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Reply to ‘‘Comment on ‘Protective measurement of the wave function
of a single squeezed harmonic-oscillator state’ ’’

Orly Alter and Yoshihisa Yamamoto
ERATO Quantum Fluctuation Project, Edward L. Ginzton Laboratory, Stanford University, Stanford, California, 94305

~Received 12 December 1996!

The adiabatic ‘‘protective measurement’’ suggested by Aharonov, Anandan, and Vaidman@Phys. Lett. A
178, 38 ~1993!# is a measurement of a discrete energy eigenstate, in which the entanglement between the
measured state and the quantum probe is avoided approximately when they interact adiabatically, and the
measured state is left approximately unchanged~up to a phase factor! for all measured observables. This
measurement scheme, however, does not overcome the reduction of the measured state, because this state is
only approximately, and not exactly, disentangled from the quantum probe. Our recent analysis of a measure-
ment scheme of a squeezed harmonic-oscilllator state@Phys. Rev. A53, R2911~1996!#, in which the entangle-
ment between the measured state and the probe is avoided exactly, and the measured state is left exactly
unchanged~up to a phase factor! for all measured observables, suggests that in order to measure the quantum
state of a single system without changing this state, fulla priori information about this state is required.
@S1050-2947~97!08206-1#

PACS number~s!: 03.65.Bz, 42.50.Dv
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The indirect measurement of a quantum system, i.e
quantum signal, is composed of three stages: preparation
quantum probe, interaction of the probe with the signal, a
measurement of an observable of the probe, which indu
collapse~or reduction!, of the probe. Usually, the probe an
the signal are entangled after their interaction and the
lapse of the probe changes the quantum state of the sig
Aharonov, Anandan, and Vaidman@1,2# recently suggested
that the entanglement of the signal and the probe can
approximately avoided when the signal is known to be in
discrete energy eigenstate, which they call a ‘‘protec
state,’’ by having the signal interact adiabatically with t
probe. According to the adiabatic approximation, if the int
action of the signal with the probe is turned on and th
turned off sufficiently slowly, then the signal and the pro
are left approximately disentangled after this interacti
where the signal is approximately back in its initial state~up
to a phase factor!. In general, when the probe is prepar
initially in any state other than an energy eigenstate, the
teraction with the signal changes the state of the probe a
subsequent measurement of the probe yields informa
about the signal, leaving the state of the signal approxima
unaffected. The adiabatic ‘‘protective measurement’’ see
to allow a series of measurements of all of the observa
that are associated with the signal to be performed on
signal without changing it, even if these observables do
commute with each other. Therefore, the adiabatic protec
measurement seems to allow a determination of the quan
state of a single system without fulla priori knowledge of
this state. Yet, approximate disentanglement of the sig
and the probe is not sufficient toprotect the state of the
signal from reduction. For that purpose, exact disentan
ment of the signal and the probe is necessary. The reduc
was shown to prohibit the determination of the quantum s
of a single system@3,4# ~see also@5#!. Therefore, the adia
batic approximation, which approximates an actual entan
ment of states as disentanglement, is not valid in the ana
of a quantum measurement process of a single system.
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For example, consider a measurement of the general
position ŝ1 of a quantum harmonic oscillator, which is in
tially in the number stateun&s . The number states are energ
eigenstates of the harmonic oscillator, and therefore
number state is a protected state, as suggested by Ahar
and Vaidman in their Comment@6#. The free Hamiltonian of
the harmonic oscillator isĤ05\v( ŝ1

21 ŝ2
2), whereŝ2 is the

generalized momentum of the oscillator. The interaction
the signal with the probe, in which the generalized posit
of the signalŝ1 is coupled to the generalized momentum
the probe p̂2, is described by the Hamiltonian
V̂(t)52\k(t) ŝ1p̂1. The time evolution of the measure
harmonic oscillator state is governed by the Hamilton
Ĥ(t)5Ĥ01V̂(t). Using normal ordering of the unitary
time evolution operator, it can be shown@7,8# that when the
signal is initially in a coherent stateua&s and the probe is in
a generalized position eigenstateub1&p , where p̂1ub1&p
5b1ub1&p , then after their interaction, the signal and pro
are disentangled, where the signal is left in the coherent s
uexp(2ivt)@a1d(t)#&s and the probe is left in its initial state
ub1&p ~up to a phase factor!:

Û~ t !ua&sub1&p5exp@ if~ t !#uexp~2 ivt !@a1d~ t !#&sub1&p ,

d~ t !52 ib1E
0

t

k~ t8!exp~ ivt8!dt8,

f~ t !5E
0

t

ud~ t8!u2
darg@d~ t8!#

dt8
dt81

1

2i
@a* d~ t !2ad* ~ t !#.

~1!

Using this result, it can be shown~after some math! that
when the signal is initially in the number sta
un&s5*(d2a/p)s^aun&sua&s and the probe is in the genera
ized position eigenstateub1&p , then again the signal an
1057 © 1997 The American Physical Society
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probe are disentangled after their interaction, where
probe is left in its initial stateub1&p :

Û~ t !un&sub1&p5exp@2ud~ t !u2/2#H (
k50

n21

Ak!/n!

