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INTRODUCTION 

Recently, with the technological developments which allow manipulation of 
single quantum systems, such as atoms, electrons and photons, in laboratories 
allover the world , there has been an interest in the quantum theory of a single 
system. This interest raises several fundamental questions, one of which is the 
question of the meaning of the quantum wavefunctioD. Quantum mechanics 
describes a single system by a corresponding wavefunction. The wavefunction 
contains all relevant information about the single physical system. However, 
in order to obtain this information , and determine the wavefunction, one needs 
to consider the statist ics of the results of measurements performed on an en
semble of identical systems. Therefore, the wavefunction is said to have a 
statistical (or epistemological) meaning. Naturally, one would ask the ques
tion: Can we give the quantum wavefunction a deeper physical (or ontological) 
meaning? Aharonov, Anandan and Vaidman (1,2) showed recently that the 
wavefunction of a single system could be determined from the results of a se
ries of "protective measurements" performed on the system. In the protective 
measurement scheme, a-priori know ledge of the wavefunction of the system 
is used in order to measure this system and protect its wavefunction from 
changing at the same time. Aharonov , Anandan and Vaidman argued that 
the protective measurement accounts for the physical reality of the wavefunc
tioD. Yet, it seems that one should be able to measure the wavefunction of a 
single system without any a-priori knowledge, if the wavefunction were real. 
Considering a measurement of the spin of a single spin- l /2 system, with an 
unknown wavefunction, Royer showed (3) recently that this measurement can 
be physically reversed, so that the system is back in its unknown init ial state, 
with a finite success probability. However, as Huttner showed (4) , the statis
tics of a series of successful "reversible measurements" , performed on a single 
spin-1/2 system, are independent of the initial spin wavefunction of the sys
tem. Therefore, reversible measurements cannot be used for the measurement 
of the wavefunctioD of a single system. 

According to the projection postulate , a precise measurement performed 
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on a single system would always yield one of the eigenvalues of the measured 
observable. Usually, this eigenvalue can be used to estimate the expectation 
value of the observable, i.e. , the center position of the probability density of 
the observable. But the uncertainty associated with the measured observable, 
i.e ., the width of the probability density, could never be estimated using this 
single measurement result. In fact, this uncertainty cannot be estimated even 
if we use the results of additional measurements performed on the single sys
tem. After the measurement, the wavefunction of the system collapses to the 
eigenstate, which corresponds to the measured eigenvalue. Therefore, the re
sults of additional measurements performed on the system would not add any 
information about the initial wavefunction of the system. Now, consider a very 
weak measurement performed on the single system. This measurement would 
leave the wavefunction of the system almost unchanged. Consecutive weak 
measurements performed on the same system, therefore , would give us some 
additional information about the initial wavefunction of the system. Since 
the measured system is approximately in the same state when the different 
measurements are performed , one may expect the statistics of the measure
ment results to be approximately the same as the results of measurements 
performed on an ensemble. Specifically, one may expect the statistics of these 
measurement results to enable us to estimate the uncertainties associated with 
the measured observables with finite estimate errors. It is the ability to esti
mate the uncertainty associated with a specific observable, i.e., the width of 
the probability density of this observable, which distinguishes a measurement 
of the wavefunction from a measurement of the observable. In this work, we 
show that this intuitive picture fails , and one cannot, in fact , extract any 
information about the initial wavefunction of a single system at all, using 
repeated weak quantum measurements. 

First, considering the general model of repeated quantum measurements 
performed on a single system, we prove (5) that the statistics of the results 
of these measurements are independent of the initial uncertainties associated 
with the measured observables. We show that this is a direct result of the 
projection postulate. Therefore, the physical mechanism which is responsible 
for the inhibition of the measurement of the wavefunction of a single quan
tum system, is the also responsible for the change of the wavefunction due 
to the measurements. To illustrate this result , we discuss two specific ex
amples, both using quantum non-demolition (6,7) measurements, which have 
been demonstrated experimentally. The first example (8) is that of repeated 
quantum non-demolition (QND) measurements of the photon-number (9-12), 
performed on a squeezed state of light (which includes a coherent state as a 
special case), i.e., a generalized minimum uncertainty state. We show that due 
to the measurement process, the wavefunction of this squeezed state under
goes saturated quantum Brownian motion, while it continuously collapses to 
a photon-number eigenstate. The second example is that of alternating QND 
measurements of the two (slowly varying) quadrature amplitudes (13,14) of a 
squeezed state of light. We show that the noise distribution of this squeezed 
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state is continuously modified by the measurements) until it is determined 
solely by the measurement errors) and is completely independent of the ini
tial intrinsic uncertainties of the two quadrature amplitudes. In this limit 
the squeezed state undergoes free diffusion ) preserving its noise distribution . 
The changes in the measured squeezed state of light are different in each ex
ample. Yet, in both examples, it is due to these changes that the statistics 
of the measurement results lack any information about the uncertainties of 
the measured observables, and the measurement of the wavefunction of the 
single squeezed state is inhibited . Note that the QND measurement of the 
photon-number is analogous to the QND measurement of the momentum of 
a free particle (15). Also, the QND measurements of the two quadrature 
amplitudes are mathematically equivalent to the QND measurements of the 
position and the momentum of a mechanical harmonic oscillator. Our two 
examples, therefore, cover all QND measurements known today. 

