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A scheme for the ‘‘protective measurement’’@Phys. Rev. A47, 4616 ~1993!# of the wave function of a
squeezed harmonic-oscillator state is described. This protective measurement is shown to be equivalent to a
measurement of an ensemble of states. The protective measurement, therefore, allows for a definition of the
quantum wave function on a single system. Yet, this equivalency also suggests that both measurement schemes
account for the epistemological meaning of the wave function only. The protective measurement requires a full
a priori knowledge of the measured state. The intermediate cases, in which only partiala priori information is
given, are also discussed.

PACS number~s!: 03.65.Bz, 42.50.Dv

I. INTRODUCTION

Recently, with the technological developments that allow
manipulation of single quantum systems, there has been an
interest in the quantum theory of a single system. Tradition-
ally, quantum mechanics describes a single system by a cor-
responding wave function. The quantum wave function,
though, is defined on an ensemble of quantum systems, in
the sense that the wave function could be fully determined
from the results of measurements performed on this en-
semble@1,2#. Naturally, one would ask the question: Can we
define the quantum wave function on a single system? Aha-
ronov, Anandan, and Vaidman@3,4# showed recently, that
the wave function of a single system could be determined
from the results of a series of ‘‘protective measurements’’
performed on the system. The measurement of a quantum
system, i.e., a signal system, is composed of three stages:
preparation of a probe system, interaction of the probe with
the signal, and measurement~which induces collapse! of the
probe. Usually, the probe and the signal are entangled after
their interaction, and the collapse of the probe changes the
wave function of the signal. It was recently shown by us@5#
that this entanglement inhibits the measurement of the wave
function of the signal. Using the results of repeated measure-
ments performed on the signal, one could estimate the ex-
pectation values~or averages! of the various measured ob-
servables with finite estimate errors. One cannot, however,

estimate the uncertainties~or variances! of these observables.
Mathematically, this is because each measurement result de-
pends on the results of all previous measurements performed
on the signal. Physically, this is due to the change of the
wave function of the signal each time a measurement is per-
formed, in accordance with the measurement result. The
‘‘protective measurement’’ suggested by Aharonov, Anan-
dan, and Vaidman is a measurement in which the signal and
the probe are left disentangled after their interaction, and the
proceeding measurement of the probe does not affect the
signal at all. The change in the wave function of the signal is
deterministic, because it is independent of the measurement
result. This change can be very small when, for example, the
interaction of the probe and the signal is weak. The protec-
tive measurement requiresa priori knowledge of the wave
function of the signal. A series of protective measurements
performed on a single quantum system will allow us to con-
firm this a priori knowledge.

In this Rapid Communication we describe a scheme for
the protective measurement of a squeezed harmonic-
oscillator state. Thea priori knowledge of the noise distri-
bution, i.e., the squeezing parameter, of the signal, is used in
preparing a probe in the ground excitation, i.e., in a vacuum
state, with the ‘‘opposite’’ squeezing, to avoid entanglement
of the probe and the signal as they couple linearly. The de-
terministic change in the wave function of the signal, a re-
duction in the excitation of the signal, is ‘‘corrected for’’ by
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driving the signal with a classical field back to itsa priori
known initial excitation. We consider a series of ‘‘measure-
ments without entanglement’’ performed on the signal,
where, after each measurement, the signal is driven back to
its original state. In this scheme, the limits of weak and
strong measurements correspond to a series of protective
measurements of a single state and a measurement of an
ensemble of states, respectively. We conclude that both cases
are equivalent methods for the measurement of the wave
function ~of the single system or the ensemble of systems!,
which provide the same information and use the same ex-
perimental arrangement. The protective measurement allows,
therefore, a definition of the quantum wave function on a
single system, which is equivalent to the traditional defini-
tion on an ensemble of systems. Yet, the equivalency sug-
gests that a definition of the wave function based on either
measurement method can account only for the epistemologi-
cal nature of the wave function. We also investigate the case
in which only the squeezing parameter of the signal is known
a priori. In this case the entanglement of the signal and the
probe is avoided, but the deterministic reduction in the exci-
tation of the signal cannot be corrected for. The optimal ex-
perimental setup, with the optimal choice of coupling con-
stants, is analyzed for a series of measurements without
entanglement performed on a single state. Using these mea-
surement results it is possible to estimate the expectation
values of the measured observables, with the minimum pos-
sible estimate errors being the initial uncertainties of the ob-
servables. These uncertainties can be estimated as accurately
as we want, to confirm thea priori known noise distribution
of the signal. We conclude that no information could be ob-
tained about the wave function of a single system beyond the
information that is provided by a single strong measurement
of this system and the information that is givena priori to
the measurement process.

