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ABSTRACT The influence of the neighborhood environment on health outcomes has been widely
recognized in various studies. Google street view (GSV) images offer a unique and valuable tool
for evaluating neighborhood environments on a large scale. By annotating the images with labels
indicating the presence or absence of certain neighborhood features, we can develop classifiers that
can automatically analyze and evaluate the environment. However, labeling GSV images on a large
scale is a time-consuming and labor-intensive task. Considering these challenges, we propose using
a multi-task classifier to improve training a classifier with limited supervised, GSV data. Our multi-
task classifier utilizes readily available, inexpensive online images collected from Flicker as a related
classification task. The hypothesis is that a classifier trained on multiple related tasks is less likely
to overfit to small amounts of training data and generalizes better to unseen data. We leverage the
power of multiple related tasks to improve the classifier’s overall performance and generalization
capability. Here we show that, with the proposed learning paradigm, predicted labels for GSV
test images are more accurate. Across different environment indicators, the accuracy, F1 score and
balanced accuracy increase up to 6 % in the multi-task learning framework compared to its single-
task learning counterpart. The enhanced accuracy of the predicted labels obtained through the
multi-task classifier contributes to a more reliable and precise regression analysis determining the
correlation between predicted built environment indicators and health outcomes. The R2 values
calculated for different health outcomes improve by up to 4 % using multi-task learning detected
indicators.

INDEX TERMS built environment, deep neural networks, Google street view, health outcomes,
multi-task model.

I. INTRODUCTION
The built environment refers to the physical structure
and features of a habitable area, including sidewalks,
buildings, crosswalks, chain-link fences, parks, green
spaces, and streetlights, that constitute the immediate,
local environment for an area’s residents. The built
environment plays an important role in shaping the
health-related behaviors and exposures of its residents
and, as a result, their health outcomes [1], [2].

The physical disorder of a built environment refers to
the presence of signs and indicators that correspond to

neglect, decay, and disruption. Such indicators include
dilapidated buildings, garbage, graffiti, broken windows,
chain-link fences, and abandoned houses. Physical disor-
der can have a negative impact on the health and overall
well-being of residents. Research has shown that the
physical disorder of a neighborhood can affect mental
health, stress, depression, and rates of chronic disease
[3]–[5].

Neighborhood features can affect health in various
ways. A well-designed built environment can promote
physical activity and healthy diets among residents. The
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presence of green spaces, parks, sidewalks, and access
to healthy food can encourage exercise and recreational
activities and result in a lower risk of obesity and
diabetes [3], [6], [7]. Thus, examining the relationship
between the built environment and health outcomes
can help policymakers and public health professionals
make informed decisions on how to enhance the built
environment to improve health and well-being

Google Street View (GSV) images offer a valuable
alternative to traditional in-person assessments of the
built environment. Conventional methods require sub-
stantial resources, making it challenging to perform
large-scale evaluations on a national level. However, with
the use of GSV images, the need for expensive and time-
consuming in-person surveys is reduced.

Although the process of accessing the built environ-
ment using GSV images still requires some level of effort
and cost, deep learning networks have been utilized
to automate this process in a more efficient and cost-
effective way. The combination of GSV images and deep
learning networks has the potential to transform the
way in which the built environment is evaluated and
analyzed. The use of deep learning networks enables the
identification of important indicators in the images, the
evaluation of neighborhoods based on those indicators,
and the analysis of which indicators are correlated with
health outcomes [3], [8]–[10].

Deep learning models consist of multiple neural layers
and have demonstrated remarkable ability in handling
complex tasks, including large-scale image classification
(such as the 1000-class ImageNet dataset) [11], object
detection [12], [13], image generation [14], [15], and
natural language processing with models such as GPT
[16], [17].

