-
period cosinusoidal variation across the genes and of two or two
and a half periods across the arrays, respectively.

Exclusive Yeast Pheromone-Response Subspace. The genelets ^g1u
and ^g2u, insignificant in the human data set relative to that of the
yeast, with u1, u2 . py7 (Fig. 1), describe initial transient increase
and decrease in expression, respectively (Fig. 2). A theme of
yeast response to pheromone synchronization emerges from the
annotations of those yeast genes with contributions from ^g1u and
^g2u that are largest in magnitude. The genelet ^g6u, equally

Fig. 3. Yeast (a–c) and human (d–f ) expression reconstructed in the six-dimensional cell-cycle subspaces approximated by two-dimensional subspaces. (a) Yeast
array expression, projected onto py2-phase along the y axis vs. that onto 0-phase along the x axis and color-coded according to the classification of the arrays
into the five cell-cycle stages: MyG1 (yellow), G1 (green), S (blue), SyG2 (red), and G2yM (orange). The dashed unit and half-unit circles outline 100% and 50%
of added-up (rather than canceled-out) contributions of the six arraylets to the overall projected expression. The arrows describe the projections of the 2py3-,
0-, and py3-phase arraylets. (b) Yeast expression of 603 cell cycle-regulated genes projected onto py2-phase along the y axis vs. that onto 0-phase along the x
axis and color-coded according to the classification by Spellman et al. (11) (c) Yeast expression of 76 cell cycle-regulated genes color-coded according to the
traditional classification. (d) Human array expression color-coded according to the classification of the arrays into the five cell-cycle stages: S (blue), G2 (red), G2yM
(orange), MyG1 (yellow), and G1yS (green). (e) Human expression of 750 cell cycle-regulated genes color-coded according to the classification by Whitfield et al.
(12) ( f ) Human expression of 73 cell cycle-regulated genes color-coded according to the traditional classification; the arrows point to 16 human histones that
were not classified by Whitfield et al. as cell cycle-regulated based on their overall expression.
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significant in both data sets with u6 ; 0, describes an initial
transient increase in expression superimposed on cosinusidial
variation. A theme of transition from pheromone response to
cell-cycle progression emerges from the annotations of those
yeast genes with contributions from ^g6u, as listed in the corre-
sponding yeast arraylet ua1,6&, that are largest in magnitude (see

Data Set 9). We associate these three genelets and correspond-
ing three yeast arraylets with the pheromone response, which is
exclusive to the yeast genome. Classification of the yeast genes
and arrays into pheromone-response stages in the subspaces
spanned by these genelets and arraylets, respectively, is in good
agreement with the traditional understanding of this program

Fig. 4. Yeast (a–d) and human (e–h) expression reconstructed in the six-dimensional cell-cycle subspaces with genes sorted according to their phases in
the two-dimensional subspaces that approximate them. (a) Yeast expression of the sorted 4,523 genes in the 18 arrays, centered at their gene- and
array-invariant levels, showing a traveling wave of expression. (b) Yeast expression of the sorted 4,523 genes in the 18 arraylets, centered at their
array-invariant levels. The expression of the arraylets ua1,3&, ua1,4&, ua1,5&, ua1,14&, ua1,15&, and ua1,16& displays the sorting. (c) Yeast cell-cycle arraylet expres-
sion levels ua1,3& (red), ua1,4& (blue), and ua1,5& (green) fit one-period cosines of py3 (red), 0 (blue), and 2py3 (green) initial phases. (d) Yeast cell-cycle
arraylet expression levels ua1,14& (red), ua1,15& (blue), and ua1,16& (green) fit one-period cosines of 2py3 (red), py3 (blue), and 0 (green) initial phases.
(e) Human expression of the sorted 12,056 genes in the 18 arrays centered at their gene- and array-invariant levels showing a traveling wave of expression.
( f ) Human expression of the sorted 12,056 genes in the 18 arraylets centered at their array-invariant levels. The expression of the arraylets ua2,3&, ua2,4&,
ua2,5&, ua2,14&, ua2,15& and ua2,16& displays the sorting. (g) Human cell-cycle arraylet expression levels ua2,3& (red), ua2,4& (blue), and ua2,5& (green) fit one-period
cosines of py3 (red), 0 (blue), and 2py3 (green) initial phases. (h) Human cell-cycle arraylet expression levels ua2,14& (red), ua2,15& (blue), and ua2,16& (green)
fit one-period cosines of 2py3 (red), py3 (blue), and 0 (green) initial phases.
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(ref. 13; Figs. 12–14, which are published as supporting infor-
mation on the PNAS web site).

