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Abstract

We establish that the information which can be obtained in the measurement of a single system about
the unknown quantum wavefunction of the system is limited to estimates of the expectation values of
the measured observables, with the estimate errors satisfying the uncertainty principle. Only the fully a-
priori known wavefunction could be determined exactly. We consider specifically measurement
schemes which may induce minimal change in the measured system, such as quantum non-demolition
measurements, measurements without entanglement and adiabatic measurements.

A. Introduction

Technology has advanced to the point that single quantum systems can now be controlled.
Examples of this include the squeezing of single wavepackets of light, and the trapping of
single atoms, ions and even DNA molecules. Due to these advances, fundamental questions
in quantum theory are being faced in laboratories all over the world. One of these questions
is that of the meaning of the quantum wavefunction. Quantum theory describes a single
system by a corresponding wavefunction (or state). The wavefunction contains all relevant
information about the single physical system. In order to obtain this information, and deter-
mine the wavefunction experimentally, one needs to consider the statistics of the results of
a series of measurements, where each measurement is performed on a single system in an
ensemble of identical systems (e.g., [1, 2]). Therefore, the wavefunction is said to have a
statistical (or epistemological) meaning. The possibility of determining the quantum wave-
function of a single system from the results of a series of measurements of this system
would give the wavefunction a deeper physical (or ontological) meaning.

Aharonov, Anandan and Vaidman recently showed that the wavefunction of a single
system could be determined from the results of a series of protective measurements of this
system [3, 4]. In the protective measurement scheme, a-priori knowledge of the wavefunc-
tion of the system is used in order to measure this system and protect its wavefunction
from changing at the same time. However, it seems that one should be able to measure the
wavefunction of a single system without any a-priori knowledge if the wavefunction were
physically real. Indeed, Aharonov, Anandan and Vaidman suggested that for a single sys-
tem which is known a-priori to be in an energy eigenstate, an adiabatic measurement may
also be a protective measurement, without requiring full a-priori knowledge of the state of
the system [5], and that a series of adiabatic measurements may determine the unknown
energy eigenstate. Therefore, they argued that the adiabatic measurement accounts for the
physical reality of the quantum energy eigenstate. Also, Royer [6] and Huttner [7] re-
cently discussed the impossibility of determining the unknown spin wavefunction of a spin-
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1/2 particle using reversible measurements. In this reversible measurement scheme, the
changes in the spin wavefunction due to a measurement of the spin are counteracted with a
finite success probability by a subsequent spin measurement. However, the statistics of a
series of successful reversible spin measurements of a single spin-1/2 particle are indepen-
dent of the initial spin wavefunction of the particle, and cannot be used to determine this
unknown wavefunction.

The quantum measurement is composed of three stages: Preparation of a quantum probe,
interaction of the probe with the measured system, i.e., the signal, and an ideal quantum
measurement of the probe which induces reduction in the quantum state of the probe. The
unitary interaction of the probe and the signal leads in general to a deterministic change in
the quantum state of the measured system. Usually, the probe and the signal are entangled
after this interaction, in which case the reduction in the quantum state of the probe leads to
a reduction, i.e., a stochastic change, in the quantum state of the signal. It was recognized
early on that the reduction induced by the measurement process would limit the determina-
tion of the quantum state of a single system. In the words of Bohr [8] ±± `̀ ... phenomena
and their observation ... [are] designated as complementary ...º ±± i.e., the quantum state and
the quantum measurement are mutually exclusive aspects of quantum mechanics. For exam-
ple, according to the projection postulate, an ideal quantum measurement of a single system
would always yield one of the eigenvalues of the measured observable. Usually, this eigen-
value can be used to estimate the expectation value of the observable, i.e., the center posi-
tion of the probability density of the observable, with the estimate error being equal to or
greater than the uncertainty of the measured observable, i.e., the width of the probability
density. The uncertainty of the observable could never be estimated using this single mea-
surement result. In fact, this uncertainty cannot be estimated even if one were to use the
results of additional measurements performed on the single system. After the measurement,
the quantum state of the system is reduced to the eigenstate which corresponds to the
measured eigenvalue. The results of additional measurements of the system would not add
any information about the initial quantum state of the system: The error in the estimation of
the expectation value of the measured observable would not be reduced and the estimation
of the uncertainty would not be possible at all.

