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Two separate structures exist in quantum mechanics: the observables, which are 
represented by operators of the Hilbert space, and the physical systems, which are 
described by state vectors or wave functions. The wave function is said to have an 
epistemological meaning because it contains all the relevant information about the 
physical system under consideration. The result of a precise measurement on a single 
quantum system is always one of the eigenvalues of the measured observable. After 
the measurement, the wave function of the measured system collapses to the 
corresponding eigenstate, according to the projection postulate. There is no one-to- 
one correspondence between the result of a single measurement and the state of the 
system before the measurement. In order to measure the initial wave function of the 
system, one needs to prepare an ensemble of systems with the same wave function 
and then measure them all. The wave function is obtained from the statistics of the 
results of measurements performed on this ensemble. Recently, Aharonov, Anan- 
dan, and Vaidman1S2 suggested that the wave function of a single quantum system 
could be measured, thereby giving the wave function an ontological significance, that 
is, physical reality in its own right, in addition to its usual epistemological role. They 
suggested employing a series of “protective measurements”, where an a priori 
knowledge of the wave function enables one to measure this wave function and to 
protect it from changing at the same time. However, with this a priori knowledge, one 
could reproduce the wave function after each measurement for an arbitrarily large 
number of times and one could then measure the wave function in the conventional 
manner. 

In this report, we investigate the possibility of measuring the wave function of a 
single quantum system with no a priori knowledge of the wave function in order to 
explore a real ontological meaning of the wave function. We study the case of 
repeated weak quantum nondemolition (QND) mea~urements,~.~ for which we can 
assume that the signal and the probe are in pure states before the measurement, 
without loss of generality. In this case, the signal is left in a pure state after the 
measurement. The unitary interaction between the probe and the signal does not 
allow transitions between any two eigenstates of the measured observable, where 
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such transitions cause an appreciable change of the wave function. Also, the QND 
measurement can be chosen to be as weak as we want. It is possible, therefore, to 
measure the signal many times, using weak QND measurements, before the wave 
function of the signal is changed significantly. The measurement results are all 
generated under some influence of the initial wave function and one may expect the 
statistics of these results to give at least partial information about this wave function. 
In this work, we show that this intuitive picture fails and one cannot, in fact, extract 
any information about the initial wave function of the signal at all. By "information 
about the wave function", we mean information about both the average and the 
variance of the measured observable, that is, the center and the width of the wave 
packet, with finite probability errors. Information about the center position alone 
corresponds to a measurement of the observable, where information about the 
variance reveals the wave function. 

In our model, a series of photon-number QND measurements is performed on a 
single wave packet of light.- A signal wave packet of light, 1 I)&, is correlated to a 
probe wave packet, 1 a&, in an optical Kerr medium. This process is described by the 
unitary operator U = exp(i@$i,), where A, and it, are the signal and probe 
photon-number operators, respectively, and p is the coupling strength? The photon- 
number of the signal, A,, shifts the phase of the probe, A& = @,. Then, the 
second-quadrature amplitude of the probe, riz, is measured precisely by a homodyne 
detection. The inferred signal photon-number, i i ,  is obtained from 4, that is, the 
result of the probe quadrature measurement, iil = a;/( Iwlp), where (a,,( is the 
initial excitation of the probe. A back-action noise is imposed on the phase of the 
signal by the probe photon-number, but this noise does not influence the photon- 
numbFr distribution of the signal. The probability-amplitude operator, ?I = 
,,(ail VIq),, completely describes the three stages of this QND measurement:I0 the 
preparation of the probe state, I%),; the interaction of this state with the signal, fi; 
and the results of the measurement, 4, which corresponds to the state of the probe 
after the measurement, 14) . The probaFility of obtaining a: as the readout of the 
homodyne detection is P(a!) = Trs[?;Y160], where 60 = IIJ& ,($,,I is the density 
operator of the signal before the measurement. After a homodyne detection, which 
results in a:, the signal density operator becomes p1 = P(a:)-l?l;Boe and the 
corresponding photon-number distribution is P I @ )  = ,(n 161 In),. 

