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Abstract. The quantum Zeno effect of a single system , the effect of 
a series of measurements on the free time evolution of the system and 
on the ability to monitor this time evolution using the measurement 
results ) is shown to be equivalent to that of the indetermination of the 
quantum state of a single system, in which one considers the statis t ics 
of the results of a series of measurements performed on a single system , 
with no time evolution in between successive measurements. From this 
equivalence it is concluded that the quantum Zena effect is a measure­
ment effect, which originates in the generalized projection postulate. 

Introduction.- The quantum Zeno effect was first introduced by Misra and 
Sudarshan [1] as the effect of a continuous and precise quantum measurement of 
an observable with a discrete eigenvalue spectrum on the free time evolution of 
a quantum system . Later their analysis was generalized to include the ensemble 
averaged effect of a series of approximate quantum measurements on the free time 
evolution of a quantum system. This effect , the quantum Zeno effect of an ensemble, 
was shown to be indistinguishable from the effect of dephasing (see, e.g., [2-5]) , and 
therefore it was suggested that this effect may be due to the dynamics of the system, 
rather than a quantum measurement effect (see, e.g., [6-8]). 

We consider the quantum Zeno effect of a single system. Specifically, we ask two 
quest ions: How would the free time evolution of a single quant um system cha nge 
due to a series of quantum measurements? What information about the free time 
evolution of the single system cou ld be obtained from the series of measurement 
results? In the frame of reference which evolves in t ime with the system, these 
questions regard the indeterminat ion of the unknown quantum state of a single 
system [9,10J: How would the initial quantum state of a single system change due 
to a series of measurements? What information about the initial quantum state , 
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of the single system could be obtained from the series of measurement results? 
It was already suggested that unlike the ensemble averaged effect, the quantum 
Zeno effect of a single system cannot be thought of as a dephasi ng effect (see, 
e.g. , [ll]). We show that, indeed, the quantum Zeno effect of a single system 
and the indetermination of the quantum state of a single system are two different 
descriptions, in the Schrodinger pi cture and the Heisenberg picture respectively, of 
the same phenomenon, the "screening" of the quantum state of a single system by 
a series of measurements, as a consequence of the generalized projection postulate. 
Therefore, we prove that the quantum Zeno effect of a single system is a true 
measurement effect, and not a dephasing effect. 

The quantum Zeno effect of an ensemble: The standard formulation. ­
In the standard formulati on of the quantum Zeno effect (i -5] one considers the 
effect of a series of quantum measurements on t.he free time evolution of a single 
quant.um system without refering to the series of measurement results . Therefore, 
in general, this is an ensemble averaged effect. Consider a series of n measurements 
of t.he observable ij performed on a single system during its unitary time evolution 
in t he time interval t E [0, T]. The initial state of the system is described by the 
density operator po, and the deterministic time evolution of the system in between 
the (k - 1)-th and the k-th measurements , at tk -1 = (k - I)T/n and tk = kT/n 
respectively, is described by the unitary operator Uk, P. = U. Pt - 1 Ur The k-th 
measurement. process at tk = kT/n, i.e., the preparation of the k-th probe in the 
state I<p)p,,, the interaction of this probe with the measured system UM(if) and the 
result of the measurement iik, which corresponds to the state of the probe after the 
measurement I'h)p,., is described by the probability-amplitude operator [2] 

(1) 

The state of t.he system after the k-th measurement is P"k = P(ih)-l Yk Pb,k Y/, 
where Pb ,k is the state of the system before this measurement and where P(ij,) = 
'1'1', [Yk p." Ykt], with the trace over the operators of the measured system, is the 
probability to obtain the measurement result qk. Note that after the measurement 
the single system is in a pure state, assuming that before the measurement both 
the system and the probe are in pure states. 

The density operator whi ch describes the single system at t = T, after the n-th 
measurement is 

(2) 
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where the probability density of obtaining the associated series of measurement 
results, (qlJ ". , (in) , is 

(3) 

The ensemble averaged effect of the series of measurements on the single quantum 
system is described by 

PS = J IT diik Ps(fh, , iin)ps(ii" , <in) 
k:::::l 

( 4) 

Note that while the density operator ps(qlJ .'" qn) corresponds to a pure state, PS 
corresponds to a mixture of states. 

Misra and Sudarshan showed [1] that when the measured observable q has a dis­
crete eigenvalue spectrum, with the initial state of the system po being one of the 
corresponding eigenstates , then in the limit of a continuous and precise measure­
ment process, where the number of measurements goes to infinity, n ~ 00, and 
the time interval between each two measurements goes to zero, Tin ~ 0, the ti­
me evolution of the system is frozen , i.e., PS = po. It was later shown (see, e.g., 
[2-5]) that outside the limit considered by Misra and Sudarshan , i.e. , in the case 
of a series of approximate measurements with a finite time interval between the 
measurements , Tin =j:. 0, the ensemble averaged effect of the measurements on the 
time evolution of the system is equivalent to t he effect of dephasing, where the 
coherences , i.e., the non-diagonal elements, of fis decrease with an increase in the 
number of measurements or in the precision of the measurements. The freezing of 
the time evolution of the ensemble due to a continuous and precise measurement 
pro'cess is a special case of this dephasing phenomenon. It is , therefore, impossible 
to distinguish between the effect of a series of measuements and the effect of de­
phasing, when analyzing an ensemble of systems, where both effects give the same 
predictions regarding the time evolution of the ensemble (see, e.g ., [6-8]) . This is 
not the case when one is analyzing the effect of the p.rocess of a series of measu­
rements on t he time evolution of a single quantum system, i .e., the quantum Zeno 
effect of a single system. 

