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ABSTRACT

Modeling fluid flow and transport in heterogeneous systems is often challenged by unknown parameters that vary in space. In inverse
modeling, measurement data are used to estimate these parameters. Due to the spatial variability of these unknown parameters in
heterogeneous systems (e.g., permeability or diffusivity), the inverse problem is ill-posed and infinite solutions are possible. Physics-informed
neural networks (PINN) have become a popular approach for solving inverse problems. However, in inverse problems in heterogeneous sys-
tems, PINN can be sensitive to hyperparameters and can produce unrealistic patterns. Motivated by the concept of ensemble learning and
variance reduction in machine learning, we propose an ensemble PINN (ePINN) approach where an ensemble of parallel neural networks is
used and each sub-network is initialized with a meaningful pattern of the unknown parameter. Subsequently, these parallel networks provide
a basis that is fed into a main neural network that is trained using PINN. It is shown that an appropriately selected set of patterns can guide
PINN in producing more realistic results that are relevant to the problem of interest. To assess the accuracy of this approach, inverse trans-
port problems involving unknown heat conductivity, porous media permeability, and velocity vector fields were studied. The proposed
ePINN approach was shown to increase the accuracy in inverse problems and mitigate the challenges associated with non-uniqueness.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0150016

I. INTRODUCTION

Recent advances in artificial intelligence (AI) have motivated new
research directions in scientific computing for modeling physical sys-
tems. Traditionally, the broad field of AI has been divided into deduc-
tive reasoning and inductive learning.1 In deductive reasoning, general
and often interpretable domain knowledge is used to formulate a prob-
lem and guide predictions that move from general knowledge to spe-
cific conclusions in a typically mathematically well-defined fashion. In
inductive learning, one starts from specific observations and moves
toward a generalized theory in a data-driven and statistical manner. In
modeling complex physical systems, pure domain knowledge or pure
data are often not sufficient for real-world applications.2 Therefore,
new approaches where the deductive and inductive approaches are
combined have emerged.2 Physics-informed neural networks (PINN)
are a recent paradigm in this area where governing equations in the
form of differential equations are combined with measurement data to
solve physical systems.3,4

While solving well-posed forward problems with PINN is currently
not as efficient as traditional numerical approaches, inverse problems on
the other hand have been a promising area for PINN research. The sim-
plicity and flexibility of PINN models implemented in modern software
frameworks allow one to apply the same code with minor modifications
to study both forward and inverse problems, while this is a tedious task
using traditional inverse modeling approaches such as the adjoint
method.5 Inverse problems arise in different scenarios. For instance, in
practice, it might be experimentally easier to measure a certain physical
variable to infer about a variable that is more difficult to measure (e.g.,
inferring fluid flow velocity from concentration measurements6). Solving
problems where certain boundary/initial conditions or parameters are
unknown but instead measurement data are available7 and data-driven
design of constitutive properties to achieve a desired task (e.g., material
design8) are some other examples. PINN has been applied to various
inverse modeling problems that arise in different fields such as heat
transfer,9,10 fluid mechanics,11–13 and solid mechanics,14 among others.
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A key fundamental challenge in solving inverse problems is the
lack of a unique solution. This is particularly exacerbated when trying
to infer heterogeneous domain properties (e.g., spatially varying mate-
rial properties) with sparse measurements as there are often many pos-
sible solutions. Modeling transport in heterogeneous domains poses
different challenges.15,16 Conceptually, the unknown heterogeneous
parameters do not necessarily depend continuously on the measured
data, which results in high sensitivity of the output of an inverse prob-
lem (the unknown parameter) to small perturbations in the input
data.17 Mathematically, this could be explained by considering an anal-
ogy with a linear system of equations Ax ¼ b in a linear regression
problem where the data matrix A is a rectangular matrix. The solution
to this problem is x ¼ ðA>AÞ�1A>b. However, ðA>AÞ�1 is not nec-
essarily invertible (an ill-posed problem) or could be ill-conditioned
making the solution very sensitive to small perturbations in input
data. A possible solution is to use Tikhonov regularization (L2 regulari-
zation), which results in a solution x ¼ ðA>Aþ kIÞ�1A>b, where
k > 0 is a regularization parameter, which enforces the solution to be
smaller in an L2 metric. The new matrix A>Aþ kI is always invert-
ible,18 and we now have a stable solution. In this example, the regulari-
zation could be perceived as domain knowledge (deductive reasoning)
that augments the inductive approach to machine learning.

The above example highlights the lack of robustness in certain
machine learning tasks. Robustness is a key issue and research direc-
tion in scientific machine learning.19 Scientific machine learning mod-
els need to be robust with respect to small perturbations in their
parameters and the input data. Similar to how deductive reasoning in
the above example improved robustness, there is a need for new
approaches in inverse problems that can improve the non-uniqueness
challenge and sensitivity to model parameters. Specifically, the non-
uniqueness issue in inverse modeling with PINN has received less
attention. In an exploratory analysis, in the Appendix, we demonstrate
that different strategies and traditional regularization approaches for
inverse modeling with PINN lead to different results in identifying the
unknown heterogeneous parameters that could be different from their
ground-truth values. Interestingly, all of these results are “correct” in
the sense that they minimize the loss function. In other words, the
challenge in inverse modeling with PINN is not due to the lack of
expressive power of deep neural networks but rather due to the opti-
mization challenges associated with the complex loss landscape20,21 in
addition to the fundamental challenge discussed above, which is inher-
ent to all inverse problems. Different neural network design strategies
can land the network to different local minima and therefore different
answers to the inverse problem.