The same measurement procedure is repeated k times. Each time, the measure- 
ment is performed on the output signal of the previous measurement, using a new 
probe state. We get a series of second-quadrature amplitude readouts, (a;, a:, . . . , 
a:), which correspond to a series of inferred photon-number values, (fil, i i z ,  . . . , A k ) .  

It is the statistics of (rill i i 2 ,  . . . , Ak), in the limit of weak measurements, that are 
expected to give the initial photon-number distribution of the signal, Po@) = 
s(n I 60 I n),. The probability of obtaining a specific series of inferred photon-number 
values is 

k k 

P(f i , ,  f i 2 ,  . , f i k )  n dfii = P(a:, 49 * . 1 a:) fl d 4 ,  (1) 
i = l  i = l  

where P(al, a;, . . . , 4) = Trs[21Zk60] and where & = ?k.. is the total 
probability-amplitude operator that describes the whole process of k repeated QND 
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measurements.'" The photon-number distribution of the signal wave function after 
the k-th measurement, Pk(n) = is calculated from the corresponding 
signal density operator, 

1 & 

Note that i k  is symmetric in (a:, a:, . . . ,a$); that is, it is independent of the order in 
which the results are obtained. This is because the different operators commute 
with each other. Therefore, the probability of obtaining these results, P(a;, a:, . . . , 
a:), and the final photon-number distribution after these results are measured, Pk(n), 
are both symmetric in (a;, a:, . . . , a:). The probability of obtaining a: in the second 
measurement depends on the result of the first measurement, a:. Yet, the process of 
measuring a: first and a: second has exactly the same probability as the process in 
which a: is measured first and a: is measured second. Also, there is no inherent 
difference between the changes caused to the wave function by the different 
consecutive measurements. Because the wave function of the system is slightly 
different at each measurement, the above observation, namely, that i k  is indepen- 
dent of the order of the measurement results, suggests that no information about the 
width of the wave function is contained in the statistics of the readouts, P(a;, 
a:, . . . , a:). 

To confirm this, let us assume that the initial photon-number distribution is a 
Gaussian, that is, a normal distribution," Po(n) = N[n,no,S;']. Physically, the 
photon-number distribution is a discrete distribution, where n 2 0. If the signal is 
initially in a squeezed state with a large excitation, that is, no >> 1, this Gaussian 
approximation is valid. The initial distribution of the second-quadrature amplitude 
of the probe, with the probe being in a squeezed state with a zero phase, is also a 
Gaussian, centered at zero with the variance (&:) = e-%/4, where r is the squeezing 
parameter. Our model describes a measurement process in which both the signal and 
the probe have normal distributions. Many other physical schemes are described in 
the same way-for example, the QND measurement of one of the quadrature 
amplitudes of a wave packet of light, using a nondegenerate parametric amplifica- 
tion.I2J3 Using a; = I q I pii in equations 1 and 2, the probability distribution for 
inferring a series of photon-number values is 

The final photon-number distribution of the signal is 

k 

Pk(n) = P(al ,  f i z ,  . . . 3 f i k ) - l  N[n, no, 6,'] n N [ f i i ,  n, &,'I. (4) 
i = l  

Here, 6,, = Icq,12k2/(M:) is the strength of each consecutive measurement. The 
measurements are weak when the error associated with each measurement is much 
larger than the initial width of the photon-number distribution of the signal, that is, 
when 6, -=z S,,. 

Consider the case of one measurement performed on a single wave packet of 
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light. The probability distribution of measuring the inferred photon-number, h,,  is 

P(Al)  = " A , ,  no, 6;' + 6 3 .  

The signal wave function is changed to 

The center of the wave function, n:, is shifted toward the measurement result, ir,, 
from its original value, no, whereas the width of the wave function narrows from 6;' 
to (60 + &,)-I.  If the measurement is weak, that is, 6, 60, both the shift and the 
narrowing are very small. 