In this work we establish the quantum theoretical limit to the information which can be
obtained in the measurement of a single system about the quantum wavefunction of this
system. Specifically, we consider measurement schemes which may induce the minimal
possible change in the wavefunction of the measured system. One may expect a series of
such measurements of a single system to approximate a measurement of an ensemble of
identical systems. For example, one may expect the statistics of these measurement results
to allow estimation of the uncertainties of the measured observables with finite estimate
errors. Or, one may expect the statistics of these measurement results to allow estimation of
the expectation values of the measured observables with the estimation errors being less
than the uncertainties of these observables. These would distinguish a measurement of the
wavefunction from measurements of physical observables. We show that this intuitive pic-
ture fails: Unlike an ensemble measurement, a series of measurements of a single system
does not constitute a measurement of the quantum wavefunction of this system, but a mea-
surement of the physical observables of this system.

In Sec. B, we consider the general model of a series of quantum measurements of a
single system which is initially in an unknown quantum state [9, 10]. We prove that the
information about the unknown quantum state which is contained in the statistics of the
results of these measurements is limited to estimates of the expectation values of the mea-
sured observables, where the estimate errors satisfy the uncertainty principle. The statistics
of the measurement results are independent of the initial uncertainties associated with the
measured observables. This is due to the reduction in the quantum state of the measured
system which is induced by the quantum measurement. In Sec. C, we illustrate this result
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with an example of a series of photon-number quantum non-demolition (QND) measure-
ments of a squeezed state of light [11, 12].

In Sec. D, we derive the general condition for a measurement which does not change the
quantum state of the measured system at all. This measurement is both a QND measure-
ment, which does not lead to a deterministic change in the measured state, and a measure-
ment without entanglement, which does not lead to a reduction, i.e., a stochastic change.
We prove that the only measurement which does not change the state of the measured
system at all, and yet provides information about this state, is that of an observable for
which the state of the measured system is an eigenstate. Therefore, only the fully a-priori
known quantum state of a single system can be determined exactly. In Sec. E, we illustrate
this result with an example of a series of measurements without entanglement of a single
squeezed harmonic oscillator state [13]. In Sec. F, we consider the adiabatic measurement of
the generalized position of a harmonic oscillator eigenstate [14]. We show that the reduction
in the measured energy eigenstate is not avoided exactly, only approximately, and that a series
of adiabatic measurements cannot, in fact, determine an unknown energy eigenstate.

In Sec. G, we conclude that only the fully a-priori known quantum wavefunction of a
single system can be determined exactly from a series of measurements of this system.

B. Series of Quantum Measurements of a Single System

Consider a quantum measurement of the observable q̂ of a single system, i.e., the signal,
which is initially in the pure state jwis, and is described by the density operator
r̂0 � jwis shwj. The generalized quantum measurement is composed of three stages, which
are described by the probability-amplitude operator Ŷ � ph~q1j Û jfip completely [15]: The
preparation of a probe system in the pure state jfip, the interaction Û of the probe with the
signal, and a measurement of the probe which yields the inferred measurement result ~q1

and reduces the probe state to the corresponding eigenstate j~q1ip. The probability of obtain-
ing the measurement result ~q1 is

P�~q1� � Trs �Ŷ r̂0Ŷy� � � dq shqj Ŷ r̂0Ŷy jqis �
�

dq d�qÿ ~q1� P�q� : �1�
After the measurement, the system is described by the density operator r̂ � P�~q1�ÿ1 Ŷ r̂0Ŷy.
From Eq. (1), the corresponding probability density of q̂ depends on the measurement
result ~q1,

P�q; ~q1� � shqj r̂ jqis � P�~q1�ÿ1 d�qÿ ~q1�P�q� : �2�
Next, a precise measurement of q̂ yields the result ~q2 with the conditional probability
P�~q2 j ~q1� �

�
dq d�qÿ ~q2�P�q; ~q1�.