THE GENERAL PROOF: 
REPEATED QUANTUM MEASUREMENTS CANNOT INFER 
THE UNKNOWN WAVEFUNCTION OF A SINGLE SYSTEM 

Consider a quantum measurement of the observable fj of a single system. 
This system, the signal, is initially in the pure state l.p)" and is described by 
the density operator Po = l.p), , (.pl· The only requirement of the measure
ment is that it fulfills the generalized projection postulate. Sometimes these 
measurements are referred to as "Pauli 's first-kind measurements)'. During 
the measurement process) the signal is correlated to a probe system, and after 
the correlation the probe is measured to yield the inferred measurement result 
iiI (Fig. 1). The probabi lity-amplitude operator, Y = p(ii,IUI4»p, completely 
describes the three stages of this measurement (16): The preparation of the 
probe in the pure state 14»p, the interaction of the probe with the signal, 
(; I and the result of the measurement, ql) which corresponds to the state 
of the probe after the measurement, liil)p. The probability of obtaining the 
measurement result ql is 

(1 ) 

which can be generally written as 

P(ii,) '" J dq 6(q - iirJP(q) (2) 

Note that the statistics of the results of a measurement of an ensemble, where 
a single measurement is performed on each system in an ensemble of identical 
systems, would give the probability density P(iirJ. After the measurement, 
the system is described by the density operator 

(3) 
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FIG. 1. The measurement of a quantum system, i.e. , a signal, is composed of three 
'stages: Preparation of a probe system, interaction of the probe with the signal, and 
measurement (which induces collapse) of the probe. In general, the probe and the 
signal are entangled after their interaction , and the collapse of the probe changes 
the wavefunction of the signal in accordance with the measurement result . 

From Eqs. (2) and (3), the corresponding probability density of if is 

P(q,;h) = .(qliilq), = P(iid-16(q - ij,)P(q) (4) 

Note that the probability density of if after a measurement is performed , 
P(q , iiI), depends on the result of the measurement, ii,. The measurement 
process , therefore, modifies the wavefunction of the measured system in ac
cordance with the measurenlent result. The next measurement is a precise 
measurement of q which results with ii2. The conditional probability to obtain 
ih in this measurement is 

P(ii2liid = J dq6(q - ii2)P(q,ii1) (5) 

Now, consider the statistics of the two measurement results, iiI and Q2. 
Both measurement results can be used to estimate the center position of the 
probability density P(iid, (ii,) = f dii1 P(iid ii" since 

(ii2) = J dii1 P(ii,) J dii2 P(<i21<11) ii, = (<1I) . (6) 

However , the width of the probability density P(iid, i.e. , (~q1) = (iii) - (<11)2, 
where (<ir) = f dii1 P(iid iir, cannot be estimated, because (ii1)2 cannot be 
estimated: 

(ii~) = J d<11 P(qIl J dii2 P(<12IihH~ = (iii) , 

(ii1ii2) = J dii1 P(ii,) q, J d<12 P(ii21<11) <12 = (iii) 
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If qt and q2 were independent results, obtained from two different quantum 
systems, which belong to the same ensemble and are, therefore , initially in 
t he same quantum state, t heir correlation would be (iid,) = (ii,) (ii,) = (ii1)'
This correlation, then , would provide the missing information about (qt }2, 
and (~iil) could be estimated using both measurement results. In our case 
the condit ional probability density to obtain t he second measurement result, 
(12, depends on the fir st measurement result, qt. Therefore, the correlation of 
the two measurement results , which are taken from the same quant um system, 
does not give information about (ii,) ' , rather it gives (ii1)· 

This is the main difference between the information provided by a measure
ment of an ensemble and the informat ion provided by a series of measurements 
of a single system: While a measurement of an ensemble gives the probability 
density P(qt) , a series of measurements of a single system does not, since 
the wavefunction of the measured system changes each time a measurement is 
performed in accordance with the measurement result, as a direct consequence 
of the generalized projection postulate. This change cannot be corrected for 
using unitary time evolution in between the two measurements without a
priori knowledge of the initial wavefunction of the measured system , just as 
one cannot devise a "protective measurement" for a system without a-priori 
knowledge of t he state of the system (1,2). It may be possible to correct for 
that change using a measurement process, as in the case of the ((reversible 
measurements" (3). However, the probabili ty that the measurement process 
be reversed successfully is finite, and it is not cert ain that the wavefunction 
of the measured system will return to its original unknown state . Taking into 
account this finite success probability, the statistics of the results of a series of 
successfully reversed measurements of a single system are independent of the 
initial state of the measured system (4) , and cannot be used to infer P(ii,) 
which obviously depends on the initial state of the system. 

The statistics of the results of a quantum measurement of the observable 
ii , as described in Eqs. (1)-(3), performed on an ensemble of systems , would 
always give the probability density P(ii'). Yet , in order for this measurement 
of an ensemble to be considered as a determination of the wavefunction , one 
should be able to use P(ii,) to infer Po(q) = ,(qlpolq)" the initial probability 
density of fj which is associated with the wavefunction of the measured system. 
This requires that the measurement process, i.e ., the initial state of the probe, 
IqI)p, the interaction between the probe and the measured system, U, and the 
observable of the probe which measurement collapses the probe to anyone of 
the states lii,)p, would be chosen carefully. For example, one may choose to 
use a back-action evading (BAE) measurement process, in which the unitary 
t ime evolution operator ) which describes the interaction of the signal and the 
probe, (;, is required to commute with the measured observable, fj , 

[U, <il = 0 . (9) 

Indeed, the results of a BAE measurement of fj performed on an ensemble 
would allow the inference of Po (q). 
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In our general model, therefore, we consider a series of alternating BAE 
measurements of the two conjugate observables q and p, performed on a single 
quantum system. The statistics of the q measurement results are expected to 
give information about the initial probability density of Ii, Po(q), i.e., estimates 
of the initial center position of this probability density (or the expectation 
value of Ii), (qo) = J dq Po(q) q, and the initial width of the probability density 
(or t he uncertainty associated with Ii), (Ll. q6) = (q6) - (qo)" where (q6) = 
J dq Po(q) q2 In the same way, the statistics of the [i meaBurement results 
are expected to give information about Po(p) = ,(p[po [p),. Note that t his 
model applies to the case of repeated meaBurements of the observable Ii cos 0+ 
[i sin 0, for all 0 E [0,2rrJ. Indeed , one needs, at least , information about the 
probability densities of all of these observables in order to reconstru ct the 
wavefunction of the measured system. 