In this study, we hypothesized that an ensemble of parallel neural
networks initialized with an arbitrary but meaningful pattern of the
unknown parameter could be used together with transfer learning to
design an ensemble physics-informed neural network (ePINN) frame-
work to guide the PINN solution toward a more robust and accurate
solution. Ensemble neural networks have been used for uncertainty
quantification in traditional deep learning models.22 Additionally, neu-
ral additive models that rely on an ensemble of neural networks
have been proposed to improve the interpretability of neural network
predictions.23 The idea of averaging different predictions in an ensem-
ble fashion for variance reduction and improving predictions in
machine learning is not new and is known as bagging or bootstrap
aggregating.24,25

The manuscript is organized as follows. The problem statement,
the proposed ePINN method, and test cases are explained in Sec. II. In
Sec. III, the results of the proposed approach are presented and com-
pared with the vanilla PINN method. The proposed approach and
results are discussed in Sec. IV.

II. METHODS
A. Problem statement

We consider the governing equations as follows:

LðuðxÞ; kðxÞÞ ¼ 0 x 2 X; (1a)

BðuðxÞÞ ¼ g x 2 @X; (1b)

where L is the differential operator representing the governing equa-
tions, kðxÞ is a model parameter in the form of a scalar or vector field,
and B is a boundary condition operator that determines the specified
boundary conditions on the boundary @X. uðxÞ represents a variable
like velocity or temperature as a function of space, where x 2 X. In
this paper, we present examples where the operator L is the diffusion,
convection–diffusion, Darcy, and Navier–Stokes equations and con-
sider multiphysics coupling between these physics. In a usual forward
problem, we are given the boundary conditions, parameters, and the
operator, and the solution uðxÞ could be obtained using standard
numerical methods. In this paper, we focus on inverse problems where
one of these essential pieces of information is not provided, rendering
the problem ill-defined. In inverse problems, instead, we are provided
with a set of measurement dataD in the form

D ¼ fðxi; uiÞ ; i ¼ 1; 2;…; ng; (2)

where the solution is provided at n measurement points xi. In this
work, we are interested in inverse problems, where the parameter
appearing in the governing equation is a function of space [kðxÞ]
and is unknown. Therefore, our problem is a parameter identifica-
tion problem. In our examples, this represents an unknown hetero-
geneous heat conductivity in a solid domain, permeability in a
porous medium, and a fluid flow velocity vector field. As discussed
above, PINN could be used to solve this problem. PINN formulates
a nonlinear optimization problem where the solution uðxÞ and the
unknown parameter kðxÞ are simultaneously obtained such that the
governing equations [Eq. (1)] and the provided measurement data
[Eq. (2)] are satisfied. Alternatively, classical optimization
approaches could also be used to solve these inverse problems.5 A
key fundamental challenge in all of these approaches is the lack of a
unique solution. In heterogeneous domains, there are many possible
correct parameters kðxÞ with very different patterns. In this study,
we hypothesized that prior knowledge about some basic possible
patterns in the parameter kðxÞ could be used in designing the PINN
architecture to mitigate this challenge.

B. Physics-informed neural network (PINN)

First, we provide a very brief conceptual overview of PINN and
refer the readers to the original work for a detailed presentation.3 In
PINN, we are interested in solving differential equations usually by
also considering arbitrary specified measurement data. Two key fun-
damental features of neural networks are used in formulating PINN.
First, neural networks are function approximators; therefore, we repre-
sent each dependent variable in our governing equation as a function
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of space/time using a neural network where space (x,y,z) and/or time
(t) are input parameters and the output of the neural networks is the
dependent variable of interest u. Second, using automatic differentia-
tion the partial derivative of each output with respect to any input
could be calculated and differential equations could be formed by
combining these partial derivatives. The parameters of the neural net-
works (function approximations) are obtained by formulating a global
optimization problem such that the governing equations, boundary
conditions, and specified data are satisfied.

In our inverse problem, we also represent the unknown hetero-
geneous parameter k as a function of space using an additional neu-
ral network, which is optimized along with the dependent variables.
The weights and biases of the neural networks representing the
function approximations for the dependent variable u and parame-
ter k are optimized such that the following loss function is
minimized

L ¼ kELF þ kbLBC þ kdLdata; (3)

where the governing equations (Navier–Stokes, convection–diffusion,
diffusion, and Darcy equations) are used as the physics loss function
LF ; LBC represents the residuals of the boundary conditions, and
Ldata represents the residuals of the measurement data points, which
are minimized to enforce these conditions. Positive hyperparameters
kE, kb, and kd are used for weighting the contribution of each term.
kE ¼ 1 is considered in all cases. Fully connected neural networks are
used for all variables.