II. MEASUREMENT WITHOUT ENTANGLEMENT

The squeezed harmonic-oscillator state,ua,r &s , is an
eigenstate of the operatorerŝ11 ie2r ŝ2 , whereŝ1 andŝ2 are
the generalized position and momentum of the harmonic os-
cillator. This signal state is defined by its excitationuau2 and
its squeezing parameterr , which determines the noise distri-
bution of the signal. Note that in generalr is a complex
number, and the squeezed state is not a minimum uncertainty
state. In our measurement scheme, the signal is being
coupled linearly to a squeezed vacuum probeu0,q&p ,
whereq is the squeezing parameter of the probe~Fig. 1!.
This interaction is described by the Hamiltonian
Ĥ5\k( ŝ†p̂1 ŝp̂†), whereŝ, ŝ† and p̂, p̂† are the annihila-
tion and creation operators of the signal and the probe, re-
spectively. The coupling constantk and the interaction time
t define the ‘‘transmission coefficient’’ of this interaction,
T5cos2(kt). In the Heisenberg picture, the time evolution of
the signal and the probe due to their interaction is described
by the relations

ŝout5ATŝin2 iA12Tp̂in , ~1!

p̂out5ATp̂in2 iA12Tŝin , ~2!

where ŝin , p̂in and ŝout , p̂out are the annihilation operators
of the signal and the probe, before and after the interaction,

respectively. A measurement of the output probe state
p̂out , therefore, gives information about the input signal state
ŝin .

To obtain information about the generalized position of
the input signal, for example,ŝ1,in5( ŝin1 ŝin

† )/2, one can
measure the generalized momentum of the output probe,
p̂2,out5( p̂out2 p̂out

† )/2i5ATp̂2,in2A12Tŝ1,in . The ob-
served position,

ŝ1,obs[2 p̂2,out /A12T, ~3!

is centered at̂ ŝ1,obs&5^ ŝ1,in&. The uncertainty of the ob-
served position is the sum of the uncertainty of the position
of the input signal and the measurement error,

^D ŝ1,obs
2 &5^D ŝ1,in

2 &1
T

12T
^D p̂2,in

2 &. ~4!

Similarly, a measurement of the position of the output probe
p̂1,out gives information about the momentum of the input
signal ŝ2,in . Note that, regardless of the specific observable
that is being measured, when the coupling is highly ‘‘trans-
missive,’’ T'1, the measurement error is large and the mea-
surement is weak. When the coupling is highly ‘‘reflective,’’
T'0, the measurement is strong.

The signal-probe interaction causes a deterministic
change in the wave function of the signal, as can be seen
from the above analysis. In general, though, the signal and
the probe are entangled after the interaction, and a measure-
ment of the probe would induce further change in the wave
function of the signal, a stochastic change that depends on
the measurement result. To find the special cases in which
the signal and the probe are disentangled after their interac-
tion one should examine their time evolution in the Schro¨-
dinger picture. Using normal ordering of the unitary time
evolution operator,Û(t)5exp(2iĤt/\), it can be shown@6#
that when the input signal and probe are coherent states,
ub&s and ug&p , the output signal and probe are disentangled
coherent states~of different excitations!,

Û~ t !ub&sug&p5uATb2 iA12Tg&suATg2 iA12Tb&p .

FIG. 1. Measurement without entanglement of a squeezed state
of light: The signal and the probe, with opposite squeezing param-
eters, interact linearly in a beam splitter. The top and bottom insets
show the changes in the signal and the probe, respectively. The
excitation of the signal is reduced, while the excitation of the probe
is increased.
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This result can be used to determine the time evolution of the
squeezed signal and the squeezed vacuum probe, writing the
squeezed states in the coherent states representation,

Û~ t !ua,r &su0,q&p5E ~d2b/p!s^bua,r &s

3E ~d2g/p!p^gu0,q&pÛ~ t !ub&sug&p .

This leads~after some math! to the conclusion that the output
signal and probe are disentangled when their squeezing pa-
rametersr andq satisfy the relationq52r1 if, wheref is
an arbitrary phase. The squeezing of the probe is, therefore,
required to be ‘‘opposite’’ to the squeezing of the signal,

^D p̂1,in
2 &5exp@22 Re~r !#/45^D ŝ2,in

2 &, ~5!