Now consider the statistics of the two measurement results ~q1 and ~q2 [9, 10]. Both
results can be used to estimate the center position of the probability density P�~q1�,
h~q1i �

�
d~q1 P�~q1� ~q1, since

h~q2i �
�

d~q1 P�~q1�
�

d~q2 P�~q2 j ~q1� ~q2 � h~q1i : �3�

However, the width of the probability density P�~q1�, i.e., hD~q2
1i � h~q2

1i ÿ h~q1i2, cannot be
estimated, because

h~q1~q2i �
�

d~q1 P�~q1� ~q1

�
d~q2 P�~q2 j ~q1� ~q2 � h~q2

2i � h~q2
1i ; �4�

and therefore h~q1i2 cannot be estimated.
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If ~q1 and ~q2 were independent results, obtained from two different quantum systems,
which belong to the same ensemble and are, therefore, initially in the same quantum state,
their correlation would be h~q1~q2i � h~q1i h~q2i � h~q1i2. This correlation, then, would provide
the missing information about h~q1i2, and hD~q2

1i could be estimated using both measurement
results. In our case the conditional probability density to obtain the second measurement
result, ~q2, depends on the first measurement result, ~q1. Therefore, the correlation of the two
measurement results, which are taken from the same quantum system, does not give infor-
mation about h~q1i2, rather it gives h~q2

1i.
We conclude that, the main difference between a measurement of an ensemble and a

series of measurements of a single system, in terms of the information which is obtained in
each case, is that an ensemble measurement gives the probability density P�~q1�, and a
series of measurements of a single system does not. This is because the wavefunction of
the measured system changes each time a measurement is performed in accordance with the
measurement result, as a direct consequence of the reduction.

The statistics of the results of a quantum measurement of the observable q̂, as decsribed in
Eq. (1), performed on an ensemble of systems, would always give the probability density P�~q1�.
In order for this ensemble measurement to be a determination of the wavefunction, one should
be able to infer P0�q� � shqj r̂0 jqis, the initial probability density of q̂, using P�~q1�. One may
choose to use a QND measurement of q̂ (e.g., [15, 16]), in which the unitary operator Û which
describes the signal and probe interaction commutes with the measured observable: �Û; q̂� � 0.
(When the initial state of the signal is known, the QND condition is �Û; q̂� jwis � 0). The statis-
tics of the results of a QND measurement of q̂ of an ensemble would give the probability distri-
bution P0�q�. In fact, the probability distribution of q̂ for the ensemble of systems does not
change at all due to the QND measurement of the ensemble. The QND measurement leads only
to the minimal stochstic change in the state of the measured system, and does not lead to any
deterministic change in this state at all. The relation between the reduction and the impossibility
of determining the quantum wavefunction of a single system is, therefore, best illustarted with
an example of a series of QND measurements of a single system.

C. Series of QND Measurements of a Single Squeezed State

Consider a series of photon-number QND measurements [17] of a single squeezed state of
light [Fig. 1]. Each time a measurement is performed, the signal is correlated in an optical
Kerr medium to a squeezed probe state ja; rip, with the excitation jaj2 and the squeezing
parameter r. This process is described by the unitary operator Û�n̂s� � exp �imn̂sn̂p�, where
n̂s and n̂p are the photon-number operators of the signal and probe respectively, and m is
the coupling strength. The second-quadrature amplitude of the probe p̂2 is measured pre-
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Fig. 1. A series of photon-num-
ber QND measurements of a sin-
gle squeezed state of light: In
each measurement the signal is
correlated to a new probe in an
optical Kerr medium. The inset
shows the shift in the phase of
the probe due to this correlation.
The second-quadrature amplitude
of the output probe is measured
precisely by a homodyne detec-
tion. The result of this measure-
ment infers the signal photon-
number.