Despite their impressive performance, deep learning
models typical require massive amounts of data for
training because of the large number of parameters
involved. For instance, the ImageNet dataset used for
large-scale image classification contains over 14 million
labeled images. The challenge of labeling large amounts
of data remains a major obstacle to applying these
models to new applications, such as detecting built
environment indicators in GSV images. The process of
manual labeling is costly, time-consuming, and not scal-
able for large datasets. In the absence of sufficiently large
training datasets, neural networks with large numbers of
free parameters tend to overfit the training data, leading
to poor performance on previously unseen data.

Different approaches can be used to address limited
data in deep learning models, depending on the specific
task. In our project, we obtained images of indicators
from Flicker database (which is free to access and
download), avoiding the need for manual labeling. These
images were then utilized to boost the accuracy of our
primary objective, which is to classify GSV images in
a multi-task learning framework [18], [19]. Our study

demonstrates that the proposed approach results in a
better accuracy of detecting environment indicators and
a more precise estimation of correlated health outcomes.

II. RELATED WORKS
A. GOOGLE STREET VIEW IMAGES AND HEALTH
OUTCOMES
Previously, neighborhood health indicators were eval-
uated through in-person neighborhood audits or sur-
veys, which gather information about neighborhood
characteristics [20]–[23]. In-person neighborhood audits
involve sending trained individuals to physically visit
neighborhoods and collect data on various aspects such
as cleanliness, safety measures, and social factors. Sur-
veys conducted in the neighborhood involve contacting
residents and gathering their perspectives through ques-
tionnaires or interviews. While these approaches can
provide detailed information, they have limitations in
terms of scalability, cost, and coverage, being able to
assess only a small portion of neighborhoods.

Later, the use of GSV images was promoted as a way
to assess built environment indicators on a large scale
[3], [8]–[10], [24]–[27]. GSV images offer a wealth of vi-
sual information about the built environment, including
buildings, streets, sidewalks, green spaces, transporta-
tion infrastructure, and more on a large scale. The use
of GSV images eliminates the need to physically visit
different neighborhoods and can be done virtually.

In [24], the authors compared neighborhood mea-
surements obtained through GSV images in 2008 and
neighborhood audit data collected in 2007, and showed
that GSV images can be used as an effective tool
for auditing neighborhood environments. In [28], the
authors developed a computer-assisted neighborhood
visual assessment system (CANVAS) that uses GSV to
conduct virtual audits of neighborhood environments.
However, this system requires manual annotations of
GSV images.

Adams et al. [29] utilized GSV images and developed
deep learning models to detect small-scale features in
urban environments that are related to pedestrian ac-
tivity. Subsequently, Javanmardi et al. [3] performed
virtual neighborhood audits using GSV images in re-
gression analysis for chronic disease prevalence. The
authors used available census tract data directly as
targets for groups of images. Nguyen et al. [9] used GSV
images and computer vision techniques with a logistic
regression model to analyze cross-sectional associations
with chronic health outcomes. Yue et al. [8] employed
GSV images and a CNN network to investigate the
relationship between built environments and chronic
diseases and health behaviors. In another study, Nguyen
et al. [10] performed a neighborhood built environment
analysis for the state of Utah using GSV images.

The above mentioned computer vision models rely on
a set of labeled data for training to detect built environ-
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ment indicators. If the model is trained on insufficient
data, it may not accurately detect built environment
indicators, and the correlations estimated for health out-
comes will not be reliable. Thus, developing a model that
can be trained effectively with limited data is crucial in
the identification of more complicated or subtle effects.

In this study, we aim to improve the classification
model via multi-task learning and thus enhance the
prediction of health outcomes correlated with predicted
environment indicators on a national level.

B. MULTI-TASK NETWORKS

To enhance the automation of accessing neighborhood
characteristics and finding correlations with health, we
utilize a multi-task learning framework.