C. Ensemble physics-informed neural network (ePINN)

In this work, we propose ePINN to mitigate the non-
uniqueness issue in inverse problems and produce more meaning-
ful solutions. Our proposed approach could also improve the con-
vergence accuracy of PINN as shown later in the results. In
ePINN, an ensemble of parallel neural networks is combined with
a main network as shown in Fig. 1 to represent the unknown
parameter kðxÞ,

Parallel sub-networks
Xj
i ¼ rðWj

iX
j�1
i þ bjiÞ; 1� j � L� 1; (4a)

Xj
i ¼Wj

iX
j�1
i þ bji; j ¼ L; (4b)

8<
:

Mainnetwork

Zk¼ rðW 0k XL
1 ;…;XL

N

� �
þb0kÞ; k¼ 1; (5a)

Zk¼ rðW 0kZk�1þb0kÞ; 2� k� L�1; (5b)

Zk¼W 0kZk�1þb0k; k¼ L; (5c)

8>>><
>>>:

where Xi (i ¼ 1;…;N) represent the N parallel neural networks and Z
refers to the main neural network. In this study, N¼ 10 was used in all
cases to define ten different patterns. The superscripts j and k are used
to identify the layers in each sub-network and the main neural net-
work, respectively, and they range from 1 to L. Wj and bj denote
weight and bias of the jth layer in each parallel network, andW 0k and
b0k denote weight and bias of the kth layer in the main neural network.

FIG. 1. A schematic overview of the proposed ePINN approach. A set of N parallel networks define ki patterns for the unknown heterogeneous parameter. Each of these pat-
terns is pre-defined for an arbitrary smooth function that represents prior knowledge about possible patterns and ranges in the solution. Each of these parallel networks is
trained to represent these smooth patterns. Namely, ki vs input coordinates data are sampled from the pre-defined functions and are used as training data to train these N par-
allel neural networks in a data-driven fashion without any physics. The output of each parallel network (k1; k2;…; kN ) is fed into the input layer of the part of the main neural
network that represents the final heterogeneous parameter k. The physical variable T is represented with a separate neural network. Finally, the physical variable T and the het-
erogeneous parameter k are solved using PINN.
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r is a nonlinear activation function. Equation (4) shows how the out-
put of each sub-network Xi is calculated. Equation (5) shows how the
parallel sub-network outputs are fed into the main network to generate
the final prediction.

Each parallel sub-network is initialized with a meaningful pre-
specified pattern. The output of each sub-network is used as the input
to the main neural network to approximate the unknown parameter
of the system. These arbitrary patterns could be a standard smooth
function that provides a meaningful spatial variation pattern and con-
sists of a range of values relevant to the problem of interest. We could
think about these patterns as basis functions that are composed in a
nonlinear fashion by ePINN’s main network to guide the final approx-
imation of the unknown parameter kðxÞ. The functions that are used
to generate these initial patterns for each test case are provided in
Table II in the Appendix. Each sub-network is trained to represent
one of these pre-specified functions in a data-driven fashion.
Subsequently, using transfer learning, the weights and biases for these
sub-networks are frozen and only the main network is trained. We
also provide a comparison to the case where the parallel networks are
initialized with the patterns but not frozen, which could be perceived
as a case where the basis functions are initialized but also allowed to be
changed during training.

D. Test case problem formulation

We illustrate the performance of the ePINN method in the con-
text of four benchmark examples. An overview of the geometry used
in these problems and the location of the sparse measurement data
used to solve the inverse problem are shown in Fig. 2. For all test cases,
the data-driven deep neural networks representing the parallel sub-
networks (pre-specified patterns) were trained with 200 epochs with a

constant learning rate of 3� 10�3. The final ePINN simulation used
10 000 epochs with a learning rate varying between 3� 10�4 and
3� 10�6. For all test cases, five sets of simulations were conducted: (1)
ePINN where all parallel sub-networks are frozen and not updated. (2)
A variant of ePINN where the sub-networks are initialized with the
pre-defined patterns but updated during training. (3) A PINN repre-
sentation of ePINN where ePINN architecture is used but all layers are
randomly initialized. (4) A vanilla PINN network with a similar size as
ePINN. (5) A larger vanilla PINN architecture. For all test cases, the
Swish activation function and constant k weights were used except for
test case 4 where an adaptive activation function26 and trainable
weight k27 were used for improved performance.

For each test case, a computational fluid dynamics (CFD) simula-
tion was carried out to validate the results and generate sparse mea-
surements. Test cases 1 and 2 were performed in the finite volume
solver ANSYS Fluent where the least-square cell-based method for
gradient calculations and the second-order upwind method for all
equations (momentum and energy) were selected. Test cases 1 and 2
were modeled with a total number of 60k and 35k quadrilateral ele-
ments, respectively. Test cases 3 and 4 were performed in the finite ele-
ment solver FEniCS with a total number of 10k and 19k triangular
elements, respectively, and with quadratic (second-order) shape func-
tions. The ground-truth functions for the heterogeneous parameters
that were used to generate the CFD results are shown in Table I.
All problems defined below are dimensionless.

1. Test case 1: Infer heterogeneous heat conductivity
in 2D multiphysics heat transfer in a fin

As the first test case, we solved a 2D steady-state problem over a
solid rectangular fin ([0.84, 1.12]�[0, 0.5]) located inside a fluid domain
([0, 2.8]�[0, 1]) as shown in Fig. 2. The fluid flow and convective heat
transfer around the fin were coupled to heat conduction in the fin.