cisely by a homodyne detection, and if the initial phase of the probe is zero, and the
coupling is weak, m� 1, then the measurement result a2 gives the inferred photon-number,
~n � a2=�jaj m�, with the inference error D2 � eÿ2r=�2jaj m�2. The probability-amplitude op-
erator which describes this measurement Ŷ � ph~nj Û�n̂s� ja; rip, corresponds to a Gaussian
[18] transition probability function, ŶyŶ � N�~n; n; D2�. The photon-number distribution of
the squeezed signal state is a discrete sub- or super-Poissonian distribution, where n � 0. If
the initial signal excitation is large, the initial photon-number distribution of the squeezed
signal can be approximated by a Gaussian P0�n� � N�n; n0; D2

0�.
According to Eq. (2), after a series of k photon-number measurements, the signal photon-

number distribution is Pk�n� � N�n; nk
0; D2

k �, where

nk
0 � D2

k �n0=D2
0 �

Pk
l�1

~nl=D2� ; �5�

D2
k � �1=D2

0 � k=D2� : �6�
After each measurement the width of the photon-number distribution is reduced and its center
shifts toward the measurement result. The diffusion of nk

0, the center position after k measure-
ments, is described statistically by Pk�nk

0� � N�nk
0; n0; kD2

0D2
k=D2�. On average, the center posi-

tion is always at n0. However, the probability of finding the center farther away from n0 in-
creases with the number of measurements. As long as D2=k � D2

0, the variance of nk
0 increases

linearly with the number of measurements, kD2
0D2

k=D2 � k D4
0=D2, and the movement of the

center position is a quantum Brownian motion with a constant diffusion coefficient. As the
photon-number distribution narrows, the average step size of this Brownian motion decreases.
The statistical variance of the center position saturates, and equals the initial photon-number
uncertainty, D2

0. At the same time, the squeezed signal state is reduced to a photon-number
eigenstate. The squeezed state undergoes a quantum Brownian motion, which is saturated due
to its continuous reduction [Fig. 2]. As can be seen from Eqs. (5) and (6), in terms of the total
change in the squeezed signal state, a series of k imprecise photon-number measurements with
the measurement error D2 is equivalent to one precise measurement with the measurement error
D2=k. From Eq. (1), the probability to obtain the series of results �~n1; ~n2; ::: ~nk� is,

P�~n1; ~n2; ::: ~nk�
Qk
l�1

d~nl �
�1
ÿ1

dn N�n; n0; D2
0�
Qk
l�0

d~nl N�~nl; n; D2�

� P�n� dn P�S� dS dWkÿ1 ; �7�
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Fig. 2 The quantum Brownian motion and continuous reduction of the photon-number prob-
ability density of a single squeezed state, in the process of a series of imprecise photon-
number QND measurements. The initial probability density, shown on the left, is centered at
n0 with the width D0. The thick lines describe the statistical diffusion of the center position
of this probability distribution, which reaches D0. The explicit drawings of the probability
density demonstrate its continuous reduction. The effect of the series of imprecise measure-
ments on the squeezed state is equivalent to that of a single precise measurement.



where n �Pk
l�1 ~nl=k and Dn2 �Pk

l�1 �~nl ÿ n�2=�k ÿ 1� are the estimates for the initial
photon-number expectation value and uncertainty respectively, S � ��k ÿ 1�=D2�Dn2, and
dWkÿ1 is a normalized infinitesimal element of the solid angle in k ÿ 1 dimensions with�

dWkÿ1 � 1. The probability distribution of n, P�n� � N�n; n0; D2
0 � D2=k�, is centered at n0.