The first measurement is a measurement of Ii. From Eqs. (1) and (9), the 
probability of obtaining t he measurement result iit in this meaBurement is 

P(q.) = J dq X(q, g.) Po(q) , (10) 

where X(q,q.) = ,(q[ X(Ii,q,) [q) , is the probability for the probe to undergo 
a transition from the state [¢)p to the state ['l1)p when the signal is in the state 
[q)" and X(ij,iit) = VtY is the generalized projection operator. Note that 
X(q, q,) depends only on t he different aspects of the measurement process, 
while Po(q) depends only on the initial state of the measured system. 

We assume that the measurement processes satisfy the following three con
ditions. Note that while these conditions are reasonable, they are not neces
sary for the following proof to be valid . First , the transition probability of the 
probe is required to be normalized over all possible final states of the probe, 

J diit X(q, g,) = 1 (11) 

As the inferred value of q, ql should equal, on average, the center position of 
the probability density of ij, (ql) = (qo). This leads to the second condition, 

J dih X(q,ihHI = q . (12) 

The signal and the probe should be independent of each other. Therefore, the 
probability error associated with the measurement result , iit, should equal the 
sum of the measurement error, L\.~, and the intrinsic uncertainty, due to the 
initial width of the probability density, (Ll.qf) = (im - (g, )' = (Ll. q6) + Ll.;;'. 
From this we obtain the third condition , 

J diit X(q, g,) gi = q' + Ll.;;' . (13) 

Using Eqs. (3), (9) and (10), the probability density of ij after the first 
measurement is 

156 



P(q, if,) = p(if,)-l X(q, if,) PO(q) (14) 

As before, P(q, iil) depends on if,. 
Next, the conjugate observable p is measured. According to the Heisenberg 

uncertainty relations, it is impossible to avoid a change in the probability 
density of fj due to this measurement (unless some a-priori information about 
the state of the system before the measurement is given). We assume, though, 
that this change is the minimum change possible, in order to investigate the 
fundamental restrictions imposed on the measurement of the wavefunction of 
a single quantum system. In this case, the probability density of if changes 
from P(q,ifl) to P,(q,ifl) as follows: The center position is unchanged, 

J dq P,(q,if,) q = J dq P(q , if,) q , (15) 

but the width increases due to the back-action noise, ~~ J 

(16) 

Now Ii is measured for the second time. Following the treatment of the first 
measurement of ij in Eqs. (10)-(13), the conditional probability to obtain if, 
in this measurement, after iit is obtained in the previous measurement, is 

P(<1'[<ll) = J dq X(q, <I,) P,(q, <I,) . (17) 

Consider the statistics of the results of the two measurements of fj. Each 
of the measurement results, iiI or ii2, can estimate the initial center position, 
(qo). Indeed, as can be seen from Eq. (12), this is one of the three conditions 
the measurements are assumed to satisfy, 

(if I) = (qo) 

(<12) = (qo) 

(18) 
(19) 

As was mentioned before, this assumption is not necessary for our general 
proof to be valid. We make this assumption because, obviously, it is possible 
to estimate the expectation values of different observables from the results of 
measurements performed on a single quantum system. Therefore, it is not the 
lack of information about these expactation values (or t"he center posit ions of 
the corresponding probability densities) which inhibits the measurement of 
the wavefunction of a single quantum system. The second order moment (q5) 
can also be estimated using either iil or ii2, since 

(iii) = (q5) + tl.~ , 

(1m = (q5) + tl.~ + tl.; 
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where the measurement error , ~~, and the back-action noise , 6.~ , are param
eters of the measurement process, independent of the state of the measured 
system , and therefore known to us. One cannot , however, estimate the initial 
width of the probability density of ij, (~q5), using a single measurement re
sult , because a single measurement result does not contain information about 
(qo)'. As before , if iii and ii> were each obtained from one of two independent 
quantum systems, which belong to the same ensemble, their correlation would 
provide the missing information , (q! (2 ) = (qo)2, and (~q5) could be estimated 
using both measurement results. In our case the second measurement result , 
(h, depends on the first , iii , due to the change imposed on the wavefunction 
of the measured system by the measurement process . Therefore , the correla
tion of the two measurement results , which are taken from the same quantum 
system , does not give information about (QO)2, rather it gives 

(22) 

In · fact , in order for the measurement results ql and q2 to give an estimate 
of (qo)', the transition probabilities X(q ,qd and X(q ,q, ) should depend on 
(qo). This is impossible, since X(q , iid and X(q, ii, ) are independent of the 
state of the measured system , as can be seen from Eq. (10). The conditions 
of Eqs. (11)-(13) are, therefore, not necessary for our conclusion to be valid. 

This treatment can be easily extended to include as many measurements of 
ij as we want , by way of mathematical induction. For the k-th measurement 
result , we obtain 

(iik) = (qo) , 
(ii% ) = (q5) + ~~ + (k - 1)~; , 

(ihii,) = (q5) + (k - 1)~; , for all k < I 

(23) 
(24) 

(25) 

Regardless of the number of measurements of ij performed on the single sys
tem, the information about (qo)' is always missing, and (~q5) cannot be 
estimated. The correlation of any two measurement results, which are taken 
from a single quantum system, gives information about (qa), where the same 
information can , actually, be obtained from the result of a single measurement. 

A similar treatment can be used to analyze the results of the measurements 
of p. Always the conclusion is the same: While it is possible to estimate the 
initial center positions of Po(q) and Po(p) with a linear function of the cor
responding measurement results, no quadratic function of the measurement 
resul ts can estimate t he init ial widths of Po( q) and Po(p). Since no information 
about the widths of the probability densities is obtained , the process of re
peated measurements is equivalent to a measurement of the observables ij and 
p, and cannot be considered as a measurement of the wavefunction. The same 
is true for all processes of repeated quantum measurements of the arbitrary 
observable ij cos 0 + P sin 0, regardless of the strength of the measurements . 