Exclusive Human Stress-Response Subspace. The genelets ^g17u
and ^g18u are insignificant in the yeast data set relative to that
of the human, with u17, u18 , 2py6. A theme of human
synchronization stress response emerges from the annotations
of those human genes with contributions from ^g17u and ^g18u
that are largest in magnitude. Also, from the annotations of
those human genes with contributions from ^g6u, as listed in the
corresponding human arraylet ua2,6&, that are largest in mag-
nitude emerges a theme of transition from stress response to
cell-cycle progression (see Data Set 10). We associate these
three genelets and corresponding three human arraylets with
this human-exclusive stress response. Classification of the
human genes and arrays into stress-response stages in the
subspaces spanned by these genelets and arraylets, respec-
tively, is in agreement with current understanding of this
program (ref. 12; Figs. 15–17, which are published as support-
ing information on the PNAS web site).

Differential Expression of Yeast Genes in the Exclusive Pheromone-
Response and the Common Cell-Cycle Subspaces. According to their
expression in the yeast-exclusive pheromone-response subspace,
mRNA expression of both yeast genes KAR4 and CIK1 peak
early in the time course (together with that of other genes known
to be involved in the a-factor response) (Fig. 3). In the common
cell-cycle subspace, KAR4 peaks at the G1 cell-cycle stage,
whereas CIK1 peaks almost half a cell-cycle period later (and
also earlier) at SyG2 (Fig. 12). This differential expression of
CIK1 and KAR4 in the response to pheromone program vs. that
of the cell cycle is in agreement with the experimental obser-
vation of Kurihara et al. (15), who showed that induction of CIK1
depends on that of KAR4 during mating, and is independent of
KAR4 during mitosis.

Differential Expression of Human Genes in the Exclusive Stress-
Response and the Common Cell-Cycle Subspaces. In the human-
exclusive stress-response subspace, most human histones reach
their expression minima early (Fig. 3). In the common cell-cycle
subspace, most histones peak early, together with other genes
known to peak in the cell-cycle stage S (Fig. 14). This differential
expression of most histones may explain why these histones do

not appear to be cell cycle-regulated based on their overall
expression.

Conclusions
We have shown that GSVD provides a comparative mathemat-
ical framework for two genome-scale expression data sets, in
which the variables and operations may represent some biolog-
ical reality. Using GSVD in a comparison of yeast and human
cell-cycle expression data sets, we were able to find (i) biological
similarity in these two disparate organisms in terms of their
mRNA expression during their cell-cycle programs; (ii) exper-
imental dissimilarity in terms of yeast and human mRNA
expression during their different synchronization-response pro-
grams; and (iii) differential gene expression in the yeast and
human cell-cycle programs vs. their synchronization-response
programs, respectively.

Possible additional applications of GSVD include comparison
of two genomic data sets, each corresponding to (i) the same
experiment repeated, e.g., using different experimental proto-
cols, to separate the biological signal that is similar in both data
sets from the dissimilar experimental artifacts; (ii) one of two
different types of genomic information (e.g., DNA copy number,
mRNA expression, or protein abundance) collected from the
same set of samples (e.g., tumor samples) to elucidate the
molecular composition of the overall biological signal in these
samples; (iii) one of two chromosomes of the same organism to
illustrate the relation, if any, between these chromosomes in
terms of their, e.g., mRNA expression in a given set of samples;
and (iv) one of two interacting organisms, e.g., during infection,
to illuminate the exchange of biological information in these
interactions.
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