Multi-task learning is the process of training a model
on multiple tasks simultaneously and is way of improving
generalization [18], [19], [30]. Two common ways of
multi-task learning are learning via hard parameter
sharing or via soft parameter sharing [18]. In hard
parameter sharing [31], the model can be divided into
two parts: 1) the task-specific part that is trained
solely on examples specific to that task, and 2) the
generic part that is shared across all different tasks
[19]. Baxter et al. [32] showed that shared parameters
improve generalization and reduce the generalization
error bounds. The shared part of the model in multi-task
learning leverages information and patterns learned from
different tasks and improves the overall performance.
Learning multiple tasks allows the model to generalize
better and avoid overfitting to a single task, leading
to better results overall [19]. Multi-task learning via
soft parameter sharing is done by training separate
models for each task. The distance between the models’
parameters is then regularized to keep the parameters
similar [18].

Multi-task learning has been successfully applied in
a variety of fields, such as natural language processing
[33], speech recognition [34], and computer vision [12],
[13]. In popular architectures such as FasterRCNN and
YOLO [12], [13], the networks are trained using multiple
objectives to predict both the class and the coordinates
of an object within an image simultaneously.

Because the performance of multi-task networks de-
pends on the weighting of the objectives, Kendall et
al. [35] proposed a novel approach for determining
the weighting of multiple losses in multi-task learning
instead of manual tuning of the weights. Sener and
Koltun [36] argued that multi-task learning, where tasks
are solved by minimizing a linear combination of their
individual losses, is effective only if the tasks do not
compete with each other. Therefore, the authors cast
multi-task learning as multi-objective optimization and
show that their method outperforms models with multi-
task learning formulations.

Multi-task learning can also be used when the focus
is on performance for a single task. In such a scenario,
selecting a related task as an auxiliary task within the
multi-task learning framework can provide the benefits
of multi-task learning [18]. As an example, Zhang et
al. [37] improved detection through multi-task learning.
They improved facial landmark detection by jointly
optimizing for related tasks such as head pose estimation
and facial attribute inference.

In this paper, we also have utilized multi-task learning
to enhance the generalization for classifying GSV im-
ages. The classification network is trained on two tasks
concurrently, where the second task serves to improve
the optimization for the GSV task, leading to a more
effective GSV classification network. In the following
section, we will delve into the details of our proposed
approach to improve detection of environment indicators
and examine their impact on health outcomes.

III. METHODS
In this section, we present an investigation of the clas-
sification of GSV images. Our objective is to train a
classifier that can accurately detect built environment
indicators affecting health outcomes.

The built environment indicators that we focus on in
this study are:

1) the presence of dilapidated buildings, which is an
indicator of a neighborhood with poverty or lack
of maintenance and can have negative effects on
the health and well-being of the community,

2) the presence of streetlights, which is a potential
indicator of walkability and urban development,

3) the presence of chain-link fences, which usually
correspond to neighborhoods with abandoned lots
and buildings and is an indicator of neglect and
physical disorder.

Nonetheless, some neighborhoods use chain-link fences
around homes and their connection with health out-
comes is less known. Emerging research suggests chain-
link fences in residential areas lower property values,
and some cities are prohibiting their use in residential
areas. More research is needed to investigate associations
between chain-link fences and health.

Fig. 1 shows the general overview of the proposed
algorithm. First, a classification model is trained on
Flicker and GSV images in a multi-task framework.
Then, the trained classifier is used to label the test GSV
images. The GSV images along their with predicted
indicators are mapped to census-tract level. Finally, a
regression model is trained to predict health outcomes
using predicted indicators on the census-tract level.

In the following sections, we will explain the process
of classifying GSV images using a single-task network,
as well as the details of using multi-task classification to
improve the classification results. We will also discuss
using a regression model to examine the correlation
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between predicted environment indicators and health
outcomes.

A. THE SINGLE-TASK CLASSIFIER
In the context of this application, the single-task clas-
sifier is used to detect the presence or absence of each
built environment indicator in an image. This task is
a binary classification, and we have trained separate
classifiers for detecting each built environment indicator.
Each classifier is composed of two main components: a
feature extractor and a classification layer.