This analysis shows that the wavefunction of a single system cannot be 
measured by a series of quantum measurements. Each time a measurement 
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is performed, the wavefunctioD changes in accordance with the measurement 
result. Therefore, the statistics of the measurement results contain no infor
mation about the initial uncertainties of the measured observables, i.e., the 
init ial widt hs of the corresponding probability densities. The change of the 
wavefunction due to the measurement process is a direct consequence of the 
projection postulate. It is shown , then , that the projection postulate limits 
the quantum wavefund ion to have a statistical (or epistemological) meaning 
only. 

In this proof, the time evolution of the quantum system in between mea
surements is neglected, while we concentrate on the relevant changes in the 
wavefunction due to the measurement process . One may assume that the 
measurements are performed one immediately after the other , with no time 
delay in between consecutive measurements. Alternatively, one may assume 
that t he measured observables, if and p, are QND observables, and therefore 
their probability densities do not change due to the free time evolution of the 
system. 

We now illustrate these general considerations with two examples. 

REPEATED PHOTON-NUMBER QND MEASUREMENTS 
OF A SIN GLE SQUEEZED STATE OF LIGHT: 

SATURATED QUANTU M BROWNIAN MOTION AND 
CONTINUOUS COLLA PSE OF THE WAVEFUNCTION 

T he first example is the case of a series of photon-number QND measure
ments performed on a single squeezed state of light (8) . Each time a mea
surement is performed , the signal state is correlated to a probe state in an 
optical Kerr medium (Fig. 2) . The probe is prepared in a squeezed state, 
I"', r)p, with the excitation 1"'1 2 and t he squeezing parameter r. This inter
action process is described by t he unitary operator Urn,) = exp(il' n, np ) , 

where ns and np are the photon-number operators of the signal and the probe 
respectively, and I' is the coupling strength (17). The photon-number of t he 
signal, ns , modulates the refract ive index of the Kerr medium, and shifts 
t he ph ase of the probe, b.¢p = I'n, . Then, the (slowly varying) second
quadrature amplitude of the probe, a2 ,p, is measured precisely by a homo
dyne detection. If the initial phase of t he probe is zero, and t he phase shift 
is small , due to a weak coupling, J.I. « I , then U2,p is approximately linear 
with t he phase shift of t he probe, and wit h t he photon-number of the signal, 
a2,p =:: 1001 J.l.ns . In this case, the measurement result, 0' 2, gives the inferred 
photon-number of the signal, n ~ "'2/(1"'11'). The corresponding measure
ment error is b.;" = (b.a~,p )/(I"' I I')2, where ( b.a ~ ,p) = e- 2',/4 is the initial 
uncertainty of the second-quadra ture amplitude of the probe. Note that the 
limit imposed on the coupling strength , I' « 1, does not limit the strength 
of the measurement , 1/ b.~, since ( b. a~,p) is not limited. Also note that the 
back-action noise , which is imposed on the phase of the signal by the photon-
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FIG. 2. Repeated weak photon-number QND measurements: In each measurement 
the signal is correlated Lo a new probe in an optical Kerr medium. T he inset shows 
the shift in the phase of the probe due to this correlation. The second-quadrature 
amplitude of the output probe is measured precisely by a homo dyne detection. The 
inferred photon-number is obtained from the result of this measurement. T he signal 
output is then measured again. 

number of the probe, Li.,p, = pnp, does not influence the probability density 
of the photon-number of the signal, since n, is a QND observable. 

The initial probability density of the second-quadrature amplitude of the 
probe, the probe being in a squeezed state with a zero phase, is a Gaus
sian, centered at zero, with the variance (.6.a~JP)' Therefore, the probability

amplitude operator which describes this measurement process, Y(n", ii) ;:: 
p(i;IU(n,) I<> , r)p, corresponds to a Gaussian transition probability (18), 

X(n,n) = N[n,n,~;,l . (26) 

Let us assume that the initial photon-number probability density of the signal 
is also a Gaussian, 

Po(n) = N[n, no, ~51 . (27) 

Physically, the photon-number probability density of a squeezed state is a 
discrete sub- or super-Poissonian probability density, with n ~ O. If the initial 
excitation of the signal is large , i.e., no ~ 1, this Gaussian approximation is 
valid. The following model, therefore, describes a measurement process in 
which both the signal and the probe have Gaussian probability densities. 
Many other physical s ituations are described in the same way. One such 
example is the QND measurement of one of the quadrature amplitudes of a 
squeezed state of light , using a non-degenerate parametric amplification. 
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The same measurement procedure is repeated k times. Each time, the 
measurement is performed on the output signal of t he previous measurement, 
using a new probe state. We get a series of second-quadrature amplitude 
readouts, which corresponds to a series of inferred photon-number values, 
(ii" ii z, ... , iik ). It is the statistics of (ii" ii z, ... , ii.), in the limit of weak 
measurements, which are expected to give the ini tial photon-number proba
bility density of the signal, Po(n). The total probability-amplitude operator 
which describes the whole process of k repeated QND measurements is 

(28) 

Note that Zk(n~), is symmetric in the measurement results , (iil, n2, ... , iik), 
i.e., it is independent of the order in which the results are obtained. This 
is because the different probabili ty-amplitude operators commute with each 
other, i.e., [Y(n" iik), Y(11" iii)] = 0, for all k and I. T herefore, the probability 
of obtaining these results, P(ii" ii z, ... , nk)' and the photon-number proba
bility density after these results are obtained , Pk(n), are both symmetric in 
(iiI, ii21 ... , iik). The probability of obtaining n2 in the second measurement 
depends on the result of the first measurement, iiI. Yet , the process of mea
suring iiI first and n2 second has exactly the same probability as the process in 
which ii2 is measured first and iiI is measured second. Also, the changes that 
these two processes impose on the wavefunction are exactly the same. Since 
the wavefunction of the system changes slightly from one measurement to an
other, the above observation, that the total probability-ampli tude operator, 
Zk(n.), is independent of the order of the measurement results, alI·eady sug
gests that no information about the width of the photon-number probability 
density is contained in the statistics of the readouts, P(iil, n2, ... , iik). 

