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Abstract. Statistical shape modeling (SSM) enables population-based
quantitative analysis of anatomical shapes, informing clinical diagno-
sis. Deep learning approaches predict correspondence-based SSM directly
from unsegmented 3D images but require calibrated uncertainty quantifi-
cation, motivating Bayesian formulations. Variational information bot-
tleneck DeepSSM (VIB-DeepSSM) is an effective, principled framework
for predicting probabilistic shapes of anatomy from images with aleatoric
uncertainty quantification. However, VIB is only half-Bayesian and lacks
epistemic uncertainty inference. We derive a fully Bayesian VIB formu-
lation from both the probably approximately correct (PAC)-Bayes and
variational inference perspectives. We demonstrate the efficacy of two
scalable approaches for Bayesian VIB with epistemic uncertainty: con-
crete dropout and batch ensemble. Additionally, we introduce a novel
combination of the two that further enhances uncertainty calibration via
multimodal marginalization. Experiments on synthetic shapes and left
atrium data demonstrate that the fully Bayesian VIB network predicts
SSM from images with improved uncertainty reasoning without sacrific-
ing accuracy.

Keywords: Statistical Shape Modeling, Bayesian Deep Learning, Variational
Information Bottleneck, Epistemic Uncertainty Quantification

1 Introduction

Statistical Shape Modeling (SSM) is a powerful tool for describing anatomical
shapes (i.e., bones and organs) in relation to a cohort of interest. Correspondence-
based shape modeling is popular due to its interpretable shape representation
using landmarks or correspondence points on anatomical surfaces that are spa-
tially consistent across the population. Specifically, each shape is represented by
a dense set of correspondences, denoted as a point distribution model (PDM),
that is automatically defined on shapes (e.g., via optimization [8] or pairwise
parameterization [23]) segmented from 3D medical images. Conventional SSM
pipelines require expert-driven, intensive steps such as segmentation, shape reg-
istration, and tuning correspondence optimization parameters or defining an
atlas/template for pairwise surface matching. Deep learning approaches have
mitigated this overhead by providing end-to-end solutions, predicting PDMs
from unsegmented 3D images with little preprocessing [5,1,25,2]. Such solutions
cannot be safely deployed in sensitive, clinical decision-making scenarios without

ar
X

iv
:2

30
5.

05
79

7v
1 

 [
cs

.C
V

] 
 9

 M
ay

 2
02

3



2 Adams and Elhabian

uncertainty reasoning [11], which provides necessary insight into the degree of
model confidence and serves as a metric of prediction reliability. There are two
primary forms of uncertainty aleatoric (or data-dependent) and epistemic (or
model-dependent) [17]. The overall prediction uncertainty is a sum of the two. It
is essential to distinguish between these two forms, as epistemic is reducible and
can be decreased given more training data or by refining the model [10]. Bayesian
deep learning frameworks automatically provide epistemic uncertainty reason-
ing and can be defined to predict distributions, providing aleatoric uncertainty
quantification [7,17,19].

DeepSSM [5] is a state-of-the-art framework providing SSM estimates that
perform statistically similarly to traditional SSM methods in downstream tasks
[6]. Uncertain-DeepSSM [1] adapted the DeepSSM network to be Bayesian, pro-
viding both forms of uncertainties. DeepSSM, Uncertain-DeepSSM, and other
formulations [25] rely on a shape prior in the form of a supervised latent encod-
ing pre-computed using principal component analysis (PCA). PCA supervision
imposes a linear relationship between the latent and the output space, restricts
the learning task, and does not scale in the case of large sets of high-dimensional
shape data. VIB-DeepSSM [2] relaxes these assumptions to provide improved
accuracy and aleatoric uncertainty estimates over the existing state-of-the-art
methods [5,1,25]. This probabilistic formulation utilizes a variational informa-
tion bottleneck (VIB) [3] architecture to learn the latent encoding in the context
of the task. VIB-DeepSSM is self-regularized via a latent prior, increasing gen-
eralizability and helping alleviate the need for the computationally expensive
DeepSSM data augmentation process. However, this approach does not quan-
tify epistemic uncertainty because VIB is only half-Bayesian [3]. In this paper,
we propose to significantly extend the VIB-DeepSSM framework to be fully
Bayesian, predicting probabilistic anatomy shapes directly from images with
both forms of uncertainty quantification.