The governing equations include the incompressible
Navier–Stokes equations and convection–diffusion equation in the
fluid coupled with heterogeneous conduction in the solid

@u
@x
þ @v
@y
¼ 0; (6a)

u
@u
@x
þ v

@u
@y
¼ � 1

q
@p
@x
þ � @2u

@x2
þ @

2u
@y2

 !
; (6b)

u
@v

@x
þ v

@v

@y
¼ � 1

q
@p
@y
þ � @2v

@x2
þ @

2v

@y2

 !
; (6c)

u
@Tf

@x
þ v

@Tf

@y
� kf

@2Tf

@x2
þ
@2Tf

@y2

 !
¼ 0; (6d)

r � ðksrTÞ ¼
@ks
@x

@Ts

@x
þ @ks
@y

@Ts

@y
þ ks

@2Ts

@x2
þ @

2Ts

@y2

 !
¼ 0; (6e)

FIG. 2. The models used for each test case are shown. The black dots show the
sensor locations. (a) Test case 1: multiphysics heat transfer in a fin, (b) test case 2:
diffusion in a rectangle, (c) test case 3: porous medium transport, and (d) test case
4: blood flow in a blocked vessel.

TABLE I. The functions k(x,y) that were used to define the unknown parameter in each test case.

Test case 1 Test case 2 Test case 3 Test case 4

y sin ð5xÞ þ sin ð10yÞ þ cos ð20yÞ exp ðsin ð10xÞ þ yÞ Velocity vector from CFD simulation
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where u and v are velocity in x and y direction; Tf and Ts denote tem-
perature in the fluid and solid domains, respectively; and a thermal dif-
fusivity (the reciprocal of the fluid Peclet number) of kf ¼ 0:02 was
considered for the fluid. A dimensionless density q ¼ 1 and kinematic
viscosity (the reciprocal of the Reynolds number) � ¼ 0:01 were
selected with a parabolic velocity profile at the inlet producing a peak
velocity of u¼ 0.5. No-slip boundary condition was used at the walls.
ksðx; yÞ is the unknown spatially varying heat conductivity in the solid
that we are interested in estimating. For thermal boundary conditions,
the inlet temperature was set to zero and the base temperature of the fin
was set to one (non-dimensional). At the fluid–solid interface, equal
heat flux and temperature of the solid and fluid were enforced. Zero
flux was assumed at the other boundaries. In generating the measure-
ment data with CFD simulations, the heat conductivity of the solid was
given as a function of space as defined in Table I. The goal of the inverse
problem is to identify this conductivity using the sparse temperature
measurement data sampled at points shown in Fig. 2(a). It is noteworthy
that in this example the sparse measurements are inside the fluid
domain and the goal is to find the conductivity in the solid domain.

The number of hidden layers to approximate velocity and pressure
was eight with 150 neurons per layer, while nine hidden layers and 180
neurons per layer were selected for approximating temperature. The
neural network to approximate heat conductivity ks in ePINN consisted
of ten sub-networks each including three hidden layers and 40 neurons
per layer connected to the main neural network with four hidden layers
and 40 neurons per layer. kb ¼ 30 and kd ¼ 10 were used to combine
the boundary condition and data loss, respectively.

2. Test case 2: Infer heterogeneous heat conductivity
in 2D diffusion

As the second test case, we consider pure diffusion in a heteroge-
nous solid and use a complex unknown conductivity pattern (Table I)
to highlight the effectiveness of the ePINN approach in solving more
complex patterns of the unknown parameter. The geometry is a rect-
angle in the region [0, 0.28]�[0, 0.5] [Fig. 2(b)] that is held at a con-
stant hot temperature at the bottom (T¼ 1) and low temperature at
the top (T¼ 0) with insulated side walls. It is assumed that the heat
conductivity of the solid ks is unknown and varies with the domain
position (Table I). The governing equation is a steady diffusion equa-
tion with a constant heat source

r � ðksrTÞ ¼ 1 : (7)

We have sparse sensors of temperature in the solid domain [Fig.
2(b)], and the goal is to find the heat conductivity of the solid and tem-
perature patterns inside the domain. The number of hidden layers to
approximate temperature was nine with 200 neurons per layer. The
neural network to approximate heat conductivity consisted of ten sub-
networks each including three hidden layers and 40 neurons per layer
and a final neural network with four hidden layers and 40 neurons per
layer. kb ¼ 30 and kd ¼ 30 were used.

3. Test case 3: Infer heterogeneous permeability
in 2D porous medium transport

As the next test case, a square in the region [0,1]�[0,1] filled with
a fluid with a dynamic viscosity of l ¼ l�

l0
¼ 10 (where l� and l0

represent dimensional dynamic viscosity and the reference value of
dynamic viscosity, respectively) is considered. The governing equa-
tions are continuity and Darcy equations

@u
@x
þ @v
@y
¼ 0; (8a)

uþ k
l
@p
@x
¼ 0; (8b)

vþ k
l
@p
@y
¼ 0; (8c)

where p is pressure, and u and v represent the components of the
Darcy flux (filtration velocity). k is the heterogeneous permeability,
which is unknown in this problem. The free slip boundary condition
is applied at the top and bottom walls. Also, high pressure at the left
wall (p¼ 1) and low pressure at the right wall (p¼ 0) are assumed.
Since the permeability is assumed unknown (Table I), we have some
sparse measurements of the Darcy flux (filtration velocity) inside the
domain as shown in Fig. 2(c) and the goal is to solve the problem to
find the unknown permeability, pressure, and Darcy flux (filtration
velocity).

Six hidden layers with 170 neurons per layer were selected for the
neural networks to approximate pressure and Darcy flux. The neural
network to approximate permeability consisted of ten sub-networks
each including five hidden layers and 60 neurons per layer and the
main neural network with three hidden layers and 60 neurons per
layer was added to the parallel neural networks. kb ¼ 60 and kd ¼ 80
were used.