To confirm this we first consider the case of a single measurement perfomed 
on a single squeezed state. Then , we examine the conventional measurement 
of the wavefunction, the case of a measurement of an ensemble of squeezed 
states. Finally, we analyze the case of repeated measurements performed on 
a single state. We show that the statistics of the measurement results contain 
no information about the width of the photon-number probability density, 
due to t he changes, which are imposed on the measured state by t he process 
of repeated measurements. We also discuss the consistency of this result with 
Holevo's theorem of the quant um channel capacity. 

A Measurement of a Single Squeezed State 

Consider the case of a si ngle photon-number QND measurement performed 
on a single squeezed state of light. The probability of measuring ii I , is) ac
cording to Eqs. (10), (26) and (27), 

(29) 

161 



As can be seen, ii l is an estimate of the initial center position of the photon
number probability density, no, with the estimate error being.6.6 + .6.~. Ob
viously, the init ial width of the probability density, .6.6 , cannot be estimated 
using this single measurement resu lt. From Eqs. (14), (26) and (27), the 
photon-number probability density of the signal after the measurement is 

PI (n) = N[n, n~, ~iJ , 
n6 = ~i (no/ ~6 + iiJ( ~;,) , 

~i = (1/ ~6 + 1/ ~;,)-l 

(30) 
(31) 
(32) 

Due to this measurement , the center of the photon-number probability density, 
is shifted fr om n o to n6, toward the measurement result, ii l . The widt h of the 
probability density narrows from ~5 to ~i · Note that the larger t he initial 
width , ~6 , the larger the relative reduction in the width , (~6 - ~n/ ~6 = 
.6.6/(~6 + .6.~) , and, for a given measurement result , ii l l the more significant 
the shift in the center position. The changes due to the measurement are more 
dramatic for probability densities which are initially wide, than for those which 
are initially narrow. 

If t he measurelnent is weak , ~~ ~ .6.6 , both t hese shift and narrowing are 
very small. In this case , t he squeezed state could be measured many times 
before its photon-number probability density would change appericiably. 

The Conven t iona l Measurement of the Wavef'unction: 
A Measurement of an Ensemble of Squeezed States 

Usually, the wavefunction is measured on an ensemble of systems , all pre
pared in the same initial state. More specifically, the wavefunction is obtained 
from the statistics of the results of these measurements. Therefore , before in
vestigating the case of repeated QND measurements performed on a single 
squeezed state, we analyze the case of one measurement performed on each 
state in an ensemble of k squeezed states. In this case, each measurement is 
independent of the others . The probability of obtaining the inferred photon
number values, (ii l' n2 1 ... J nk) , is, obviously, independent of their order , and 

therefore P(iil' ii2, ... , ii.) = rr~~l P(ii, ). 
It is well known (19) that the statistics of the results of the measurements in 

this case are analyzed by the estimated center position (or expectation value), 
71, and the estimated width (or uncertainty) , .6.n2 , 

k 1" _ 
71::::::k~ni ' 

i = l 

k 

~n2 = k ~ 1 L(ii, - n)' 
i =l 
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in which all measurement results have the same weight. From Eq. (29), the 
probability that the measurements performed on the ensemble would result 
with (n1l n2J "'J ii.d, in terms efn and .6.n2 , is 

k 

II P(ii,)dii, = [P(n) dn] [P(S) dS] dOk _ 1 , (35) 
i ::::l 

S", [(k - 1) /( b.6 + b.~)] b.n2 , (36) 

where dr2k_ 1 is a normalized infinitesimal element of the solid angle in dimen
sion (k - 1), J dO k _ 1 = l. 

The probability distribution of the estimated center position is 

P(n) = N[n, no, (b.~ + b.6)/k] (37) 

On average, 11: equals no, and therefore, n is indeed a statistical estimate 
of the center position of the ini tial photon-number probability density. The 
variance of n is inversely proportional to the number of measurements, k. 
Therefore, the probability error associated with this estimate decreases as the 
number of measurement results increases. The probability distribution of S 
is a chi-squared distribution (20), 

P(S) = X2[S, (k - 1)] , (38) 

and the distribution of the estimated width, .6.n2 , is centered at .6.6 + .D.~ J 
with the variance 2(b.5 + b.:'nJ2/(k - 1). As k increases, the probability error 
for .6.n2 to read .6.6 + .6.;n decreases. We can conclude that , by measuring an 
ensemble of squeezed states, all with the same initial wavefunction, both the 
center and width of tbe initial photon-number probability density associated 
with this wavefunction ca.n be estimated statistically, The information about 
the width of the photon-number probabili ty density, which is not available 
from a single measurement of a single squeezed state, makes the measurement 
of an ensemble of squeezed states a measurement of the wavefunction, as 
opposed to a measurement of the photon-number alone, 

The Changes in a Single Squeezed State Due to 
Repeated Photon-Number QND Measurements 

Next, let us consider the changes in a single squeezed state in the process of 
k repeated measurements. From Eqs. (10), (14) and (26)-(28), we obtain that 
the final photon-number probability density after k repeated measurements , 
which result in (ii l , n2) .. " nk), is 

(39) 
k 

n~ = t.~ (no/ b.6 + L iid b.~) (40) 
i =l 

(41) 
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FIG. 3. The quantum Brownian motion and the continuous collapse of the pho
ton-number probability density of a single squeezed state, in the process of repeated 
weak photon-number QND measurements. The initial probabili ty density, shown 
on the left , is centered at no with the width ..6..0 . The thick lines describe the sta
tistical diffusion of the center position of th is probability, which reaches the initial 
width of the probability density. The explicit drawings of the probability density 
demons trate its continuous collapse. Note that the effect of earlier measurements 
on the wavefunction is more dramatic than the effect of later measurements. 