The contributions of this work include the following: (1) We mathemati-
cally derive fully Bayesian VIB from two perspectives: PAC-Bayes bounds and
variational inference. (2) We demonstrate two scalable approaches for Bayesian
VIB-DeepSSM with epistemic uncertainty quantification (concrete dropout and
batch ensemble) and compare them to naive ensembling. (3) We introduce and
theoretically justify a novel combination of concrete dropout and ensembling for
improved uncertainty calibration. (4) We illustrate that the fully Bayesian for-
mulations improve uncertainty reasoning (especially the proposed method) on
synthetic and real data without sacrificing accuracy.

2 Background

We denote a set of paired training data as D = {X ,Y}. X = {xn}Nn=1 is a set of
N unsegmented images, where xn ∈ RH×W×D. Y = {yn}Nn=1 is the set of PDMs
comprised of M 3D correspondence points, where yn ∈ R3M . VIB utilizes a
stochastic latent encoding Z = {zn}Nn=1, where zn ∈ RL and L� 3M .
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In Bayesian modeling, model parameters Θ are obtained by maximizing
the likelihood p(y|x, Θ). The predictive distribution is found by marginalizing
over Θ, which requires solving for the posterior p(Θ|D). In most cases, p(Θ|D)
is not analytically tractable; thus, an approximate posterior q(Θ) is found via
variational inference (VI). Bayesian networks maximize the VI evidence lower
bound (ELBO) by minimizing:

VI = EΘ̃∼q(Θ)

[
− log p(y|x, Θ̃)

]
+ βKL [q(Θ)‖p(Θ)] (1)

where p(Θ) is the prior on network weights, and β is a weighting parameter.
The deep Variational Information Bottleneck (VIB) [3] model learns

to predict y from x using a low dimensional stochastic encoding z. The VIB
architecture comprises of a stochastic encoder parameterized by φ, q(z|x, φ),
and a decoder parameterized by θ, p(y|z, θ) (Figure 1). VIB utilizes VI to derive
a theoretical lower bound on the information bottleneck objective:

V IB = Eẑ∼q(z|x,φ) [− log p(y|ẑ, θ)] + βKL [q(z|x, φ)‖p(z)] (2)

The entropy of the p(y|z) distribution (computed using sampling) captures
aleatoric uncertainty. The VIB objective has also been derived using an alter-
native motivation: Bayesian inference via optimizing a PAC style upper bound
on the true negative log-likelihood risk [4]. Through this PAC-Bayes lens, it has
been proven that VIB is half Bayesian, as the Bayesian strategy is applied to
minimize an upper bound with respect to the conditional expectation of y, but
the Maximum Likelihood Estimation (MLE) strategy is used to approximate the
expectation over inputs. The VIB objective can be made a fully valid bound on
the true risk by applying an additional PAC-Bound with respect to the param-
eters, resulting in a fully Bayesian VIB that captures epistemic uncertainty in
addition to aleatoric.

3 Methods

3.1 Bayesian Variational Information Bottleneck

In fully-Bayesian VIB (BVIB), rather than fitting the model parameters Θ =
{φ, θ} via MLE, we use VI to approximate the posterior p(Θ|D). There are now
two intractable posteriors p(z|x, φ) and p(Θ|x,y). The first is approximated
via q(z|x, φ) as in Eq. 2 and the second is approximated by q(Θ) as in Eq. 1.
Minimizing these two KL divergences via a joint ELBO gives the objective (see
Appendix A for derivation details):

BVIB = EΘ̃
[
Eẑ

[
− log p(y|ẑ, θ̃)

]
+KL

[
q(z|x, φ̃)‖p(z)

]]
+KL [q(Θ)‖p(Θ)] (3)

where Θ̃ ∼ q(Θ) and ẑ ∼ q(z|x, φ̃). This objective is equivalent to the BVIB
objective acquired via applying a PAC-Bound with respect to the conditional
expectation of targets and then another with respect to parameters [4]. This
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is expected, as it has been proven that the VI formulation using ELBO and
the PAC-Bayes formulation with negative log-likelihood as the risk metric are
algorithmically identical [24]. Additionally, this matches the objective derived
for the Bayesian VAE when y = x [9]. Implementing BVIB requires defining
a prior distribution for the latent representation p(z) and the network weights
p(Θ). Following VIB, we define, p(z) = N (z|0, I). Different methods exist for
defining p(Θ), and multiple approaches are explored in the following section.

3.2 Proposed BVIB-DeepSSM Model Variants

In adapting VIB-DeepSSM to be fully Bayesian, we propose utilizing two ap-
proaches that have demonstratively captured epistemic uncertainty without greatly
increasing computational and memory costs: concrete dropout [13] and batch
ensemble [26]. Additionally, we propose a novel integration for a more flexible,
multimodal posterior approximation.