Before investigating the case of repeated QND measurements performed on a 
single wave packet, we analyze the case of one measurement performed on each 
wave packet in an ensemble of k wave packets, all prepared in the same initial state. 
In this case, each measurement is independent of the others. The probability of 
obtaining the inferred photon-number values, ( A l ,  i i 2 ,  . . . , &), is obviously indepen- 
dent of their order, P(iil, A2, . . . , f i k )  = nf= P(Ai). It is well known that the statistics 
of the results of the measurements in this case are analyzed by both the inferred 
average E = H;k= , Ai/k and the inferred variance a = Hf= , (Ai  - E)2/(k - l), in 
which all measurement results have the same weight. In terms of E and a, the 
probability that the measurements performed on the ensemble would result in 
( A , ,  ri2, . . . , Ak) is 

where S = (k - I)(&;' + &;')-'a and dQ-1 is a normalized infinitesimal element 
of the solid angle in dimension (k - l), that is, Jdfik-1 = 1. The probability 
distribution of the inferred average is 

P(E) = " E ,  n,, k-'(6,' + 6;,)]. (9) 

P(E)  is centered at the original center of the wave function, no. Therefore, the 
inferred average, E, is a statistical measure of no. The variance of P ( E )  is inversely 
proportional to the number of measurements, k. The probability error associated 
with this measurement decreases as the number of measurement results increases. 
The probability distribution of S is a chi-square d i~ t r ibu t ion ,~~ P ( S )  = x2[S, (k - l)]. 
Therefore, the distribution of the inferred variance, z, is centered at 6;' + ti;', 
with - the variance 2(k - 1)-,(6;l + Sil)*. As k increases, the probability error for 
An2 to read 6;' + 6;' decreases. By measuring an ensemble of wave packets, all 
with the same initial wave function, we can conclude that both the center of the wave 
function and its width can be inferred statistically. This corresponds to a measure- 
ment of the wave function. 

Next, let us consider the changes in the measured wave function in the process of 
k repeated measurements performed on a single wave packet. From equation 4, we 
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obtain that the final photon-number distribution after k repeated measurements, 
which results in ( i i l ,  ti*, . . . , f i k ) ,  is 

Pdn) = "n, n:, (6,) + k6,)-'1, (10) 

As was noted before, &(n)  is symmetric in (ril, riz, . . . , r i k ) .  Also, by comparing 
equations 10 and 11 with equations 6 and 7, the total change in the wave function due 
to k repeated measurements of strength 6, is exactly the same as the change due to 
one measurement of a strength k6,, which results in ii = E. After each measurement, 
the width of the wave packet decreases (continuous wave packet collapse). The 
center of the wave packet takes a step in a random walk (quantum Brownian 
motion), which depends on the random result of the measurement, 3;. The probabil- 
ity distribution that statistically describes the diffusion of the center position of the 
wave function after k measurements, n:, is 

The average center position is always at the initial center position, no. However, the 
probability of finding the center further away from no increases as the number of 
measurements increases. As long as the total strength of the measurements is small, 
that is, k6, -=z 60, the variance of ni increases linearly with the number of 
measurements, k6,6,' (60 + k6J1 = Dk. In this regime, the movement of the 
center position is a quantum Brownian motion with a constant diffusion coefficient, 
D = S,Si2. Here, the time scale is replaced by the discrete scale of the number of 
measurements. As the wave function narrows, the average step size of this quantum 
Brownian motion decreases. The statistical variance of the center position saturates 
and then equals the original variance of the wave function, 6;*. At the same time, the 
wave packet is reduced to a photon-number eigenstate. The measured wave packet, 
therefore, undergoes a quantum Brownian motion, which is saturated due to the 
continuous collapse of the wave packet. 