The variance of n decreases with an increased number of measurements, and as k !1 this
variance reaches its minimal value which equals the initial photon-number uncertainty D2

0.
The estimated expectation value has the same probability error in both cases of an infinite
series of imprecise measurements and one ideal measurement. The probability distribution of
S is a chi-squared distribution [19] P�S� � c2�S;mÿ 1�, which is independent of D2

0, and Dn2

is centered at D2 with the variance 2D4=�k ÿ 1�. Therefore, Dn2 is not a measure of the initial
width of the photon-number distribution D2

0, but of the measurement error D2.
We conlcude that a series of imprecise photon-number QND measurements and a single-

precise measurement of a single squeezed state of light are equivalent, both in terms of the
changes which are induced in the squeezed signal state, and in terms of the information
which is obtained about the initial photon-number distribution of this state. A series of
imprecise photon-number QND measurements of a single squeezed state of light does not
constitute a measurement of the squeezed state, rather it is a measurement of the photon-
number associated with this state. This is due to the reduction in the squeezed state which
is induced by the measurement process ([11, 12] and see also [20]).

D. QND Measurements and Measurements without Entanglement

A quantum measurement which does not change the quantum state of the measured system
at all is both a QND measurement and a measurement without entanglement. Consider
again the three stages of the general quantum measurement process in which the observable
q̂ of a signal system which is intially in the state jwis is being measured: Preparation of a
probe system in the pure state jfip, interaction Û of the probe with the signal, and mea-
surement of the probe which yields the inferred measurement result ~q1 and reduces the
probe state to the corresponding eigenstate j~q1ip. In a QND measurement, the unitary inter-
action is chosen such that it satisfies the QND condition �Û; q̂� � 0, which in terms of the
eigenstates of the measured observable fjqisg is Û jqis � Û�q� jqis. As a result, there is no
deterministic change in the signal due to its unitary interaction with the probe. In general,
the state of the signal after its interaction with the probe is described by the density opera-
tor r̂ � Trp �Û�jwis shwj� �jfip phfj�Ûy�. In a measurement without entanglement the signal
and probe are left disentangled after this interaction, i.e., the signal is left in a pure state
Trs �r̂ r̂� � 1. As a result, there is no reduction, i.e., stochastic change, in the signal due to
a subsequent measurement of the probe.

Writing the initial signal state in terms of the eigenstates of the measured observable,
jwis �

�
dq f �q� jqis, the conditions for a QND measurement and a measurement without

entanglement give the general condition for a quantum measurement which does not
change the state of the signal at all:

Trs �r̂r̂� � � dq jf �q�j2 � dq0 jf �q0�j2 j phfj Ûy�q� Û�q0� jfipj2 � 1 : �8�

With the normalization requirement for jwis,
�

dq jf �q�j2 � 1, this condition becomes

phfj Ûy�q� Û�q0� jfip phfj Ûy�q0� Û�q�jfip � 1 : �9�

From the unitarity of Û�q�, where phfj Ûy�q� Û�q� jfip � 1, and from the normalization
requirement for jfip, where phf j fipp hf j fip � 1, it is obvious that this condition is satis-
fied only if the initial probe state jfip is an eigenstate of the unitary interaction operator.
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However, in this case, the probe state is not changed at all (up to a phase factor) due to the
interaction with the signal, and a subsequent measurement of the probe gives no informa-
tion about the state of the signal (see also [21]).

The above analysis can be repeated writing the initial probe state jfip in terms of the
eigenstates of the interaction operator. In this case, the condition for a measurement which
does not change the state of the measured system jwis,

shwj Ûy�q� Û�q0� jwis shwj Ûy�q0� Û�q� jwis � 1 ; �10�
requires that this state be an eigenstate of the unitary interaction operator, and therefore also
the measured observeble.

We conclude that a measurement process which does not change the state of the mea-
sured system at all, may give some information about the measured system only when this
system is in an eigenstate of the measured observable. All other measurement processes
would either lead to a change in the state of the measured system, or give no information
about this system. Therefore, only the fully a-priori known quantum state of a single sys-
tem can be determined exactly. The relation between the information which is a-priori avail-
able about the quantum state of a single system, and the information which can be obtained
in the quantum measurement of this system, is best illustarted with an example of a series
of measurements without entanglement of a single system.