As was noted before , Pk{n) is symmetric in (iii. n2J ". J iik). Also note, by 
comparing Eqs. (39)-(41) with Eqs. (30)-(32) , that the total change in the 
wavefunction due to k repeated measurements of strength 1/ fl~ is exactly 
the same as the change due to a single measurement of a strength k/ fl~ J 
which results in iiI = n. After each measurement , the width of the photon
number probability density decreases (continuous collapse). The center of 
this probability density takes a step in a random walk (quantum Brownian 
motion) , which depends on the random result of the measurement (Fig. 3). 

The probability distribution which statistically describes the diffusion of 
the center position of the photon-number probability density after k measure
ments, n~J is 

(42) 

On average , the center position is always at the initial center position J no. 
However, the probability of finding the center farther away from no increases 
as the number of measurements increases. As long as the total strength of the 
measurements is small , k/ fl~ «:: 1/6.6, the variance of n~ increases linearly 
with the number of measurements, (k/~;")~6~k '" Dk. In this regime the 
movement of the center position is a quantum Brownian motion with a con
stant diffusion coefficient D = flril L\~. Here the time scale is replaced by the 
discrete scale of the number of measurements. As the photon-number proba-
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bility density narrows, the average step size of this quantum Brownian motion 
decreases. The statistical variance of n~ saturates, and equals the initial width 
of the photon-number probability density (the initial uncer tainty associated 
with the photon-number of the squeezed state), ~5. At the same time, the 
squeezed state is reduced to a photon-number eigenstate. The measured state, 
therefore, undergoes quantum Brownian motion , which is saturated due to its 
continuous collapse. 

The Statist ics of the Results of Repeated Measurements 
P erfol'lned on a Single Squeezed State 

Analyzing the statistics of the results of k repeated measurements per
formed on a single squeezed state, we use the same definitions for the estimates 
of the center position and width of the photon-number probability density as 
for the case of k measurements performed on an ensemble. These definitions, 
which appear in Eqs. (33) and (34), are symmetric in the measurement re
sults, (iiI, n2, ... , 71·k). In the case of k repeated measurements performed on 
a single squeezed st,ate, both the final photon-number probability density of 
this state, hen), and the probability to obtain a specific series of results , 
P(iil' fl.2 , ... ) n.d, are independent of the order in which these results are ob
tained. Therefore, it is natural to use the same nand .6.n2 as before. In 
fact, n as defined in Eq. (33) can be shown to be the best estimate for the 
center position of the photon-number probability density in this case: As an 
estimate of the center position, n should be linear in the measurement results) 
n = L~=l Ci ni . Fol' n to be the best estimate of the center position, it should 
equal the center position, on average, (n) = no, and the associated est imate 
error shou ld be minimized d(~n2) / dCi = O. These requirements result with 
Ci = l/k for all i, and the definition of Eq. (33) is recovered. 

From Eqs. (10) and (26)-(28), the probability of getting the measurement 
results (iiI, 112, ... , '-Ik) in the process of k repeated measurements performed 
on a single state is 

• 
P(n" n" .. , nk) II dni = [pen) dn] [p eS) dS] dOk_1 (43) 

i =l 

S == [(k - 1)/ ~;;.] ~n' . (44) 

Comparing Eqs. (36) and (44) we see that in this case, unlike the case of k 
measurements performed on an ensemble , S is independent of Ll5. 

The probability distribution of the estimated center position is 

P(n) = N [n, no, ~5 + ~;;'/k] . (45) 

The el'l'OI' associated with n as an est imate of the center position , no , decreases 
with an increased number of measurements, and, as k ---+ 00, this error reaches 
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its minimum value which equals the initial uncertainty in the photon-number 
of the squeezed state, .6..5. Therefore, the estimated center position has the 
same probability error in both cases of an infinite number of repeated weak 
measurements and one precise measurement. In fact, comparing Eq. (45) 
with Eq. (29), we see that the probabilities to infer a certain n, by k consecu
t ive measurements of strength 1/ .6..~, and by one measurement of a strength 
kj 11;"', are equal. The probability distribution of S is, again , a chi-squared 
distribution, 

P(S) = X2[S, (k - I)J (46) 

However , P(S) is now independent of 115, and , therefore , the estimated 
width, nn2 , is not a statistical measure of the initial width, .6..6. Indeed , 
.6..n2 equals .6..~ on average, which means that .6..n2 estimates the measure
ment error (which we, obviously, know al ready), with the estimate error being 
211-:"j(k - 1). The statistics of the results of repeated weak QND measure
ments performed on a single squeezed state contain no information about the 
initial width of the photon-number probability density of this state. In con
tradiction with our expectations, these statistics do not infer the wavefunction 
of the single squeezed state. 

Consis tency with Holevo's Theor em of the Quantum Channel Capacity 

The above conclusion , t hat the results of repeated photon-number measure
ments, performed on a single squeezed state of light , can be used to est imate 
the photon-number exp ectation value, but not the uncertainty associated with 
the photon-number I is consistent with the fund amental theorem in quantum 
communication theory, Holevo's theorem (21). 