Concrete Dropout (CD) utilizes Monte Carlo dropout sampling as a scal-
able solution for approximate VI [13]. Epistemic uncertainty is captured by the
spread of predictions with sampled dropout masks in inference. CD automati-
cally optimizes layer-wise dropout probabilities along with the network weights.

Naive Ensemble (NE) models combine outputs from several networks for
improved performance. Networks trained with different initialization converge to
different local minima, resulting in test prediction disagreement[12]. The spread
in predictions effectively captures epistemic uncertainty [21]. NE models are
computationally expensive, as cost increases linearly with number of members.

Batch Ensemble (BE) [26] compromises between a single network and NE,
balancing the trade-off between accuracy and running time and memory. In BE,
each weight matrix is defined to be the Hadamard product of a shared weight
among all ensemble members and a rank-one matrix per member. BE provides
an ensemble from one network, where the only extra computation cost is the
Hadamard product, and the only added memory overhead is sets of 1D vectors.

Novel Integration of Dropout and Ensembling: Deep ensembles have
historically been presented as a non-Bayesian competitor for uncertainty estima-
tion. However, recent work argues that ensembles often approximate the predic-
tive distribution more closely than canonical approximate inference procedures
(i.e., VI) and are an effective mechanism for approximate Bayesian marginaliza-
tion [28]. Furthermore, it has been shown that combining traditional Bayesian
methods with ensembling improves the fidelity of approximate inference via mul-
timodal marginalization, resulting in a more robust, accurate model [27]. In con-
crete dropout, the approximate variational distribution is parameterized via a
concrete distribution. While this parameterization enables efficient Bayesian in-
ference, it greatly limits the expressivity of the approximate posterior. To help
remedy this, we propose integrating concrete dropout and ensembling (BE-CD
and NE-CD) to acquire a multimodal approximate posterior on weights for in-
creased flexibility and expressiveness. To the best of our knowledge, this com-
bination has not previously been proposed with the motivation of multimodal
marginalization for improved uncertainty calibration.
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Fig. 1: Common VIB-DeepSSM Architecture for all proposed variants.

3.3 BVIB-DeepSSM Implementation

We compare the proposed BVIB approaches with the original VIB-DeepSSM for-
mulation [2]. All models have the overall structure shown in Figure 1, comprised
of a 3D convolutional encoder (fe) and fully connected decoder (fd). CD models
have concrete dropout following every layer, BE weights have four members (the
maximum GPU memory would allow), and four models were used to create NE
models for a fair comparison. Following [2], burn-in is used to convert the loss
from deterministic (L2) to probabilistic (Eqs 10, 3, 13). This counteracts the
typical reduction in accuracy that occurs when a negative log-likelihood based
loss is used with a gradient-based optimizer [22]. An additional dropout burn-in
phase is used for CD models to increase the speed of convergence. All models
were trained until the validation accuracy had not decreased in 50 epochs. A
table of model hyperparameters and tested ranges is proved in Appendix C.
The training was done on Tesla V100 GPU with Xavier initialization [15], Adam
optimization [18]. The prediction uncertainty is a sum of the epistemic (vari-
ance resulting from marginalizing over Θ) and aleatoric (variance resulting from
marginalizing over z) uncertainty (see Appendix B for calculation details).

4 Results

We expect well-calibrated prediction uncertainty to correlate with the error,
aleatoric uncertainty to correlate with the input image outlier degree (given that
it is data-dependent), and epistemic uncertainty to correlate with the shape out-
lier degree (i.e., to detect out-of-distribution data). The outlier degree value for
each mesh and image is quantified by running PCA (preserving 95% of vari-
ability) and then considering the Mahalanobis distance of the PCA scores to
the mean (within-subspace distance) and the reconstruction error (off-subspace
distance). The sum of these values provides a measure of similarity to the whole
set in standard deviation units [20]. Experiments are designed to evaluate this
expected correlation as well as accuracy, which is calculated as the root mean
square error (RMSE) between the true and predicted points. Additionally, we
quantify the surface-to-surface distance between a mesh reconstructed from the
predicted PDM (predicted mesh) and the ground truth segmented mesh. The
reported results are an average of four runs for each model, excluding the NE
models, which ensemble the four runs.
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4.1 Supershapes Experiments