E. Series of Measurements without Entanglement of a Single Squeezed State

Consider the following measurement scheme of the squeezed harmonic oscillator state
ja; ris, where jaj2 and r are its excitation and squeezing parameter respectively. The signal
is coupled linearly to a squeezed vacuum probe, j0; r0ip, where r0 is the squeezing para-
meter of the probe [Fig. 3]. This interaction is described by the Hamiltonian
Ĥ � �hj�ŝyp̂� ŝp̂y�, where ŝ, ŝy and p̂, p̂y are the annihilation and creation operators of the
signal and the probe respectively. The coupling constant j and the interaction time t define
the transmission coefficient T � cos2 �jt�. In the Heisenberg picture, the time evolution of
the signal and the probe due to their interaction is described by the relations
ŝout �

����
T
p

ŝin ÿ i
������������
1ÿ T
p

p̂in, and p̂out �
����
T
p

p̂in ÿ i
������������
1ÿ T
p

ŝin, where ŝin, p̂in and ŝout, p̂out

are the annihilation operators of the signal and the probe, before and after the interaction,
respectively. A measurement of p̂out, therefore, gives information about ŝin.

The signal and probe interaction causes a deterministic change in the state of the signal.
In general, the signal and probe are entangled after this interaction, and a measurement of
the probe would induce a reduction, an additional stochastic change in the state of the
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Fig. 3 Measurement without entangle-
ment of a squeezed state of light: The
signal and probe, with opposite squeez-
ing parameters, interact linearly in a
beam splitter. The up and bottom insets
show the changes in the signal and the
probe, respectively. The excitation of
the signal is reduced, while the excita-
tion of the probe is increased.



signal. To find the special cases in which the signal and probe are disentangled after their
interaction, examine their time evolution in the SchroÈdinger picture: Using normal-ordering
of the unitary time evolution operator, Û�t� � exp �ÿiĤt=�h�, and writing the squeezed in-
put signal and probe states in the coherent states representation, Û�t� ja; ris j0; r0ip� � �d2b=p� shb j a; ris

� �d2g=p� phg j 0; r0ip Û�t� jbis jgip, the time evolution of a
squeezed input signal and a squeezed input vacuum probe can be evaluated [22]. This leads
(after some math) to the conclusion that the output signal and probe are disentangled when
their squeezing parameters, r and r0, satisfy the relation r0 � ÿr � if, where f is an arbi-
trary phase. The squeezing of the probe is, therefore, required to be `̀ oppositeº to the
squeezing of the signal, hDp̂2

1; ini � hDŝ2
2; ini andhDp̂2

2; ini � hDŝ2
1; ini. The disentangled output

signal and probe are of different excitations, but the same noise distributions as the input
signal and probe, respectively,

Û�t� ja; ris j0;ÿr � ifip � j
����
T
p

a; risj ÿ i
������������
1ÿ T
p

a;ÿr � ifip : �11�
In this case, a measurement of any observable of the probe would not affect the signal at
all, while at the same time it may give some information about the input signal.

For example, to obtain information about the generalized position of the input signal,
ŝ1; in � �ŝin � ŝyin�=2, measure the generalized momentum of the output probe,
p̂2; out � �p̂out ÿ p̂yout�=2i � ����

T
p

p̂2; in ÿ
������������
1ÿ T
p

ŝ1; in. The observed position, ŝ1; obs �
ÿp̂2; out=

������������
1ÿ T
p

, is centered at hŝ1; obsi � hŝ1; ini, with the uncertainty hDŝ2
1; obsi � hDŝ2

1; ini�T hDp̂2
2; ini=�1ÿ T�. For this measurement to be a measurement without entanglement, a-

priori knowledge of the squeezing parameter of the signal should be utilized in the prepara-
tion of a probe state with the opposite squeezing.

