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The Quantum Zeno Effect of a Single System is
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Abstract. The quantum Zeno effect of a single system, the effect of
a series of measurements on the free time evolution of the system and
on the ability to monitor this time evolution using the measurement
results, is shown to be equivalent to that of the indetermination of the
quantum state of a single system, in which one considers the statistics
of the results of a series of measurements performed on a single system,
with no time evolution in between successive measurements. From this
equivalence it is concluded that the quantum Zeno effect is a measure-
ment effect, which originates in the generalized projection postulate.

Introduction.— The quantum Zeno effect was first introduced by Misra and
Sudarshan [1] as the effect of a continuous and precise quantum measurement of
an observable with a discrete eigenvalue spectrum on the free time evolution of
a quantum system. Later their analysis was generalized to include the ensemble
averaged effect of a series of approximate quantum measurements on the free time
evolution of a quantum system. This effect, the quantum Zeno effect of an ensemble,
was shown to be indistinguishable from the effect of dephasing (see, e.g., [2-5]), and
therefore it was suggested that this effect may be due to the dynamics of the system,
rather than a quantum measurement effect (see, e.g., [6-8]).

We consider the quantum Zeno effect of a single system. Specifically, we ask two
questions: How would the free time evolution of a single quantum system change
due to a series of quantum measurements? What information about the free time
evolution of the single system could be obtained from the series of measurement
results? In the frame of reference which evolves in time with the system, these
questions regard the indetermination of the unknown quantum state of a single
system [9,10]: How would the initial quantum state of a single system change due
to a series of measurements? What information about the initial quantum state
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of the single system could be obtained from the series of measurement results?
It was already suggested that unlike the ensemble averaged effect, the quantum
Zeno effect of a single system cannot be thought of as a dephasing effect (see,
e.g., [11]). We show that, indeed, the quantum Zeno effect of a single system
and the indetermination of the quantum state of a single system are two different
descriptions, in the Schrodinger picture and the Heisenberg picture respectively, of
the same phenomenon, the “screening” of the quantum state of a single system by
a series of measurements, as a consequence of the generalized projection postulate.
Therefore, we prove that the quantum Zeno effect of a single system is a true
measurement effect, and not a dephasing effect.

The quantum Zeno effect of an ensemble: The standard formulation.—
In the standard formulation of the quantum Zeno effect [1-5] one considers the
effect of a series of quantum measurements on the free time evolution of a single
quantum system without refering to the series of measurement results. Therefore,
in general, this is an ensemble averaged effect. Consider a series of n measurements
of the observable § performed on a single system during its unitary time evolution
in the time interval ¢ € [0, 7]. The initial state of the system is described by the
density operator gp, and the deterministic time evolution of the system in between
the (k — 1)-th and the k-th measurements, at tx_1 = (k — 1)T'/n and t; = kT'/n
respectively, is described by the unitary operator Uk, Pr = U Pr— 1Uk The k-th
measurement process at {; = k7'/n, i.e., the preparation of the k-th probe in the
state |¢)p &, the interaction of this probe with the measured system Ups(§) and the
result of the measurement g, which corresponds to the state of the probe after the
measurement |k), &, is described by the probability-amplitude operator [2]

Y

(4, @) = pe{@k|Unm(@)|¢)pk - (1)

The state of the system after the k-th measurement is o = P(qx)~! Vi Db,k f’kt,
where pp ; is the state of the system before this measurement and where P(§;) =
Tr, [?k Po.k lﬁfkt], with the trace over the operators of the measured system, is the
probability to obtain the measurement result . Note that after the measurement
the single system is in a pure state, assuming that before the measurement both
the system and the probe are in pure states.

The density operator which describes the single system at ¢ = 7', after the n-th
measurement is

ps (@1, vy @n) = Ps (@, oy Gn) " Yo Un .. VU1 po U] ¥ T 9 (2)
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where the probability density of obtaining the associated series of measurement
results, (g1, ...,dn), 18

PS(&lJ ---an) = TI‘_,,- [}}n ﬁn ?1 Ul ﬁO ﬁ_{f}}lf [Afja 1?nf] . (3)

The ensemble averaged effect of the series of measurements on the single quantum
system is described by

!3-5‘ :fHdék PS(qmla avy ‘in).as(gl: viey 'i"n) . (4)
k=1

Note that while the density operator ps(qi, ..., §) corresponds to a pure state, jg
corresponds to a mixture of states.

Misra and Sudarshan showed [1] that when the measured observable § has a dis-
crete eigenvalue spectrum, with the initial state of the system gy being one of the
corresponding eigenstates, then in the limit of a continuous and precise measure-
ment process, where the number of measurements goes to infinity, n — oo, and
the time interval between each two measurements goes to zero, T/n — 0, the ti-
me evolution of the system is frozen, i.e., jg = pp. It was later shown (see, e.g.,
[2-5]) that outside the limit considered by Misra and Sudarshan, i.e., in the case
of a series of approximate measurements with a finite time interval between the
measurements, 7'/n # 0, the ensemble averaged effect of the measurements on the
time evolution of the system is equivalent to the effect of dephasing, where the
coherences, i.e., the non-diagonal elements, of ps decrease with an increase in the
number of measurements or in the precision of the measurements. The freezing of
the time evolution of the ensemble due to a continuous and precise measurement
process is a special case of this dephasing phenomenon. It is, therefore, impossible
to distinguish between the effect of a series of measuements and the effect of de-
phasing, when analyzing an ensemble of systems, where both effects give the same
predictions regarding the time evolution of the ensemble (see, e.g., [6-8]). This is
not the case when one is analyzing the effect of the process of a series of measu-
rements on the time evolution of a single quantum system, i.e., the quantum Zeno
effect of a single system.