4. Test case 4: Infer velocity in 2D flow in a stenosed
vessel with mass transport

As the last test case, we consider a steady 2D multiphysics prob-
lem inside an idealized stenosed artery [Fig. 2(d)], which is a common
cardiovascular disease where blood flow patterns are of interest.28,29

Data are generated by solving the Navier–Stokes equations coupled
with convection–diffusion transport. In the inverse problem, we are
interested in using sparse measurements of concentration to infer the
unknown steady velocity vector field. We only use the continuity equa-
tion and the convection–diffusion equation to find the velocity

@u
@x
þ @v
@y
¼ 0; (9a)

u
@C
@x
þ v

@C
@y
� D

@2C
@x2
þ @

2C
@y2

 !
¼ 0; (9b)

where u and v are velocity in x and y direction, C denotes concentra-
tion, and a diffusion coefficient (the reciprocal of the mass transfer
Peclet number) of D¼ 0.05 was considered. In the inverse problem,
we assume that there is no boundary condition available for the flow
field, and instead, we have some sparse measurements of concentra-
tion in the domain as shown in Fig. 2(d). By using this information,
the goal is to solve for velocity and concentration inside the entire
domain. In terms of concentration boundary condition, a constant
Neumann boundary condition of� @C

@n ¼ 0:0001 was prescribed at the
wall and zero concentration was used at the inlet. To generate data, a
parabolic velocity profile with a peak Reynolds number of Re¼ 150
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was applied at the inlet, no-slip BCs were assumed at the walls, and
zero pressure was used at the outlet.

The neural networks used in approximating the concentration had
eight hidden layers with 200 neurons per layer. The ePINN network to
approximate velocity consisted of ten sub-networks each with five hid-
den layers and 100 neurons per layer and a final neural network with
three hidden layers and 100 neurons per layer. For this problem, we
have used a neural network with an adaptive swish activation function26

and an adaptive kb and kd
27 for more accurate solutions.

III. RESULTS

In the Appendix (Sec. V), we demonstrate the non-uniqueness
challenge in solving inverse problems in heterogeneous domains. We
show how various solutions are obtained by using different PINN
training strategies for our first test case problem. These results moti-
vate the proposed ePINN strategy to guide the solution. In the follow-
ing, we present the ePINN results for the four different test case
problems and compare them to PINN. For the first two test cases, we
also investigated how increasing the number of layers affected the con-
vergence in the vanilla PINN approach.

A. Test case 1: Infer heterogeneous heat conductivity
in 2D multiphysics heat transfer in a fin

The heat conductivity found by ePINN and PINN is shown in
Fig. 3(a) for the first test case. The results show that only heat conduc-
tivity found by the ePINN approach matches the ground truth. An
ePINN architecture without freezing the parallel sub-networks (either
initialized with transfer learning or randomly initialized) did not con-
verge to the ground-truth solution and PINN yielded a very different
pattern. The error obtained by ePINN is shown in Fig. 3(b), and small
localized errors could be seen at the boundary. The temperature pat-
terns obtained by ePINN agree very well with the ground-truth results
as shown in Fig. 3(c). Interestingly, the loss vs epoch plot shows that
ePINN can accelerate convergence compared to a PINN approach

with similar architecture to ePINN’s trainable main network [Fig.
3(d)]. However, a PINN approach with a larger network structure pro-
vides a smaller loss (more accurate temperature predictions) but finds
a heat conductivity that is different from the ground truth (non-
uniqueness challenge).

B. Test case 2: Infer heterogeneous heat conductivity
in 2D diffusion

The results for test case 2 are shown in Fig. 4. The heat conduc-
tivity contours for the ground truth, ePINN, and PINN predictions are
shown [Fig. 4(a)]. The absolute error with respect to the ground truth
shown in Fig. 4(b) demonstrates that in this test case, the ePINN
approach cannot precisely recover the ground truth pattern because of
the complex spatial variability of the heterogeneous parameter in this
test case compared to the previous example. However, ePINN captures
the qualitative pattern pretty well, while PINN converges to a very dif-
ferent pattern. The temperature patterns obtained by ePINN match
the ground truth very well [Fig. 4(c)]. The loss vs epoch plot in Fig.
4(d) shows the same trend as the previous test case where the ePINN
approach can accelerate PINN convergence and improve accuracy
compared to a PINN network with similar architecture as the main
network of ePINN. Similar to the last case, a more expressive PINN
network can improve vanilla PINN’s prediction of temperature; how-
ever, it finds a different conductivity.

C. Test case 3: Infer heterogeneous permeability
in 2D porous medium transport

The solution for test case 3 is shown in Fig. 5. The results show
that the ePINN approach significantly improves the discovery of the
ground-truth permeability pattern with very small errors. Also, the
pressure and Darcy flux patterns [Figs. 5(c) and 5(d)] found by ePINN
are in very good agreement with the ground truth.