Now, consider the statistics of the results �~s1; 1; ~s1; 2; ::: ~s1;m� of a series of m measurements
without entanglement of the generalized position ŝ1 of a single squeezed harmonic oscillator
state. Assume that, in order to perform these measurements, the squeezing parameter of the
signal, i.e., its noise distribution hDŝ2

1i � exp �2 Re�r��=4 and hDŝ2
2i � exp �ÿ2 Re�r��=4, is

known, but no additional information about the excitation of the signal hŝ1i and hŝ2i is
given. The estimate of the generalized position of the signal is

s1 �
Pm
k�1

~s1; k=m : �12�

The minimal possible estimate error always equals the initial uncertainty of the position of
the signal hDs2

1imin � hDŝ2
1i, regardless of the number of measurements. However, the error

in the estimate of the initial uncertainty,

s2 � �mÿ 1�Pm
k�1

P
l>k
�~s1; k ÿ ~s1; l�2=m2 ; �13�

is reduced as the number of measurements increases: hD�s2�2i � 2 hDŝ2
1i2=�mÿ 1�. Note

that this is the same error as when hDŝ2
1i is estimated using m measurement results ob-

tained from an ensemble of m identical squeezed harmonic oscillator states. A series of
measurements without entanglement of a single state, therefore, gives the same information
on the (unknown) excitation of the signal as a single ideal measurement does. The (known)
noise distribution of the signal can be determined with increasing accuracy, as the number
of measurements increases.

We conclude that for a series of measurements of a single system to provide any infor-
mation about the quantum state of this system, beyond the limit which is imposed by the
reduction process, this information is required to be utilized in the measurement process
and therefore a-priori known [13]. The design of a measurement process which does not
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change the quantum state of the measured system at all requires full a-priori knowledge of
this quantum state, and therefore only the fully a-priori known quantum state can be deter-
mined from the results of a series of measurements of a single system.

F. Adiabatic Measurement of a Single Energy Eigenstate

Aharonov, Anandan and Vaidman [3±±5] suggested recently that the entanglement of the
signal and probe in the quantum measurement process can be avoided when the signal is
known to be in a discrete energy eigenstate jwis � jnis, which they call a `̀ protected state,º
by interacting the signal with the probe adiabatically. Indeed, according to the adiabatic
approximation, if the interaction of the signal with the probe is turned-on and then turned-
off sufficiently slowly, then the signal and probe are left approximately disentangled after
this interaction, where the signal is approximately back in its initial state (up to a phase
factor). In general, when the probe is prepared initially in any state other than an energy
eigenstate, the interaction with the signal would change the state of the probe, and a subse-
quent measurement of the probe would yield information about the signal, leaving the state
of the signal approximately unaffected. With this approximation, an adiabatic measurement
of the observable q̂ would yield its expectation value shwj q̂ jwis � hq̂i rather than one of
its eigenvalues ([9, 10] and see also [23, 24]).

The adiabatic measurement seems to allow a series of measurements of all of the obser-
vables which are associated with the signal to be performed on the signal without changing
it, even if these observables do not commute with each other. This measurement seems to
allow estimation of the expectation values of the measured observables, with the estimation
errors being less than the uncertainties of these observables. It also seems to allow estima-
tion of the uncertainties of the observables of the measured system (where an exact determi-
nation of hq̂i and hq̂2i would allow determination of hDq̂2i). Therefore, the adiabatic mea-
surement seems to allow a determination of the quantum state of a single system without
full a-priori knowledge of this state.

Consider, for example, a measurement of the generalized position ŝ1 of a harmonic oscil-
lator energy eigenstate, i.e., a number state jnis. The free Hamiltonian of the harmonic
oscillator is Ĥ0 � �hw�ŝ2

1 � ŝ2
2�, where ŝ2 is the generalized momentum of the oscillator. The

interaction of the harmonic oscillator signal with the probe is described by the Hamiltonian
V̂�t� � 2�hj�t� ŝ1p̂1, where p̂1 is the generalized position of the probe.