The feature extractor consists of multiple convolu-
tional layers that apply a set of filters to the input
image, transforming it into a collection of feature maps
that includes important patterns and structures. The
extracted features are passed on to a classification layer.
The classification layer consists of fully connected layers.
The purpose of the fully connected layers is to map the
extracted features to specific class labels. The output
of the fully connected layers represents the likelihood of
the presence or absence of a particular built environment
indicator.

In this paper, we use a pretrained image feature
extractor, the ResNet-18 network, which was trained
on the ImageNet dataset. ResNet-18 consists of several
convolutional layers and residual blocks. The residual
blocks include residual connections that address the
problem of vanishing gradients and facilitate the training
of deeper networks.

Training a complex network like ResNet-18 from
scratch on a limited set of labeled GSV images can
be challenging. However, by using a pretrained network
that has already learned useful features and representa-
tions from a large dataset such as ImageNet, we are able
to leverage that knowledge as a starting point for the
GSV classification task which leads to improved perfor-
mance and faster convergence compared to training the
network from scratch on the limited GSV dataset.

B. THE MULTI-TASK CLASSIFIER
In multi-task learning (MTL), a model is trained on
different tasks simultaneously. Due to sharing represen-
tations between related tasks, the model learns general
representations of data that are useful across different
tasks, which results in improving generalization and
reducing overfitting [19]. To further clarify the concept
of multi-task learning, we include Fig. 2 that illustrates
the comparison between soft parameter sharing and hard
parameter sharing methods.

In the soft parameter sharing approach, each task has
its own dedicated set of parameters, and the networks
for both tasks are trained independently.

In contrast, in our chosen hard parameter sharing
approach, we use a shared pretrained classifier, such
as ResNet-18, as the backbone of the network. The
parameters of this backbone are shared across both

tasks. On top of the shared network, we have task-
specific classification layers responsible for each task’s
final predictions. This architecture allows the network to
benefit from the shared representations learned by the
pretrained classifier, leading to improved generalization
and performance.

Fig. 3 provides a visual representation of how multi-
task classification is done using hard parameter sharing
method.

Our multi-task classifier is trained to perform two
tasks: classifying GSV images and classifying images
collected from Flicker 1. Both sources have the same
class labels. More information on how the dataset from
Flicker is collected can be found in Section IV.

For each environment indicator, we gathered two sets
of images, one set containing images where the indicator
is present and another set containing images where
the indicator is not present. Using the MTL approach
in this case, the Flicker images are used to help the
network learn features that are shared across GSV and
Flicker images, helping the network learn robust and
more crucial features leading to a better performance in
classifying GSV images.

A pretrained classifier such as ResNet-18 is used as
the shared part of the MTL network. Two additional
classification layers are then added to the shared net-
work, each one responsible for classifying a distinct task.
The use of a multi-task network is expected to result in
superior performance compared to a single-task network,
as confirmed by experimental results in Section V.

After developing an effective classification model, the
model is applied to label a large dataset of GSV images
collected from various locations across the country. The
predicted labels for each indicator are then utilized to es-
timate the relationship between environment indicators
and health outcomes using a regression model, which
will be discussed in the following section.

C. REGRESSION MODELS FOR PREDICTING HEALTH
OUTCOMES
In order to predict health outcomes associated with envi-
ronment indicators, we have used fully connected neural
networks that take as inputs environment indicators at
the census-tract level and map them to associated health
outcomes at the same tract level. The environment
indicators are concatenated together and used as inputs
for the model. The training inputs for the neural network
regression models are obtained using the predictions of
a previously trained classifier on unlabeled GSV test
images consisting of 164 million images.