3@2exp~ ivt !d* ~ t !#n2k Lk
n2k@ ud~ t !u2#

1 (
k5n

`

An!/k! @exp~2 ivt !d~ t !#k2n

3Ln
k2n@ ud~ t !u2#J uk&sub1&p , ~2!

whereLn
k@ ud(t)u2# is the generalized Laguerre polynomial

the variableud(t)u2. Note that the final state of the sign
depends onb1, the initial generalized position of the prob

Now, according to the adiabatic approximation@9#, if the
turn-on and turn-off of the interactionV̂(t) are sufficiently
slow, the probability amplitudeak(t) for the transition of the
signal from its initial number stateun&s to any other number
stateuk&s , wherekÞn is small, is

uak~ t !u'U E
0

t 1

\v~k2n!
s
K kU]V̂~ t8!

]t8
UnL

s

3exp@ iv~k2n!t8#dt8U!1 ~3!

and therefore can be neglected, i.e.,ak(t)'0. This leads to
the approximation

E
0

t b1

v

dk~ t8!

dt8
exp~ ivt8!dt8'0. ~4!

With this approximation, after the interaction is turned off
t5T, wherek(0)5k(T)50, evaluation ofd(T) of Eq. ~1!
using integration by parts gives

d~T!52
b1

v
@k~T!exp~ ivT!2k~0!#

1E
0

TFb1

v

dk~ t !

dt
exp~ ivt !Gdt'0. ~5!

Substituting this in Eq.~2!, one obtains

Û~T!un&sub1&p'un&sub1&p . ~6!

The exact solution to the time evolution problem, i.e., E
~2!, shows that the initial number state of the signal evolv
to a superposition of number states, which depends on
initial generalized position of the probeb1. The approxi-
mated solution, i.e., Eq.~6!, suggests that the state of th
signal has not been changed at all. Now consider the cas
which the probe is initially in a superposition of generaliz
position eigenstates. Since a measurement of the genera
momentum of the probep̂2 is expected to give information
about the generalized position of the signalŝ1, the initial
uncertainty in the generalized momentum of the pro
e

t

.
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he
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e

should be finite and the initial state of the probe should b
superposition of generalized position states. In this case,
exact solution, i.e., Eq.~2!, shows that the signal and th
probe are actually entangled after the interaction, while
approximated solution, i.e., Eq.~6!, suggests that they ar
disentangled. Therefore, while a subsequent measureme
the probe would actually lead to a reduction in the state
the signal, the adiabatic approximation suggests that the
nal is unchanged. The adiabatic approximation, therefore
not valid in the analysis of the quantum measurement p
cess of a single system.

In a recent Rapid Communication@10# we considered a
measurement scheme in which the signal and the probe
left exactly disentangled after their interaction. The analog
the protected state in our scheme is the squeezed harm
oscillator state, i.e., an eigenstate of the opera

erŝ11 ie2r ŝ2, where ŝ1 and ŝ2 are the generalized positio
and momentum of the measured harmonic oscillator~the sig-
nal!. A priori knowledge ofr , the squeezing parameter o
the signal, is used in preparing a probe in a squeezed vac
state with theoppositesqueezing, to avoid entanglement
the probe and the signal as they couple linearly. The inte
tion of the signal and the probe is described by the Ham

tonian V̂52\k( ŝ1p̂11 ŝ2p̂2). Since in this case the signa
and the probe are exactly disentangled after their interact
a subsequent measurement of the probe would yield in
mation about the state of the signal without affecting t
signal at all. A measurement of the generalized position~mo-

mentum! of the probep̂1 ( p̂2) would give information about

the generalized momentum~position! of the signalŝ2 ( ŝ1). A

measurement of the energy of the probep̂1
21 p̂2

2 would give

information about the energy of the signalŝ1
21 ŝ2

2. In this
scheme, in fact, one can measure all of the observables
sociated with the signal, where in each measurement the
tanglement of the signal with the probe is avoided exac
The price one pays for the exact disentanglement is a de
ministic change in the energy of the signal. For the signa
be back exactly in its initial state~up to a phase factor only!,
one needs to drive the signal back to its initial excitation, a
for this purpose one needs to know this initial excitation. W
concluded that it is possible to devise a measurement with
entanglement for any observable with only partial knowled
of the measured state~in our case, one only needs to kno
the squeezing parameterr , or noise distribution, of the
squeezed state!. In a measurement without entanglement, t
reduction in the state of the signal, due to a measuremen
the probe, is avoided; therefore, there is no stochastic cha
in the state of the signal. Yet, in order to avoid any change
the state of the signal, i.e., in order to also avoid a determ
istic change in the state of the signal due to the unitary
teraction with the probe, one needs to have fulla priori
knowledge of this state~in our case, the additional informa
tion needed is the initial excitation of the squeezed sta
which, together with the initial squeezing parameter of t
state comprise a full definition of the initial squeezed sta!.

To conclude, the adiabatic approximation used in
analysis of the adiabatic protective measurement is not v
for the analysis of the quantum measurement process
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single system because it approximates an actual entan
ment of the quantum signal with the quantum probe a
disentanglement and therefore neglects the reduction in
state of the measured system. This reduction can be avo
when the entanglement of the signal with the probe is exa
avoided, using partiala priori information on the state of the
-
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a
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signal. In this case, the unitary interaction of the signal w
the probe would change the state of the signal in a determ
istic way. In order to avoid all possible changes in the st
of the signal while it is being measured, fulla priori infor-
mation about this state is required.
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