^D p̂2,in
2 &5exp@2 Re~r !#/45^D ŝ1,in

2 &. ~6!

In this case, the disentangled output signal and probe are of
different excitations but the same noise distributions as the
input signal and probe, respectively,

Û~ t !ua,r &su0,2r1 if&p

5uATa,r &su2 iA12Ta,2r1 if&p . ~7!

III. DRIVING THE SIGNAL BACK
TO ITS INITIAL EXCITATION

After a measurement without entanglement takes place,
the excitation of the signal is reduced, fromuau2 to Tuau2.
The signal could be driven back to its initial excitation, if
this excitation were known, using a classical field~Fig. 2!.
This interaction is described by the Hamiltonian
Ĥ5 i\( f ŝ†2 f * ŝ), wheref is the classical field. The unitary
time evolution operator that corresponds to this Hamiltonian
is a displacement operator@7#, Û(t)5exp@(fŝ†2f* ŝ)t#
5D̂( f t). When acting on a coherent signal, the excitation of
the signal is increased byf t,

Û~ t !ub&s5exp@~b* f2b f * !t/2#ub1 f t&s ,

while its noise distribution is left unchanged. The same is
true when the signal is a squeezed state. Expressing the
squeezed signal in terms of coherent states,

Û~ t !uATa,r &s5E ~d2b/p!s^buATa,r &sÛ~ t !ub&s ,

one obtains~after some math! that the time evolution of the
squeezed signal, when driven by a classical field, is

Û~ t !uATa,r &s5exp@AT~a* f2a f * !t/2#uATa1 f t,r &s .
~8!

For the signal to be driven back to its original state~up to a
phase factor!, the field f and the interaction timet should be
chosen to satisfyATa1 f t5a.

IV. THE PROTECTIVE MEASUREMENT OF A SINGLE
STATE EQUIVALENT TO A MEASUREMENT

OF AN ENSEMBLE

Given the wave function of the signal, it is possible to
perform a series of measurements on the signal, such that
each time a measurement is taken the signal is in its original
known state. First, one performs a measurement without en-
tanglement, where the knowledge about the noise distribu-
tion of the signal is used. The result of this measurement
gives some information about the~already known! wave
function of the signal. Then, the deterministic change in the
signal is corrected for, using thea priori knowledge of the
initial excitation of the signal, after which the wave function
of the signal is~up to a phase factor! exactly the same as it
was initially. A series of such measurements can give full
information about this wave function and confirm oura pri-
ori knowledge. The most feasible realization of this measure-
ment scheme is a measurement of the wave function of a
squeezed state of light. For the measurement without en-
tanglement, the squeezed signal could be coupled to a
squeezed vacuum probe in a beam splitter, with the transmis-
sion coefficientT ~Fig. 1!. The effect of an interaction with a
classical field could be achieved by using a highly excited
coherent state~with a large signal-to-noise ratio!, and caus-
ing it to interact with the signal in a highly transmissive
beam splitter,T>1, so that the noise of the driving coherent
state does not affect the squeezed signal~Fig. 2!.

Now, consider the strength of these measurements. When
the measurement without entanglement is strong,T'0, the
deterministic change it causes to the signal is significant: The
excitation of the signal is reduced fromuau2 to Tuau2'0. In
this case, the process of driving the signal back to its original
excitation is equivalent to preparing a new signal state.
Therefore, in the limit of strong measurement, the series of
measurements described above is, in fact, the case of prepar-
ing and measuring an ensemble of identical generalized
harmonic-oscillator states. When the measurement is weak,
T'1, the change in the excitation of the signal is almost
negligible, Tuau2'uau2. This limit is the case of repeated
protective measurements performed on a single state. Since
both cases, that of a series of protective measurements per-
formed on a single state and that of a measurement of an
ensemble of states, are limits of the same physical process,
and, indeed, the same experimental arrangement, we con-
clude that these two cases are equivalent. And, of course, in
these two cases the quantum wave function is measured.

This equivalency in the measurement of the wave func-
tion, establishes an equivalency between the two definitions
of the wave function, the traditional definition that is based
on an ensemble of systems and the new definition suggested
by Aharonov, Anandan, and Vaidman that is based on a

FIG. 2. Driving a squeezed state of light to its initial excitation:
The signal interacts with a highly excited coherent state in a highly
transmissive beam splitter. The inset shows the change in the signal.
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single system. The protective measurement requires a fulla
priori knowledge of the measured wave function. The mea-
surement of an ensemble requires the knowledge of the ex-
perimental parameters that produce a quantum state. Due to
the requireda priori knowledge, both valid definitions of the
wave function fail to account for the physical reality of the
wave function of a single quantum system.