Supershapes (SS) are synthetic 3D shapes parameterized by variables that de-
termine the curvature and number of lobes [14]. We generated 1200 supershapes
with lobes randomly selected between 3 and 7 and curvature parameters ran-
domly sampled from a χ2 distribution with 4 degrees of freedom. Corresponding
3D images were generated with foreground and background intensity values mod-
eled as Gaussian distributions with different means and equal variance. Images
were blurred with a Gaussian filter (size randomly selected between 1 and 8) to
mimic diffuse shape boundaries. Figure 2A displays example shape meshes and
images with corresponding outlier degrees, demonstrating the wide variation.
We randomly split the mesh/image pairs to create a training set of size 1000, a

S
u

p
e

rs
h

a
p
e

s
E

x
a

m
p

le
s

Outlier Degree

Outlier Degree

Blur Degree

Num. of Lobes

Meshes

Image

Slices

7 5 8 1 2

1.382 1.084 3.035 1.228 1.326

3 4 5 6 7

2.008 0.171 6.141 2.008 0.767

Training PDMA.

NE-CD-BVIBNE-BVIBBE-CD-BVIBBE-BVIBCD-BVIBVIB

RMSE

vs

Predictive 

Uncertainty

Image Outlier 

Degree

vs

Aleatoric 

Uncertainty

Shape Outlier 

Degree

vs

Epistemic 

Uncertainty

VIB does not 

estimate 

epistemic 

uncertainty

r = 0.728 r = 0.743 r = 0.764 r = 0.795 r = 0.779 r = 0.825

r = 0.615 r = 0.523 r = 0.687 r = 0.509 r = 0.651 r = 0.649

r = 0.698 r = 0.900 r = 0.707 r = 0.919 r = 0.896

B.

C.

V
o
x
e
l 
S

p
a
c
in

g

(m
m

)

Fig. 2: Supershapes (A) Left: Five examples of SS mesh and image pairs with
corresponding outlier degrees. Right: Examples of training points overlayed on
meshes, where color denotes point correspondence. (B) Box plots show the dis-
tribution of errors over the test set, lower is better. (C) Scatterplots show uncer-
tainty correlation, where a higher Pearson r coefficient suggests better-calibrated
uncertainty. The best values are marked in red, and the second best in blue.
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validation set of size 100, and a testing set of size 100. ShapeWorks [8] was used
to optimize PDMs of 128 points on the training set. Target PDMs were then
optimized for validation and test sets, keeping the training PDMs fixed so that
the test set statistics were not captured by the training PDMs.

Figure 2B demonstrates that all BVIB models performed similarly or better
than the baseline VIB in terms of RMSE and surface-to-surface distance, with
the BE models performing best. Interestingly, the BE models were more accurate
than the NE. This effect could result from the random sign initialization of BE
fast weights, which increases members diversity. Adding CD hurt the accuracy
slightly, likely because the learning task is made more difficult when layer-wise
dropout probabilities are added as variational parameters. However, CD is the
cheapest way to add epistemic uncertainty and improve prediction uncertainty
calibration. Figure 2C demonstrates prediction uncertainty is well-calibrated for
all models (with an error correlation greater than 0.7) and NE-CD-BVIB achieves
the best correlation. The aleatoric and epistemic uncertainty correlation was
similar across models, with the ensemble-based models performing best.

4.2 Left Atrium Experiments

The left atrium (LA) dataset comprises 1041 anonymized LGEMRIs from unique
patients. The images were manually segmented at the University of Utah Division
of Cardiovascular Medicine with spatial resolution 0.65 × 0.65 × 2.5 mm3, and
the endocardium wall was used to cut off pulmonary veins. The images were
cropped around the region of interest, then downsampled by a factor of 0.8 for
memory purposes. This dataset contains significant shape variations, including
overall size, LA appendage size, and pulmonary veins’ number and length. The
input images vary widely in intensity and quality, and LA boundaries are blurred
and have low contrast with the surrounding structures. Shapes and image pairs
with the largest outlier degrees were held out as outlier test sets, resulting in a
shape outlier test set of 40 and image outlier test set of 78. We randomly split
the remaining samples (90%, 10%, 10%) to get a training set of 739, a validation
set of 92, and an inlier test set of 92. The target PDMs were optimized with
ShapeWorks [8] to have 1024 particles.