FIG. 3. (a) The ground truth, ePINN (ensemble layers frozen), ePINN with no ensemble layers frozen, ePINN with random initialization, and PINN results for heat conductivity
in the 2D multiphysics heat transfer problem (test case 1) are shown. (b) The ePINN absolute error with respect to the ground-truth data is shown. (c) The ground truth and
ePINN temperature patterns are shown. (d) The mean square error (MSE) loss vs the epoch (iteration) number is plotted to compare ePINN convergence with PINN (same
neural network size as the main ePINN network and a larger neural network size with six hidden layers and 130 neurons per layer).
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D. Test case 4: Infer velocity in 2D flow in a stenosed
vessel with mass transport

The velocity and concentration results from test case 4 simulation
are shown in Fig. 6. In this problem, the goal was to identify the veloc-
ity vector field that produced sparse concentration measurements. It
could be seen that the ePINN approach is efficient in finding velocity
vectors without any boundary conditions available just by using sparse
concentration data. The PINN approach obtains velocity vector fields
that are unrealistic (e.g., they demonstrate backflow at the region
upstream of the blocked artery). The other panels in Fig. 6(a) demon-
strate the very different and physically unrealistic velocity patterns
obtained by different approaches. The absolute error in Fig. 6(b) shows
a localized high error near the wall regions at the inlet. This can be
attributed to the fact that the flow becomes more fully developed as it
progresses and subsequently becomes less sensitive to the inlet profile.
Figure 6(c) shows that the concentration pattern found by ePINN
matches the ground truth very well. Moreover, Fig. 6(d) shows that
the adaptive activation function and weights reduce the loss function
up to two orders of magnitude and provide more accurate solutions.

E. Sensitivity analysis

Figure 7 displays the impact of the pre-defined initial patterns
and neural network size and some hyperparameters on test case 1. To
examine the sensitivity of ePINN to the sub-network initialization pat-
terns, all coefficients in Table II were increased by 10%. Additionally,
in a separate simulation, a different neural network structure size and
loss weight k were employed. The main neural network here was
assumed to have three hidden layers and 50 neurons per layer with
kb ¼ 20 and kd ¼ 15 used to merge the boundary condition and data
loss. The ground-truth heat conductivity is shown in Fig. 7(a). The
heat conductivity pattern obtained by ePINN with perturbed initial

FIG. 4. (a) The ground truth, ePINN (ensemble layers frozen), ePINN with no
ensemble layers frozen, ePINN with random initialization, and PINN heat conductiv-
ity results for the 2D diffusion problem (test case 2) are shown. (b) The ePINN
absolute error with respect to the ground-truth data is shown. (c) The ground truth
and ePINN temperature patterns are shown. (d) The mean square error (MSE) loss
vs the epoch (iteration) number is plotted to compare ePINN convergence with
PINN (same neural network size as the main network used in ePINN and larger
neural network size with seven hidden layers and 150 neurons per layer).

FIG. 5. (a) The ground truth, ePINN (ensemble layers frozen), ePINN with no ensemble layers frozen, ePINN with random initialization, and PINN permeability results for the
2D heterogeneous porous medium (test case 3) are shown. (b) The ePINN absolute error with respect to the ground-truth data is shown. (c) The ground truth and ePINN pres-
sure patterns are shown. (d) The ground truth and ePINN Darcy flux (filtration velocity) patterns are shown. (e) The mean square error (MSE) loss vs the epoch (iteration) num-
ber is plotted to compare ePINN convergence with PINN (same neural network structure size as the main network used in ePINN).
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patterns is shown in Fig. 7(b), while the impact of neural network
structure size and hyperparameters is shown in Fig. 7(c). Although
using a perturbed initial pattern and hyperparameters slightly
increases the absolute error, it still produces qualitatively accurate
results compared to PINN, which was more sensitive to hyperpara-
meters, as shown in the Appendix (Fig. 9).

IV. DISCUSSION

In this study, we introduced a method for solving various inverse
problems by combining an ensemble of parallel neural networks with
physics-informed neural networks. The proposed ePINN approach
involved initializing the unknown parameters of the system using sev-
eral initial patterns and subsequently feeding these patterns into a
PINN network to make the final prediction. The use of an ensemble of
initial patterns was helpful in solving inverse problems involving het-
erogeneous parameters, where PINN alone may not be able to find
realistic patterns due to the non-uniqueness of the problem. The initial
pattern used in each sub-network could be any traditional function
that provides a meaningful and relevant pattern for the problem at
hand. The generated data by the arbitrary functions were approxi-
mated by the parallel deep neural networks using a low number of
epochs (around 200) to speed up training and avoid overfitting by
early stopping.

The performance of the proposed ePINN approach was evalu-
ated in different fluid flow and transport problems. CFD simulations
were carried out with a heterogeneous parameter to provide data for
the inverse problems. The results showed that the ePINN approach
guided convergence toward an appropriate solution, speeded up con-
vergence, and outperformed the vanilla PINN approach. However,
increasing the neural network size of the vanilla PINN approach
resulted in a smaller loss, indicating that convergence was not an issue,
but rather the non-uniqueness of inverse problems. Indeed, this was
verified in the Appendix where we have shown the convergence of
vanilla PINN to different heterogeneous patterns based on different
hyperparameters and architectures. Although the total runtime for
ePINN was longer than vanilla PINN as more training was required,
however, the ePINN approach achieved a lower loss for the same
architecture and also converged to the desired solution.

FIG. 6. (a) The ground truth, ePINN (ensemble layers frozen), ePINN with no ensemble layers frozen, ePINN with random initialization, and PINN velocity results for the 2D
stenosis (test case 4) are shown. (b) The ePINN absolute error with respect to the ground-truth data is shown. (c) The ground truth and ePINN concentration patterns are
shown. (d) The mean square error (MSE) loss vs the epoch (iteration) number is plotted to compare ePINN convergence with PINN. Vanilla PINN simulation convergence with
and without adaptive activation function (AF) and loss weights are compared.