Using normal-ordering of the unitary time evolution operator, and writing the signal
number state in the coherent state representation jnis �

� �d2a=p� sha j nis jais, the time
evolution of a signal number state interacting with a probe in a generalized position eigen-
state jb1ip, where p̂1 jb1ip � b1 jb1ip, can be evaluated [22, 25]. This leads (after some
math) to the conclusion that the signal and probe are disentangled after their interaction,
where the probe is left in its initial state jb1ip,

Û�t� jnis jb1ip � exp �ÿjd�t�j2=2� Pnÿ1

k�0

����������
k!=n!

p
�ÿ exp �iwt� d��t��nÿk Lnÿk

k �jd�t�j2�
�

�P1
k�n

����������
n!=k!

p
�exp �ÿiwt� d�t��kÿn Lkÿn

n �jd�t�j2�
�
jkis jb1ip ; �14�

where d�t� � ÿib1

� t
0 j�t0� exp �iwt0� dt0, and Lk

n�jd�t�j2� is the generalized Laguerre poly-
nomial of the variable jd�t�j2. Note that the final state of the signal depends on b1, the
initial generalized position of the probe.

Now, according to the adiabatic approximation [26], if the turn-on and turn-off of the
interaction V̂�t� are sufficiently slow the probability amplitude ak�t� for the transition of the
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signal from its initial number state jnis to any other number state jkis where k 6� n is small

jak�t�j �
�t
0

1

�hw�k ÿ n� s
k
@V̂�t0�
@t0

���� ����n� �
s

exp �iw�k ÿ n�t0� dt0

������
������� 1 ; �15�

and therefore can be neglected, i.e., ak�t� � 0. This leads to the approximation� t
0 �b1 dj�t0�=w dt0� exp �iwt0� dt0 � 0. With this approximation, after the interaction is

turned-off at t � T , where j�0� � j�T� � 0, evaluation of d�T� gives

d�T� � ÿ b1

w
j�T� exp �iwT� ÿ j�0�� � �

�T
0

b1

w

dj�t�
dt

exp �iwt�
� �

dt � 0 : �16�

Substituting this in Eq. (14) one obtains Û�T� jnis jb1ip � jnis jb1ip.
The exact solution of Eq. (14), shows that the initial signal number state evolves to a

superposition of number states, which depends on the initial generalized position of the
probe b1. The approximated solution suggests that the signal has not been changed at
all. Now consider the case in which the probe is initially in a superposition of general-
ized position eigenstates. Since a measurement of the generalized momentum of the
probe p̂2 is expected to give information about the generalized position of the signal ŝ1,
the initial uncertainity in the generalized momentum of the probe should be finite, and
the initial state of the probe should be a superposition of generalized position states. In
this case, the exact solution shows that the signal and probe are actually entangled after
the interaction, while the approximated solution suggests that they are disentangled.
While a subsequent measurement of the probe would actually lead to a reduction in the
state of the signal, the adiabatic approximation suggests that the signal is unchanged.

We conclude that the adiabatic approximation is not valid in the analysis of the measure-
ment of a single system [14]. The adiabatic measurement does induce reduction in the
measured system, and therefore a series of adiabatic measurements of a single system can-
not determine the unknown initial energy eigenstate of this system.

G. Conclusions

We established that the information which can be obtained in the measurement of a
single system about the initial unknown quantum wavefunction of this system is limited
to estimates of the expectation values of the measured observables, where the estimate
errors satisfy the uncertainty principle. These estimate errors are always equal to or great-
er than the uncertainties of the measured observables. The uncertainties of the observa-
bles cannot be estimated at all. This impossibility of determining the unknown wavefunc-
tion of a single system is due to the reduction, i.e., the stochastic change in the state of
the measured system. We showed that in the adiabatic measurement, the reduction is not
avoided. In the measurement without entanglement, partial a-priori information about the
wavefunction of the measured system is utilized, and the reduction is avoided. However,
this partial a-priori information is the only information, beyond the above limit, which
can be obtained in a series of measurements without entanglement of a single system. A
measurement which does not change the state of the measured system at all is both a
QND measurement, in which all deterministic changes are avoided, and a measurement
without entanglement. We proved that this measurement may give some information
about the measured system only when this system is in an eigenstate of the measured
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observable. Therefore, only the fully a-priori known wavefunction of a single system can
be determined exactly. The quantum wavefunction has only a statistical (or epistemologi-
cal) meaning.
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