Every physical means of information transfer can be considered as a commu
nication channel. vVhen the information is tranmitted using quantum states, 
and detected using quantum measurements, t his is a quantum communication 
channel. The quantum communication channel can be described schematically 
as follows: To transmit the information , the sender selects one pure quantum 
state, with the density operator Pi, out of a set of possible states {P;}. The 
probability that the sender chooses t his particular state is P(p;) . The receiver 
does not know which of t he pure states the sender selects each time, but knows 
P(Pi), t he probability distribution for these states to be selected. Therefore, 
t he receiver views t.he states received in the quantum communication chan
nel as mixed states , described by the density operator P = Li P(Pi) p,. In 
order to maximize the information transferred in the quantum communica
tion channel, the sell der can choose between different sets of pure states, and 
different probability distributions of selecting a specific state. The receiver 
can choose between different quantum measurements . However , according to 
Holevo's theorem, the maximum information transfer in a quantum channel, 
or the channnel capacity, is limited, regardless of the choices made by the 
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sender and the receiver . The maximum capacity for a quantum channel is 
Sma. = Max[S(p)], where S(p) = - 'Ir(P log2 p) is the quantum entropy of 
the density operator p. S(p) characterizes the number of distinguishable pure 
states in t he set of states {p;}. 

In t he case of the bosonic channel , the maximium channel capacity can be 
realized by the number eigenstates channel (22,23), in which the set of input 
quantum states is the set of number (or energy) eigenstates, the probability 
distrib ution for the sender to choose one of these states is t he so-called thermal 
distribution, P( n;) = (n) n, I( (n) + 1) n,+1 , where (n) is the average number, 
and the measurements, which are done by the receiver, are ideal number (or 
energy) measurements. 

Now , ifit were possible to measure the photon-number probability density of 
a single squeezed state, i.e. , if it were possible to estimate both the expectation 
value and the uncertainty associated with the photon-number of a single state, 
one could consider encoding information on the photon-number uncertainty, 
and not only the photon-number expectation value. Unless some information 
about the photon-number expectation value is lost, when some information 
about the photon-number uncertainty is gained , the process of repeated weak 
measurements would make it possible to exceed t he maximum capacity of t he 
bosonic channel. This would be a violation of Holevo's theorem. As we have 
shown , a series of repeated weak QND measurements infers the center position 
of the photon-numb er probability density! or the photon-number expectation 
value, ,,\lith the sallle probability error as a single strong measurement does. 
No information about t he photon-number expectation value is lost. Therefore, 
in order to avoid a direct violat ion of Holevo's theorem, it is required that no 
information about the photon-number uncertainty could be gained . Indeed , 
this series of measu rements cannot infer the photon-number uncertainty with 
a fini te probability error, and distinguish between different states of equal 
photon-number expectation values and different photon-number uncertainties. 

The Rcla tion Between the Changes in the Wavefunction 
and the Statistics of the Measurement Results 

or 
Why is the Projection Postulate Responsible for the 
Inhibition of the Measurement of the Wavefunction? 

In the process of repeated photon-number QND measurements , performed 
on a single squeezed state! the wavefunction of this state undergoes satu
rated quantum Brownian motion and continuous collapse. These changes 
in the wavefun ction originate in the projection postulate. The statistics of 
the measurement results contain information about the expectation value of 
the phoLon-number. The information about the uncertainty associated with 
the photon-number, however , is cancelled out, due to the exact coordina
tion between the quantum Brownian motion and t he continuous collapse of 
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the wavefun d ion . Therefore, this process of repeated measurements does 
not correspond to a measurement of the wavefunction of the single squeezed 
state, and t his inhibition of the measurement of the wavefunction is a direct 
consequ ence of the projection postulate. 

The first indication to the inhibition of the measurement of the wavefunc
tion of the single squeezed state, in the above analysis of repeated photon
number QN D mea su rements, is the symmetry of the statistics of the mea
surement results, P(iil' ii2, ... , iik). Each time the squeezed state is mea
sured , it is slightly changed. The results of the consecutive measurements 
are essentially collected from an ensemble of squeezed states with different 
photon-numb er probabili ty densities. All these results have the same weight 
in P( iiI , ii2 J • •• , nk), and therefore their statistics are independent of the initial 
uncertainty in t he photon-number . There is no natural way to assign different 
weights to the different results in t he definitions of the estimates nand Lln2 , 
since the changes in the wavefunction are also symmetric in (iit, n2, ... , Tid, 
and we cannot overcome the symmetry of P(iit, n2, " 'J nk). 

Consider the case in which one is trying to distinguish between two squeezed 
states of large and small photon-number uncertainties, i.e., wide and nar
row photon-number probability densities , both with the same initial photon
number expectation value, no, by repeatedly measuring both states. The first 
measurement resulL obtained from the wide state is more likely to be farther 
away from no than the first result obtained from the narrow state. However , 
the shift toward t he measurement result and the collapse due to the first mea
suremen t are more dramatic in the case of the wide state. T herefore, t he 
probability of obtaini ng the second result in a certain distance from the first 
result can be the same for both stat es, regardless of the initial widths of their 
photon-number probability densities. 

Note that while the continuous collapse of the wavefun ction and the sym
metry or the statistics of the measurement results are valid for all processes 
of repeated quantum measurements of the same observable, performed on a 
single qua.ntum sys tem, they do not necessarily hold in general , when more 
then a single observable is measured. The following example shows that even 
when the collapse of the wavefunction of the single system to an eigenstate 
of the measured observable is prevented, due to back-action noise imposed by 
measurements of the conjugate observable, and the statistics of the measure
ment re~mlts depend on the order in which these results are obtained, it is still 
impossible to measure the wavefundion of the single system. 

ALTERNATING QND MEASUREMENTS 
OF THE TWO QUADRATURE AMPLITUDES 
OF A SINGLE SQUEEZED STATE OF LIGHT 

The second example is the case of alternating QND measurements of the 
two (slolVly varying) quadrature amplitudes of a squeezed state (Fig. 4), using 
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FIG. 4. Alternating QND measurements of the two (slowly varying) quadrature 
amplitudes: In each measurement, the signal is correlated to a new probe, which is 
in a squeezed vacuum state. Then, the first-quadrature (or the second-quadrature) 
amplitude of the probe is measured precisely using homodyne detection. 

dual degenerate parametric amplification (13,14). Each time a measurement 
is taken , the signal squeezed state is correlated to a probe, which is prepared 
in a squeezed vacuum state. In the odd (even) measurements, the result 
of a measurement of the second-quadrature (first-quadrature) of the probe, 
a2,p (ai ,,,), is used to infer the first-quadrature (second-quadrature) of the 
signal, "I,' ("2,, ). As in the previous example, both the signal and the probe 
have Gaussian probability densities, and the analysis of the photon-number 
QND measurement of Eqs. (30)-(32) can be used to describe the quadrature 
amplitude QND measurement . 