FIG. 7. The effect of perturbing the initial patterns in the parallel sub-networks and
neural network parameters on the ePINN results is shown for the 2D multiphysics
heat transfer problem (test case 1). (a) The ground-truth heat conductivity pattern.
(b) ePINN prediction and error with perturbed initial patterns, where all coefficients
in Table II are increased by 10%. (c) ePINN prediction and error using different neu-
ral network structure sizes and hyperparameters, where the main network utilizes
three hidden layers and 50 neurons per layer and kb ¼ 20 and kd ¼ 15.
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The vanilla PINN approach could be viewed as a hybrid deduc-
tive (physics-informed) and inductive (data-driven) approach for solv-
ing inverse problems, and our proposed ePINN framework builds on
PINN by providing additional deductive reasoning through an ensem-
ble of pre-trained neural networks. These pre-trained parallel networks
represent our prior knowledge of the type of patterns that we expect to
see in our unknown parameter, and when these networks are frozen in
ePINN, they form a basis for the final solution, which is achieved by a
nonlinear combination of these basis functions using the main net-
work. In other words, we are using a deductive approach where we use
a knowledge base that forms a foundation for further inferences and
learning. We could further make an analogy with the long-term learn-
ing view behind transfer learning.1 Namely, the parallel sub-networks
in ePINN represent our hypotheses for the unknown pattern and in a
broader sense could represent long-term and reusable models from a
given knowledge base, while the main network and its training with
PINN represents a short-term and data-driven model that is combined
with our long-term knowledge base. While in this work we demon-
strated that such an a priori knowledge base could improve inverse
modeling with PINN, we did not specify a rigorous approach for the
development of this knowledge base. Future research should further
investigate how a long-term knowledge basis could be developed for
specific problems to guide inverse modeling in heterogeneous
domains. We suggest that a library of knowledge regarding the
unknown parameter should be created based on existing experimental
data and known constraints, and ePINN should sample from this
library for its parallel sub-networks.

Ensemble methods in deep learning have been used for other
applications. Deep ensembles have been used for uncertainty quantifi-
cation in deep learning22 and PINN.30 In this setting, each member of
the ensemble is trained independently on the same task but with dif-
ferent strategies, and the predictions are combined at the end to pro-
duce the final prediction. While our ePINN approach operates
differently, the pretraining with the ensemble sub-networks could be
viewed as a way to reduce uncertainty due to the lack of uniqueness in
inverse problems. Random forests are one of the most popular ensem-
ble learning methods in machine learning that use an ensemble of
decision trees.25 Ensemble methods have been used in the forward
PINN modeling of unsteady systems for improving time-stepping
over large time intervals.31 An ensemble of parallel PINNs has been
proposed for an asymptotic expansion solution of thin boundary
layers with the perturbation theory.32 In a somewhat similar approach
to ensemble learning, a set of pre-trained neural networks trained on
simple geometries with different boundary conditions have been
assembled in an iterative fashion to solve forward problems on larger
more challenging domains.33

Transfer learning has been recently used to improve inverse
modeling with PINN by integrating interpolated and less accurate data
in offline training together with transfer learning to improve conver-
gence.34 A similar approach was used by our group where low-fidelity
CFD data solved for the same problem were used to pretrain PINN
and improve PINN convergence with transfer learning for forward
problems.35

Our study has some limitations, and our model could be
improved. A Bayesian framework is a more natural approach for solv-
ing inverse problems and could be integrated with PINN17,36 to pro-
vide an estimation of parameter distributions with inherent

uncertainty quantification. We assumed the input data were clean but
in practice, this could be noisy and corrupt data, which needs to be
handled within PINN.37 We did not provide a systematic approach for
defining the patterns in the parallel sub-networks, which should be
investigated in future work. More broadly, this is an open area of
research for forward and inverse problems. For instance, while Fourier
features have been shown to significantly improve PINN convergence
in oscillatory problems, an incorrect selection of the Fourier feature
frequencies moves the network away from the favorable initialization
offered by Fourier features.38 It is important to initialize the network
in the vicinity of the desired solution to guide the optimization process
and ultimately improve the solution. Moreover, our study focused on
inverse modeling at the continuum scale. An intriguing avenue for
future research is to extend our work to a multiscale inverse problem
where one is interested in pore-scale properties.39,40 Of course, the
challenges associated with inverse modeling and uniqueness are
expected to be exacerbated. Finally, the proposed approach was used
for solving 2D steady-state problems with simple geometries and ideal-
ized measurement data. Future investigations are needed to check the
efficiency of this method for 3D time-dependent problems with realis-
tic (noisy) measurements.

V. CONCLUSION

In conclusion, we have proposed an ensemble PINN approach to
improve PINN performance in inverse problems in heterogeneous
domains. An ensemble of pre-trained neural networks on different
patterns has the potential to not only improve PINN accuracy in
inverse problems but also guide PINN convergence to a more desirable
solution pattern among different possible solutions.
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olab/ensemble-PINN-inverse, Ref. 41.

APPENDIX A: ENSEMBLE SUB-NETWORK PATTERNS
DEFINED FOR EACH PROBLEM

The initial pattern of each of the ten sub-networks is provided
in Table II for different test cases. The initial patterns can be any
arbitrary function if they provide a meaningful pattern and range
relevant to the problem of interest. For test cases 1 and 2, the pre-
sented equations are used to generate ten different patterns for heat
conductivity in the range of the domain. For test cases 3 and 4, pat-
terns are generated to guide permeability and velocity predictions,
respectively. Additionally, the data are rescaled between 0 and 0.5
for test case 1 and between 0 and 1 for other test cases. In test case
4, where the velocity field is being predicted the patterns are defined
such that they satisfy the continuity condition. A purely data-driven
deep neural network is used to learn a nonlinear mapping from the
input coordinates to the generated data based on these equations.
Transfer learning is utilized to initialize each sub-network in PINN
with the learned data mapping, and at last, the output of each net-
work is used as the input to the main network in ePINN to guide
the final solution.