The GSV images, along with their predicted labels,
are then mapped to census tracts based on their latitude
and longitude information. For each census tract, the
total number of images containing a given indicator is

1https://www.flickr.com/photos/tags/flicker/
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FIGURE 1: A multi-task classification model is trained on Flicker and GSV images, and then used to label test GSV
images. The results are mapped to census-tract level, and a regression model is trained to predict health outcomes
based on predicted indicators.

calculated, and this count is normalized by dividing it by
the total number of images in that census tract. These
normalized counts of environment indicators, calculated
from the GSV images, are used as inputs for the re-
gression model. The training outputs for the regression
models are health outcomes at the census tract level,
obtained from data sources such as the behavioral risk
factor surveillance system (BRFSS).

The neural network regression models are optimized
to minimize the difference between the predicted health
outcomes and the ground truth health outcomes. The
trained models are then be used to predict health out-
comes for new census tracts based on the environment
indicators present in those areas.

IV. DATA COLLECTION
A. GSV DATA COLLECTION AND LABELING
We used 164 million Google Street View images with a
resolution of 640× 640 pixels collected by Yue et al. [8].
Yue et al. [8] obtained the images by sampling latitude
and longitude coordinates along every 100 meters of road
and used used Google Street View’s static application
programming interface (API) to download images at

four angles (0, 90, 180, and 270 degrees) from each
sampled location.

Yue et al. [8] also created a labeled training dataset
by manually annotating 18,700 images from Chicago,
Illinois; Salt Lake City, Utah; Charleston, West Virginia;
and a national sample from December 2016 to February
2017. This labeled dataset is used to train the classifica-
tion models in this paper. Table 2 shows the details of
the number of labeled images for each indicators.

B. FLICKER DATA COLLECTION
In order to gather a dataset for our training paradigm,
we obtained images related to each environment indica-
tor from the image-sharing platform, Flicker. To collect
these images, we used Flicker’s API in Python, which
allows for the collection of images based on specific
keywords. By providing a query keyword and a license
category, the API is able to download images that fall
under that specific license category.

The keywords used in our query were carefully chosen
to ensure that they represent images that fall into two
distinct categories: positives and negatives. The positive
group includes images that contain a specific environ-

VOLUME 10, 2022 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3295777

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 2: Multi-task learning using (Left) soft parameter sharing and (Right) hard parameter sharing. The model
typically consists of CNN blocks followed by a multi-layer perceptron (MLP). The shared layers across different tasks
are depicted in blue, while task-specific layers are shown in black and green for both methods [18].

FIGURE 3: Our multi-task classifier using hard parameter sharing method.

ment indicator, whereas the negative group includes
images that do not contain the specified indicator. All
images were obtained under the Creative Common li-
cense. Table 1 illustrates the number of images collected
for each keyword.

C. HEALTH OUTCOME DATA COLLECTION
The health data were obtained from the PLACES 2021
Release 2 at the census-tract level. The health data
include information on chronic diseases, health out-
comes, health status, and preventive services across the
US, derived from self-reported data in 2018 and 2019
BRFSS. The data cover various health conditions, such
as obesity, high blood pressure, high cholesterol, dia-
betes, cancer, and depressive disorder, as well as health
behaviors such as sleep and smoking. The PLACES 2021
dataset is available at the county, place, zip code, and
census-tract levels [8].

V. EXPERIMENTAL RESULTS
A. CLASSIFICATION MODEL TRAINING
For the single-task model, we used a pretrained ResNet-
18 [38] network on the ImageNet dataset [11]. The last
fully connected layer was replaced with a new layer

2https://www.cdc.gov/places/

that has two outputs for binary classification. For the
multi-task network, we employed the hard parameter
sharing paradigm. We also used a pretrained ResNet-
18 network on the ImageNet dataset. The last fully
connected layer was replaced with two fully connected
layers that independently predict labels for GSV images
and Flicker images.