The indetermination of the quantum state of a single quantum system.­
Recently we showed that the quantum state which describes a single system cannot 
be determined from the results of a series of measurements performed on the single 
system [9,10]. Consider a series of n measurements of the observables (ih , ... , Qn) 
performed on a single quantum system, where the time evolution of the system 
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in between successive measurements is neglected. The initial state of the system 
is described by the densi ty operator PO, as before, and the k-th measurement of 
the observable ii< with the measurement result ilk is described by the probability­
amplitude operator [2] 

(5) 

The density operator which describes the system after the n-th measurement is 

- (- - ) (- - )-' Z- Z- - - t - t PH ql , ... , qn = PH ql , .. " qn n'" IPOZt ... Zo , (6) 

where the probability density of obtaining the associated series of measurement 
results, (ih, ... I qn), is 

- - - t - t PH(ih , ... , gn) = Tr, [Zn ... Z, Po Z, ... Zn] (7) 

We showed that the statistics of the series of measurement results, PH(Ql1 "'J iin), 
could give estimates of the initial expectation values of the measured observables, 
but could not give estimates of the initial uncertainties associated with these ob­
servables. This is beacuse each time a measurement is performed , the quantum 
state of the system changes in accordance with the measurement resu lt, as a conse­
quence of the generalized projection postulate. Unlike the results of measurements 
performed each on a different system in an ensemble of identical systems, which 
are independent of each other, the result of a measurement performed on a single 
system would influence the statistics of the results of all future measurements. A 
series of measurements of a single quantum system corresponds to a measurement 
of the observables, and do not constitute a determination of the quantum state 
associated with the single system. We showed, therefore, that the determination 
of the a-priori unknown quantum state of a single system using a series of measu­
rements is impossible due to the generalized projection postulate. 

The quantum Zeno effect of a single system: The formulations in the 
Schrodinger and the H eisenberg pictures.- Let us now show that this effect 
of the indetermination of the unknown quantum state of a single system is equi­
valent to the quantum Zeno effect of a single system. The quantum Zeno effect 
of a single system is the effect of a series of quantum measurements on a single 
quantum system with reference to the corresponding series of measurement results. 
The effect of the series of measurements on the free time evolution of the single 
system is described by Ps (ih , ... , gn) of Eq. (2). The information about the free 
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time evolution of the single system which can be obtained from the measurement 
resu lts is described by Ps(iit , ... , <in) of Eq. (3). Using the unitarity of the time 
evolution operators, ukul = j] where i is the identity operator, with 

(8) 

the probability density Ps(ih, . . ,qn) can be rewritten as 

= 
(9) 

Note that PH (iii , ... ,qn) describes t he probability density to obtain the series of 
results (ih, .. . , qn) in the series of measurements (Z1' ... , Z"n) of the single system , 
with no time evolution in between successive measurements. Since the statist ics 
Ps (iit, ... ,qn) an d PH(ih, ... ,iin) are equal, the physical processes that they describe 
are equivalent. 

While PS is t he density operator of t he system at t = T in the Schriidinger picture, 
where the time evolution is attr ibuted to the state of t he system, PH is t he density 
operator of this system in the Heisenberg picture, where the time evolution is 
attributed to the observables associated with the system, and therefore also to 
the probability-amplitude operators. In fact , PH could be viewed as the state 
of the system at t = T in the reference frame which evolves in time with the 
system. Indeed, in the specific case of back-action evading measurements] where 
[Yk, §] = [UM(§), §] = 0, the probability-amplitude operators in the Heisenberg 
picture describe successive measurements of the ti me evolving observable 

- - I - I - -qk = Ul ... Uk § Uk ... Ul (10) 

The Schrodinger picture and the Heisenberg picture describe equivalent physical 
phenomenon. In the Schrodinger picture: PS describes the effect of a series of 
measurements of the same observable on the free time evolu tion of a si ngle system, 
and Ps(iit, ... , ifn) descr ibes the information about the free time evolution of the 
system which is contained in the measurement results. The Schrodinger picture, 
therefore, describes the quantum Zeno effect of a single system. In the Heisenberg 
picture: PH describes the "inverse" quantum Zeno effect of a single system [12] , i.e., 
the !!t ime evolution" of a single quantum system due to a series of measurements of 
time varying observables , and PH (fh , .. . , qn) describes the indetermination of the 
unknown quantum state of a sin gle system. The quantum Zeno effect of a si ngle 
system is equ ivalent to this effect of the indetermination of the unknown quantum 
state of a single system. 
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Presenting the quantum Zeno effect of a single system in the Heisenberg picture) it is 
obvious that the only changes in the state of the system arise from the measurement 
process, due to the generalized projection postulate. The changes in the state of the 
si ngle system, or the measurement induced "time evolution" of the system, are the 
same changes which prohibit the determination of the quantum state of the single 
system using the measurement results. The quantum Zeno effect of a single system 
can be thought of as a "screening" effect: The series of measurements change the 
time evolution of the single system in such a way that the initial quantum state of 
the system could not be determined from the measurement results. 

Conclusions.- We have shown that the quantum Zeno effect of a single system 
and the indetermination of the unknown quantum state of a single system are two 
descriptions, in the Schrodinger and the Heisenberg pictures respectively, of the 
same phenomenon: The effect of a series of measurements on the state of the single 
system, as a consequence of the generalized projection postulate. While in the 
Heisenberg picture the series of measurement results cannot give full information 
about the initial quantum state of the system, in the Schrodinger picture these 
results cannot give full information about the free time evolution of the single 
system. The quantum Zeno effect of a single system is, therefore, a true quantum 
measurement effect. 
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