APPENDIX B: THE EFFECT OF NEURAL NETWORK
SETUP ON THE PREDICTED SOLUTION

We revisit test case 1 where fluid flow and convective heat
transfer around a fin were coupled with heat conduction in a
solid fin with heterogeneous conductivity. In an exploratory
study, we demonstrate here that different strategies in the neural
network setup in vanilla PINN can lead to different heat conduc-
tivity solutions. In Fig. 8, we show the identified conductivity
pattern by PINN in the inverse problem together with the tem-
perature distribution and compare it to the ground-truth results
obtained by Fluent. Interestingly the temperature pattern found
by PINN matches the ground truth very well; however, a differ-
ent conductivity pattern is identified due to the non-uniqueness
challenge.

In order to examine the difficulties associated with obtaining a
unique solution, we conducted an analysis of various parameters
that have the potential to impact the solution. These included fac-
tors such as the number of sparse measurements, neural network
size, hyperparameters, initialization method, and activation func-
tion. One challenge that arose during training was that the neural
network generated negative output values. To address this, we
adjusted the activation functions toward positive values to produce
positive output values. To determine the efficacy of this modified
activation function, we assessed whether it should be applied to all
layers of the neural network or solely to the final layer. As evidenced

TABLE II. Equations used for initialization of the ten parallel sub-networks in different test cases.

Test case 1 Test case 2 Test case 3 Test case 4
x 2 ½0; 0:28�; y 2 ½0; 0:5� x 2 ½0; 0:28�; y 2 ½0; 0:5� x 2 ½0; 1�; y 2 ½0; 1� x 2 ½�1; 1�; y 2 ½�0:15; 0:15�

exp ð0:3xÞ þ exp ð2yÞ exp ð0:3xÞ þ 0:37 exp ð2yÞ � 1 exp ðxÞ þ exp ðyÞ u ¼ 25� x2 � y2; v ¼ 2xy � x2

sin ð2xÞ � sin ð10yÞ exp ðxÞ þ y � 0:5 exp ðxÞ þ y
u ¼ x2 � y2

2p
; v ¼ � xy

p
x þ 0:5y � 0:84 0:5y � x þ 0:75 x þ 0:5y � 0:4 u ¼ 5 sin ð20xÞ; v ¼ �100y cosð20xÞ
0:04 exp ðxÞ þ y cos ð20yÞ exp ð0:6yÞ � x u ¼ y0:9; v ¼ ðx � 1Þ4

2x2 � y2 cos ð9yÞ þ sin ð10xÞ þ sin ð8yÞ sin ð8yÞ þ cos ð5xÞ
u ¼ x0:9; v ¼ �

�
sin ðxÞ þ cos

x
10

� �
þ 0:9yx�0:1

�
exp ð0:6yÞ � x cos ð8xÞ þ sin ð10yÞ cos ð7yÞ þ sin ðxÞ u ¼ ðx � 1Þ4; v ¼ �4yðx � 1Þ3 þ x0:9

sin ð8xÞ þ y cos ð8yÞ þ sin ð10xÞ cos ð20yÞ u ¼ ðx � 1Þ2; v ¼ �2yðx � 1Þ þ 0:1p sin ð2xÞ
sin ð10yÞ sin ð8xÞ þ y þ 0:5 exp ð�yÞ u ¼ ðx � 1Þ3; v ¼ �3yðx � 1Þ2 þ 0:1p sin ð2xÞ
cos ð8yÞ sin ð100yÞ sin ð8xÞ þ y u ¼ y sin ð20yÞ; v ¼ ð�x þ 0:25Þ sin ð20xÞ
sin ð3yÞ � cosð4xÞ cos ðxÞ þ sin ðxÞ þ cos ð5yÞ sin ð10yÞ u ¼ y cos ð20yÞ; v ¼ �ðx þ 0:25Þ cos ð20xÞ

FIG. 8. Temperature and heat conductivity
patterns solved in Fluent and PINN.
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by the conductivity results depicted in Fig. 9, none of the results
perfectly align with the ground truth, underscoring the lack of a
unique solution to the inverse problem.
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FIG. 9. Heat conductivity patterns found from PINN by considering the effect of different parameters (test case 1). Kmin < 0 and Kmax > 0 denote the heat conductivity gener-
ated as the output of the neural network and varies for each specific case. (a) The ground truth heat conductivity is shown. (b) The effect of the number of sensors is shown.
(c) The effect of various neural network (NN) sizes are shown. The variables T and K correspond to neural networks that are utilized to predict temperature and heat conductiv-
ity, respectively. L and n refer to the number of layers and neurons employed in each neural network. (d) The effect of hyperparameters kb, kd, and kE used to assign weights
to the boundary condition, data, and equations loss, respectively, according to L ¼ kELF þ kbLBC þ kdLdata is shown. (e) The effect of different initialization methods
(explained in PyTorch documentation) is shown. (f) The effect of activation functions on the results. Shifted activation functions are used to produce positive output values. This
is applied to all layers of the neural network or solely to the final layer.
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