We have randomly divided both the Flicker and GSV
datasets presented in Tables 1 and 2 into training and
test sets with a ratio of 80:20. All images were resized to
512 × 512 and augmented using horizontal flipping and
color jittering. For the single-task model, the model was
trained on the labeled set of GSV images. For the multi-
task model, the model was trained using both Flicker
and GSV images simultaneously.

Both networks were trained using the binary cross-
entropy loss function for 100 epochs with a learning rate
of 1e−4. Adam [39] is used as the optimizer and we train
the models with a batch size of 16.

The performance of the multi-task classifier and
single-task classifier is compared based on accuracy,
F1 score and balanced accuracy. The F1 score is the
harmonic mean of precision and recall, with a best value
of 1 and worst value of 0.
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TABLE 1: Number of downloaded images from Flicker.

Indicator Queried keyword Number of Images
Dilapidated Building Old/Dilapidated 37559

Nice 21468
Chain-link Fence Fence 32581

Neighborhood/Street 29845
Streetlight Street Lamp 17896

Neighborhood 33340

TABLE 2: Number of labeled samples for each GSV indicator.

Dilapidated Building Chain-link Fence Streetlight
Positive Class 748 1227 2144
Negative Class 999 16709 15792

F1 = 2 ∗ precision ∗ recall
precision + recall

. (1)

Balanced accuracy is used when dealing with imbal-
anced data and it is the arithmetic mean of sensitivity
and specificity, where

sensitivity =
TP

TP + FN
, (2)

and
specificity =

TN
TN + FP

. (3)

Table 2 illustrates the number of available labeled
positive and negative examples for each indicator used
for training. As is shown in the table, the positive and
negative classes are highly unbalanced. This means that
focusing solely on classification accuracy is not informa-
tive; therefore, the F1 score and balanced accuracy must
be taken into consideration.

As shown in Table 3, training a multi-task classifier
across different indicators results in an improvement in
both the F1 score and balanced accuracy. Due to the
highly imbalanced classes of the chain-link fence and
streetlight indicators, there is a significant difference
between accuracy and the F1 score. Multi-task learning
has particularly improved the F1 scores and balanced
accuracy for these indicators.

B. REGRESSION MODELS TRAINING
For predicting health outcomes correlated with envi-
ronment indicators, we utilized fully connected neural
networks that are composed of four fully connected
layers with rectified linear unit (Relu) nonlinearity and
a linear output layer. Fig. 4 shows the regression neural
network in detail.

At the census-tract level, 30 different health outcomes
are represented and used for training the models. These
outcomes include smoking, cholesterol levels, arthritis,
depression, diabetes, and obesity. These health outcomes
have been normalized prior to use in the model.

As explained in section III.C, the input for the
regression models is a set of environment indicators
represented at the census-tract level. These indicators

are used in conjunction with the health outcomes, which
are also represented at the same census-tract level. The
number of images with a particular indicator i is divided
by the total number of images present in the census tract
j, Xij.

The regression model f is then trained to minimize the
mean squared error (MSE) loss function:

MSEi =
1

n

n∑
j=1

|Yj − f(Xij)|2, (4)

where n is the number of census tracts, Yj is the true
value of health outcomes, and f(Xij) is the predicted
value of health outcomes in the j − th census tract for
indicator i.

For each predicted indicator, the performance of the
model is evaluated based on R2 coefficient value:

R2
i = 1−

∑n
j=1 |Yj − f(Xij)|2∑n

j=1 |Yj − Ȳ|2
, (5)

where Ȳ is the mean of all Yj values.
From the 30 different health outcomes, we selected

the top two outcomes that were most correlated with
each environment indicator using Pearson correlation.
Selecting the top correlated health outcomes increases
model’s reliability and accuracy. The model is trained
to capture the most relevant information and the true
relationship between the environment indicators and the
health outcomes. Also, the risk of overfitting is reduced
since the noise that can result from including irrelevant
health outcomes is reduced.

To label the GSV test set, which consists of 164
million images, we employed both single-task and multi-
task classifiers. The images were then mapped to census
tracts and used for training the regression models.