Analyzing the statistics of the results of k repeated measurements on a single 
wave packet, we use the same definitions for the inferred average and variance as for 
the case of k measurements performed on an ensemble. Both definitions are 
symmetric in the results of the measurements, (til, riz ,  . . . , r i k ) .  In the case of k 
repeated measurements on a single wave packet, both the final wave function and the 
probability to obtain a specific series of results are independent of the order in which 
these results are obtained. Therefore, it is natural to use the same E and z as 
before. From equation 3, the probability of obtaining the series (ril, riz, . . . , r i k )  as a 
result of k repeated measurements is 

k 

P( f i l ,  e2, . . . 7 f i k )  n dfir = [P(n)dn][P(S)dS]d~k-,, (13) 
r = l  

where S = ( k  - 1)6,G, and is independent of ho. Again, the probability distribution 
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of the inferred average is centered at the original average, no, that is, 

P(n)  = ME, no, 8,' + (k8,)-'] .  

The variance of the inferred average decreases with an increased number of 
measurements and, ask + 00, this variance reaches its minimum value, which equals 
the original variance of the wave packet, 8;'. Therefore, the inferred average has the 
same probability error in the cases of both an infinite number of repeated weak 
measurements and one precise measurement. In fact, comparing equation 14 with 
equation 5,  we see that Ti is inferred with equal probabilities by k consecutive 
measurements of strength 8, and by one measurement of a strength k8,. The 
probability distribution of S is again a chi-square distribution, P(S) = x2[S,  (k - l)]. 
However, P(S) is now independent of 80; therefore, the inferred variance, a, is not 
a measure of the original variance, 8;'. Indeed, a is centered at ti;', with the 
variance 2(k - l)-%;'. The statistics of the results of repeated weak QND measure- 
ments performed on a single wave packet contain no information about the initial 
width of the wave packet. In contradiction with our expectations, these statistics do 
not infer the wave function of the single wave packet. 

The mathematical origin of this result is the symmetry of P(riI, A2, . . . , iik), which 
appeared already in equation 1. Each time that the wave packet is measured, it is 
slightly changed. The results of the consecutive measurements are essentially col- 
lected from an ensemble of wave packets with different widths. Because all these 
results have the same weight in P(Al, AZ, . . . , i i k ) ,  their statistics are independent of 
the width of the initial wave function. There is no natural way to assign different 
weights to the different results in the definition of @ because the changes in the 
wave function are symmetric in (til, A2, . . . , it&) and we cannot overcome the 
symmetry of P(iil ,  &, . . . ,A&) .  

Physically, it is the exact coordination between the quantum Brownian motion 
and the continuous collapse of the wave packet that prevents us from distinguishing 
between two wave packets of large and small widths, both centered at no. Probably, 
the first measurement result obtained from the wide wave packet is further away 
from no than the result obtained from the narrow wave packet. However, the shift 
toward the measurement result and the collapse due to the first measurement are 
more dramatic in the case of the wide wave packet. Therefore, the probability of 
obtaining the second result in a certain distance from the first result can be the same 
for both wave packets, regardless of their initial widths. 

The above result is consistent with the fundamental theorem of quantum 
 communication^,^^ namely, Holevo's theorem. The maximum channel capacity is 
realized by a photon-number state channel, in which the photon-number state signal 
is detected by an ideal photon counter.16J7 The finite capacity of this noiseless 
channel is due to the discrete spectra of the photon-number; that is, the number of 
distinguishable states is finite because the photon-number observable has only 
positive integer eigenvalues. If one could measure the variance as well as the average 
of a given wave packet, the number of distinguishable states would increase by 
replacing the photon-number state with other states with the same average and 
varied variances. The possibility of exceeding the maximum channel capacity is 
excluded because the measurement of the average is subject to an error, which is 
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determined by the initial variance of the wave packet, and the variance measurement 
is inhibited. 

In conclusion, we have shown that the wave function of a single quantum system 
cannot be measured by a series of weak QND measurements without an a priori 
knowledge of the wave function. This is because the statistics of the results of the 
measurements contain no information about the initial width of the measured wave 
function. Mathematically, this result originates in the symmetric structure of the 
probability-amplitude operator. During the measurement process, the wave function 
undergoes a quantum Brownian motion and continuous collapse. This physical 
mechanism is responsible for the exact cancellation of the information about the 
wave function from the statistics of the measurement results. 
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