The initial probability density of ai" is Po(<» = N[<>,<>o,A5l. The proba
bility density of iil ,1 before the k-th measurement of a1,-'I Pk_l(a) , in terms 
of the probability density before the (k -1)-th measurement of ai,,, P.-2(<», 
the mellSlll'ement error associated with this measurement, ~~, and the back
action noise due to the (k - l)-th measurement of Ct2,,,, ~~, is 

1" -1(" ) = N[a·, <>~-I,ALll , 
'-1 (1/'" I/A2 )-1 ('-2/'" - / A2) <1'0 = '-.)./,;_2 + urn 0:'0 u k _ 2 + <1'k -l urn 

., (/ 2 / A2)-1 A2 Ai_I = 1 A._ 2 + 1 ""rn + "'" , 

(47) 

(48) 
(49) 

where (;'-1 is t he result of the (k - 1)-th measurement of iii, •. Note that 
for ~~ = a this example is reduced to the case of repeated measurements 
of aI ,,,, wh ich is mathematically equivalent to the first example of repeated 
photon- tltllTIber measurements. 
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Consider the changes in the probability density of 0.1 ,& . Each measure
ment of the conjugate observab le, 0.2 ,&, increases the width of this probabili ty 
density by 6~, the back-action noise. The consecutive measurement of 0.1,& 

narrows this probability density in proportion to its current width. There
fore, if the measurement of U2 ,& increases the width of the probability density 
signifi can tly, then the consecutive measurement of U1 ,& would reduce it signif
icantly. However , if the change in the width due to the measurement of a2 ,& 

is insignificant, then the change due to the consecutive measurement of a1 ,& is 
also rela.tively insignificant . The squeezed state is, obviously, prevented from 
coll apsing to an eigenstate of Gl,& (or (12 ,& ), but the narrowing and widening of 
the probability density of a", (or a",) due to t he alternating measurements of 
Ul ,& and (L2,s would, eventually, balance, to keep the width of this probability 
density the sa.me each time Ul ,~ (or Q.2,&) is measured , i.e. , .6.~_1 = .6.~. In this 
limit , as can be seen from Eq. (49) , the widths of the probability densities 
of Ul ,~ and Ct2,& are solely determined by t he relative strengths of the ii l ,& 

and G2 , .• meas urements. Note that the back-action noise, .6.~ , that a measure
ment of ii 2 ,& imp oses on the probability density of Gl ,&, is determined by the 
strength of t.he ii2,s measurement. If the measurements of aI ,s and 0. 2,.1 have 
equal s l,rengths, for instance , than t he noise distribution of t he squeezed state 
would ,·each that of a coherent state. After reaching this limit , the squeezed 
state would diffuse freely (quantum Brownian motion), while preserving its 
noise dis tribu tion , due to the process of repeated measurements. 

The cond itional probability to obtain a,l; in the k-th measurement , 
P(akl"k-l, .. . , ",), can be determined from Pk- l (",), using Eqs. (10)-(13) 
and (47)-(49). This allows us to calculate the statistics of the a", measure
ment res ults. The center posit ion of the initial probability density of aI, s, eto, 
can be es timated using a linear fun ction of the measurement results , because 

(a,) = .f ciO: l P (aI) .f da, P(a,la,) ... J dak P(aklak_l, .. . , ii,) a, = "'0 , 

(50) 

However , the widt h of the ini t ial probability density of aI ,s) .6.5, cannot be 
estimated using a quadratic function of the measurement results, because the 
inforrrwtion about ~5 is always "screened" by the 0'5, which is unknown to 
us: 

(iif) = J da,P(ad J dii,p(a,lal) .. . J diik P(ii,liik_l, ... , iiI)ii% 

= "5 + L'.5 + L'.~ + (k - 1)L'.t , (51) 

(iiko:,) = J da, P(aI) ... J dii, P(aklak-l, ... , iiI) a, ... 

x J da, P(iidii'-l, ... , ak, ... , a,) ii, 

= cr~ + L'.6 + (k - 1)L'.t, for all k < / (52) 

170 



The same Lreatment can be repeated using the measurement results of (12,11' 

In fact, comparing Eqs . (50)-(52) with Eqs. (23)-(25) we see that in this 
specific f> x,unple, we recover t he statistics of the general case. 

The changes in t he wavefun ction of a single squeezed state due to a series of 
alternaLing QN D measurements of the two quadrature amplitudes seem to be 
different frol11 the cha.nges due to a series of photon-number QND measure
ments. Yet, in both cases, the statist ics of the measurement results do not 
contain any information about the uncertainties associated with the measured 
observables. Therefore , in both cases, t hese changes inhibit the measurement 
of the wavefunctiol1. T his is because t he changes in the wavefun ction due to 
any process of repeated quantum measu rements are always governed by t he 
projection postulate. 

CONCLUSIONS 

We have shown that the wavefunctiol1 of a single system cannot be inferred 
from the resulLs of repeated quantum measurements. Mathematically, this is 
because each measurement result depends on t he results of all the previous 
measurements. Physically, the measurement process modifies the wavefun c
t ion of Lhe measllred system in accordance wit h the measurement resul t, i.e. , 
t he information wh ich is extracted from the system. This modification is a 
direct consequence of the proj ection postulate. Therefore, we conclude that 
t he proj ection postu late inhibits the measurement of the quantum wavefunc
t ion of a sin gle system, and limits this wavefunction to have a statistical (or 
epistemological) meaning only. 
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