The indetermination of the quantum state of a single quantum system.—
Recently we showed that the quantum state which describes a single system cannot
be determined from the results of a series of measurements performed on the single
system [9,10]. Consider a series of n measurements of the observables (g1, ..., §n)
performed on a single quantum system, where the time evolution of the system
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in between successive measurements is neglected. The initial state of the system
is described by the density operator pp, as before, and the k-th measurement of
the observable g with the measurentent result § is described by the probability-
amplitude operator [2]

Zx = Z(Gk, @) = poe{ @k Un (@6)|0)p .k - (5)

The density operator which describes the system after the n-th measurement is
pE(@1, oy Gn) = Pa(@, o Gn) Zn . Z1po 21 .. 2) (6)

where the probability density of obtaining the associated series of measurement
results, (§1,...,dn), is

Pr(§1y e siin) = T, [Bn o Z1p0 2L . 2] (7)

We showed that the statistics of the series of measurement results, Py (q1, ..., @n),
could give estimates of the initial expectation values of the measured observables,
but could not give estimates of the initial uncertainties associated with these ob-
servables. This is beacuse each time a measurement is performed, the quantum
state of the system changes in accordance with the measurement result, as a conse-
quence of the generalized projection postulate. Unlike the results of measurements
performed each on a different system in an ensemble of identical systems, which
are independent of each other, the result of a measurement performed on a single
system would influence the statistics of the results of all future measurements. A
series of measurements of a single quantum system corresponds to a measurement
" of the observables, and do not constitute a determination of the quantum state
associated with the single system. We showed, therefore, that the determination
of the a-priori unknown quantum state of a single system using a series of measu-
rements is impossible due to the generalized projection postulate.

The quantum Zeno effect of a single system: The formulations in the
Schrodinger and the Heisenberg pictures.— Let us now show that this effect
of the indetermination of the unknown quantum state of a single system is equi-
valent to the quantum Zeno effect of a single system. The quantum Zeno effect
of a single system is the effect of a series of quantum measurements on a single
quantum system with reference to the corresponding series of measurement results.
The effect of the series of measurements on the free time evolution of the single
system is described by ps(q,-..,dn) of Eq. (2). The information about the free
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time evolution of the single system which can be obtained from the measurement
results is described by Pg(ql, .y qn) of Eq. (3). Using the unitarity of the time
evolution operators, U Uk = I where I is the identity operator, with

=0 .00 .0, (8)

\n

the probability density Ps(q,...,4n) can be rewritten as

Po(@, oo @n) = T[Vuln...Valhpoll 7. .00 ¥
= Tv[Zn. Bipo 2. 2]
= Pilfyiaila) s (9)
Note that Pg(q, ...,qn) describes the probability density to obtain the series of
results (g1, ..., n) in the series of measurements (Z1, ..., Zy) of the single system,

with no time evolution in between successive mea.surements Since the statistics
Ps(§y1,...,4n) and Py (q1, ..., §n) are equal, the physical processes that they describe
are equivalent.

While ps is the density operator of the system at ¢ = T" in the Schrédinger picture,
where the time evolution is attributed to the state of the system, pg 1s the density
operator of this system in the Heisenberg picture, where the time evolution is
attributed to the observables associated with the system, and therefore also to
the probability-amplitude operators. In fact, pg could be viewed as the state
of the system at ¢ = T in the reference frame which evolves in time with the
system. Indeed, in the specific case of back-action evading measurements, where
[Yi,d] = [Um(4),d] = 0, the probability-amplitude operators in the Heisenberg
picture describe successive measurements of the time evolving observable

=0]..00§0: .01 . (10)

The Schrodinger picture and the Heisenberg picture describe equivalent physical
phenomenon. In the Schrodinger picture: pg describes the effect of a series of
measurements of the same observable on the free time evolution of a single system,
and Pg(§i, ..., §n) describes the information about the free time evolution of the
system which is contained in the measurement results. The Schrodinger picture,
therefore, describes the quantum Zeno effect of a single system. In the Heisenberg
picture: pg describes the “inverse” quantum Zeno effect of a single system [12], i.e.,
the “time evolution” of a single quantum system due to a series of measurements of
time varying observables, and Pg(§1, ..., §n) describes the indetermination of the
unknown quantum state of a single system. The quantum Zeno effect of a single
system is equivalent to this effect of the indetermination of the unknown quantum
state of a single system.



544 0. Alter and Y. Yamamoto

Presenting the quantum Zeno effect of a single system in the Heisenberg picture, it is
obvious that the only changes in the state of the system arise from the measurement
process, due to the generalized projection postulate. The changes in the state of the
single system, or the measurement induced “time evolution” of the system, are the
same changes which prohibit the determination of the quantum state of the single
system using the measurement results. The quantum Zeno effect of a single system
can be thought of as a “screening” effect: The series of measurements change the
time evolution of the single system in such a way that the initial quantum state of
the system could not be determined from the measurement results.

Conclusions.— We have shown that the quantum Zeno effect of a single system
and the indetermination of the unknown quantum state of a single system are two
descriptions, in the Schrodinger and the Heisenberg pictures respectively, of the
same phenomenon: The effect of a series of measurements on the state of the single
system, as a consequence of the generalized projection postulate. While in the
Heisenberg picture the series of measurement results cannot give full information
about the initial quantum state of the system, in the Schrodinger picture these
results cannot give full information about the free time evolution of the single
system. The quantum Zeno effect of a single system is, therefore, a true quantum
measurement effect.
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