V. REPEATED MEASUREMENTS
WITHOUT ENTANGLEMENT

In a measurement of the wave function of a single quan-
tum system, to what extent is thea priori knowledge
needed? To answer this question, consider the case of re-
peated measurements without entanglement of the general-
ized positionŝ1 of a single generalized harmonic-oscillator
state. Assume that, in order to perform these measurements,
the noise distribution of the signal, i.e.,^D ŝ1

2& and^D ŝ2
2&, is

known, but no additional information about the excitation of
the signal, i.e.,̂ ŝ1& and ^ŝ2&, is given. First consider the
results of two consecutive measurements,s̃1,1 ands̃1,2. From
Eq. ~3!, each result is, on average,^s̃1,1&5^s̃1,2&5^ŝ1&. From
Eqs.~4!, ~6!, and~7!, the errors associated with these results
are ^D s̃ 1,1

2 &5^D ŝ1
2&/(12T1) and ^D s̃ 1,2

2 &5^D ŝ1
2&/T1 /

(12T2). Define the estimate of̂ ŝ1& to be s̄15( s̃1,1
1 s̃1,2)/2, where^s̄1&5^ŝ1&. The measurement results,s̃1,1
and s̃1,2, are independent of each other, since the signal and
probe are disentangled after their interaction, and the esti-
mate error is^D s̄ 1

2&5(^D s̃ 1,1
2 &1^D s̃ 1,2

2 &)/4. This error is
minimized when the transmission coefficients are chosen
such thatT151/2 andT250. In this case, the estimate error
equals the initial uncertainty in the generalized position of
the signal,̂ D s̄ 1

2&min5^D ŝ1
2&. To estimate this initial uncer-

tainty using the measurement results, define
s25( s̃1,12 s̃1,2)

2/4, where, for the above choice ofT1 and
T2 , ^s2&5^D ŝ1

2&. The error in the uncertainty estimate is
^D(s2)2&52 ^D ŝ1

2&, where we used the fact that the proba-
blity densities of the generalized position and momentum of
a generalized harmonic oscillator state are Gaussians.

This analysis can be generalized forn measurement re-
sults by way of mathematical induction. In this case, the
estimate of the generalized position of the signal is defined
as

s 1̄5
1

n (
k51

n

s̃1,k . ~9!

The associated estimate error is minimized when the trans-
mission coefficients are

T15
n21

n
, T25

n22

n21
, . . . , Tk5

n2k

n2k11
, . . . , Tn50.

~10!

The minimum possible estimate error always equals the
initial uncertainty of the position of the signal,
^D s̄ 1

2&min5^D ŝ1
2&, regardless of the number of measure-

ments. However, the error in the estimate of the initial un-
certainty,

s25
1

~n21!n2 (
k51

n

(
l.k

~ s̃1,k2 s̃1,l !
2, ~11!

is reduced as the number of measurement increases:
^D(s2)2&52 ^D ŝ1

2&2/(n21). Note that this is the same error
as when^D ŝ1

2& is estimated usingn measurement results
obtained from an ensemble ofn identical squeezed
harmonic-oscillator states. Repeated measurements without
entanglement of a single state, therefore, give the same in-
formation on the~unknown! excitation of the signal as a
single strong measurement does. The~known! noise distribu-
tion of the signal can be determined with increasing accu-
racy, as the number of measurements increases. We conclude
that in order to obtain information about the wave function,
which a single strong measurement cannot give, this infor-
mation is required to be knowna priori to the measurement
process.

VI. CONCLUSIONS

We have described a scheme for the protective measure-
ment of a squeezed harmonic-oscillator state. Using this
scheme, we have shown that the protective measurement of a
single system is equivalent to a measurement of an ensemble
of systems. Therefore, the protective measurement allows for
a definition of the quantum wave function on a single sys-
tem. Yet, the protective measurement of a single system ac-
counts only for the epistemological nature of the wave func-
tion of the single system, and does not add to it physical
reality. Analyzing the case in which only partiala priori
information about the wave function of the system is avail-
able, we have shown that without anya priori knowledge,
the information that can be extracted from a single system is
limited to the information obtained with a single strong
measurement.
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