The regression neural networks were trained on 34344
data points and tested on 14718 data points (70%
training data, 30% testing data). The regression models
were trained using the MSE loss function for 100 epochs
with a learning rate of 5e−4. Adam is used as the
optimizer and we train the models with a batch size
of 16.
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FIGURE 4: The regression neural network for estimating health outcomes.

TABLE 3: Single and multi-task learning classification results.

Dilapidated Building Chain-link Fence Streetlight
Single-Task F1 score 0.90 0.51 0.55

Accuracy (%) 93.2 95.8 90.3
Balanced accuracy (%) 91.5 69.8 69.5

Multi-Task F1 score 0.95 0.57 0.59
Accuracy (%) 93.5 96.3 91.1

Balanced accuracy (%) 95.2 75.7 76.7

TABLE 4: R2 values for train and test datasets using
single-task results using only environment variables.
Each experiment is repeated 10 times using the boot-
strap sampling method. The average and standard de-
viation (std) of R2 values are reported.

Estimated health outcomes R2test R2 train
(mean ± std) (mean ± std)

STROKE 0.20 ± 7e-5 0.20 ± 2e-5
MHLTH 0.19 ± 6e-5 0.19 ± 3e-5

ARTHRITIS 0.30 ± 5e-5 0.33 ± 3e-5
HIGHCHOL 0.22 ± 6e-5 0.22 ± 3e-5

CHOLSCREEN 0.15 ± 9e-5 0.15 ± 4e-5
COLONSCREEN 0.23 ± 5e-5 0.23 ± 3e-5

TABLE 5: R2 values for train and test datasets using
multi-task results using only environment variables.
Each experiment is repeated 10 times using the boot-
strap sampling method. The average and standard de-
viation (std) of R2 values are reported.

Estimated health outcomes R2test R2 train
(mean ± std) (mean ± std)

STROKE 0.24 ± 5e-5 0.24 ± 1e-5
MHLTH 0.23 ± 5e-5 0.23 ± 2e-5

ARTHRITIS 0.34 ± 9e-5 0.35 ± 1e-5
HIGHCHOL 0.24 ± 3e-5 0.23 ± 1e-5

CHOLSCREEN 0.19 ± 7e-5 0.19 ± 2e-5
COLONSCREEN 0.23 ± 3e-5 0.23 ± 2e-5

We have trained two neural network regression models
and predicted health outcomes using only environment
indicators predicted using single-task and multi-task
learning approaches. The results are presented in Ta-
bles 4 and 5. These results confirm that the multi-task
learning approach results in higher R2 values, therefore,
a more accurate prediction of health outcomes compared
to the single-task learning approach.

In a separate set of experiments, the regression
models were controlled for demographic variables such
as the percent of the population aged 65 and older,
percent male, percent Hispanic, percent black, percent
owner-occupied housing, and percent employed. We
have trained a neural network using only the above

TABLE 6: R2 values for train and test datasets using
only controlled variables. Each experiment is repeated 10
times using the bootstrap sampling method. The average
and standard deviation (std) of R2 values are reported.

Estimated health outcomes R2test R2 train
(mean ± std) (mean ± std)

STROKE 0.81 ± 4e-5 0.82 ± 2e-5
MHLTH 0.64 ± 5e-5 0.64 ± 2e-5

ARTHRITIS 0.73 ± 6e-5 0.73 ± 1e-5
HIGHCHOL 0.76 ± 3e-5 0.76 ± 1e-5

CHOLSCREEN 0.73 ± 4e-5 0.73 ± 2e-5
COLONSCREEN 0.62 ± 6e-5 0.63 ± 3e-5

TABLE 7: R2 values for train and test datasets using
both controlled variables and environment indicators
detected using single-task learning. Each experiment is
repeated 10 times using the bootstrap sampling method.
The average and standard deviation (std) of R2 values
are reported.

Estimated health outcomes R2test R2 train
(mean ± std) (mean ± std)

STROKE 0.81 ± 7e-5 0.83 ± 2e-5
MHLTH 0.65 ± 4e-5 0.64 ± 3e-5

ARTHRITIS 0.74 ± 3e-5 0.73 ± 2e-5
HIGHCHOL 0.77 ± 4e-5 0.77 ± 2e-5

CHOLSCREEN 0.73 ± 5e-5 0.73 ± 3e-5
COLONSCREEN 0.62 ± 5e-5 0.63 ± 2e-5

TABLE 8: R2 values for train and test datasets using
both controlled variables and environment indicators
detected using multi-task learning. Each experiment is
repeated 10 times using the bootstrap sampling method.
The average and standard deviation (std) of R2 values
are reported.

Estimated health outcomes R2test R2 train
(mean ± std) (mean ± std)

STROKE 0.80 ± 6e-5 0.81 ± 2e-5
MHLTH 0.68 ± 5e-5 0.68 ± 1e-5

ARTHRITIS 0.76 ± 3e-5 0.75 ± 1e-5
HIGHCHOL 0.80 ± 3e-5 0.80 ± 1e-5

CHOLSCREEN 0.76 ± 4e-5 0.76 ± 1e-5
COLONSCREEN 0.65 ± 8e-5 0.66 ± 2e-5
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variables to predict health outcomes and compared the
results where environment indicators are also used as
predictors. The predicted R2 values using the controlled
variables are presented in Table 6.

We have also trained separate neural networks that
account for environment indicators in addition to the
controlled variables. By including environment indica-
tors, we can assess their impact on health outcomes
while controlling for other variables. The results of these
experiments are reported in Tables 7 and 8.

Upon comparing the data presented in Tables 6 and
7, we observe that incorporating the environment indi-
cators predicted using the single-task model does not
significantly improve R2 values. Nevertheless, analysis
of the results in Table 8 shows R2 values improve across
different health outcomes (except for stroke rate) by
including the environment indicators predicted through
multi-task learning, suggesting that multi-task learning
method leads to more precise predictions of environ-
ment indicators, consequently resulting in more accurate
predictions of health outcomes when compared to the
single-task learning approach.

After conducting the abovementioned experiments,
we noticed a considerable increase in the R2 values
when using demographic variables for predicting health
outcomes, compared to the R2 values obtained only from
environment indicators.

This difference is expected as we use indicators such
as dilapidated buildings to predict health outcomes like
arthritis. There are numerous variables that predict
health outcomes, and we are not expecting the improve-
ment in R2 to be significant when using environment
indicators. The sociodemographic variables often predict
health outcomes strongly. Social and economic status,
for instance, are regarded as fundamental causes of
health due to them being indicators of access to power
and health-promoting resources [40].

Even though the impact of environment indicators
on predicting health outcomes may be relatively small
compared to sociodemographic variables, improving the
detection of these indicators can still lead to an in-
crease in the accuracy of predicting health outcomes.
Environment indicators still play a role and should
be addressed in predicting health outcomes. A more
accurate model for identifying environment indicators
leads to a more accurate estimate of health outcomes.
As a result, we have a better understanding of the
relationship between environment factors and health
outcomes. This understanding can help us identify areas
at higher risk for specific health issues and allows us to
take more effective actions and targeted interventions to
improve public health.

VI. CONCLUSION
It has been demonstrated that the built environment
influences health-related behaviors and outcomes. The

development of an automated, cost-effective method to
assess the built environment and its correlation with
health outcomes would be beneficial. This automation
was achieved through the use of deep learning models
on Google street view (GSV) images. Our research
employed a multi-task learning framework to train the
deep learning model more effectively on limited labeled
GSV images. Our findings confirmed that a more precise
model for predicting environment indicators leads to a
more accurate prediction of health outcomes.
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