The accuracy and uncertainty calibration analysis in Figure 3B and 3C show
similar results to the supershapes experiment. In both experiments, the proposed
combination of dropout and ensembling provided the best-calibrated prediction
uncertainty, highlighting the benefit of multimodal Bayesian marginalization.
Additionally, the proposed combination gave more accurate predictions on the
LA outlier test sets, suggesting improved robustness. BE-CD-BVIB provided
the best prediction uncertainty for the LA and the second best (just behind
NE-CD-BVIB) for the SS. BE-CD-BVIB is a favorable approach as it does not
require training multiple models as NE does and requires relatively low memory
addition to the base VIB model. Further qualitative LA results are provided
in Appendix F in the form of heat maps of the error and uncertainty on test
meshes. Here we can see how the uncertainty correlates locally with the error.
As expected, both are highest in the LA appendage and pulmonary veins region,
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where LA’s and the segmentation process vary the most. It is worth noting a
standard normal prior was used for p(z) in all models. Defining a more flexible
prior, or potentially learning the prior, could provide better results and will be
considered in future work.
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Fig. 3: Left Atrium (A) The distribution of shape and image outlier degrees
with thresholds is displayed with examples. (B) Box plots show the distribution
of errors over the test sets. (C) Scatterplots show uncertainty correlation with
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5 Conclusion
The traditional computational pipeline for generating Statistical Shape Models
(SSM) is expensive and labor-intensive, which limits its widespread use in clin-
ical research. Deep learning approaches have the potential to overcome these
barriers by predicting SSM from unsegmented 3D images in seconds, but such
a solution cannot be deployed in a clinical setting without calibrated estimates
of epistemic and aleatoric uncertainty. The VIB-DeepSSM model provided a
principled approach to quantify aleatoric uncertainty but lacked epistemic un-
certainty. To address this limitation, we proposed a fully Bayesian VIB model
that can predict anatomical SSM with both forms of uncertainty. We demon-
strated the efficacy of two practical and scalable approaches, concrete dropout
and batch ensemble, and compared them to the baseline VIB and naive ensem-
bling. Finally, we proposed a novel combination of dropout and ensembling for
multimodal Bayesian marginalization and showed that the proposed approach
provides improved uncertainty calibration and model robustness on synthetic
supershape and real left atrium datasets. These contributions are an important
step towards replacing the traditional SSM pipeline with a deep network and
increasing the feasibility of fast, accessible SSM in clinical research and practice.
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A Bayesian VIB Derivation

In Bayesian inference, for a given test sample, x∗, the predictive distribution
is found by marginalizing over Θ: p(y∗|x∗,X ,Y) =

∫
p(y∗|x∗, Θ)p(Θ|X ,Y)dΘ.

In VIB, for a given test sample x∗, the predictive distribution is defined as:
p(y∗|x∗, Θ) =

∫
p(y∗|z∗, θ)p(z∗|x∗, φ)dz. To extend VIB to be fully Bayesian,

we place a prior (p(Θ)) over model parameters (Θ = {φ, θ}) and approximate
the posterior (p(Θ|D)). Under this framework, we combine the predictive distri-
butions as follows:

p(y∗|x∗,X ,Y) =
∫ (∫

p(y∗|z∗, θ)p(z∗|x∗, φ)dz
)
p(Θ|X ,Y)dzdΘ (4)

Here we have two intractable posteriors p(z|x, φ) and p(Θ|x,y), thus we apply
VI twice. The first is approximated via q(z|x, φ) as is done in Equation 2 and
the second is approximated by q(Θ) as is done in Equation 1, resulting in the
BVIB objective shown in Equation 3.

B Uncertainty Calculation

To estimate epistemic uncertainty in BVIB-DeepSSM, we generate multiple pre-
dictions (ŷn, σ̂

2
n) with T weights sampled from the approximate posterior. In

CD, T is the number of different dropout masks used in generating predictions
(30). In BE and NE, T is the number of ensemble members (4). In the proposed
CD ensemble integration, T is the number of dropout masks times the number
of ensemble members (120). The prediction uncertainty is expressed as the sum
of the aleatoric and epistemic uncertainty:

Σ2
n =

1

T

T∑
t=1

ŷ2
n,t −

(
1

T

T∑
t=1

ŷn,t

)2

+
1

T

T∑
t=1

σ̂2
n,t (5)
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C Model Parameters

Architecture: The encoder, fe is comprised of 3D convolution, 3D batch normal-
ization, and fully connected (FC) layers as in [5]. The decoder is comprised of
three FC layers and Parametric ReLU activation [16].

Table 1: Parameter values used in all experiments with the tested range.
Parameter Selected Value Tested Range/Explanation
β (Equations 2 and 3) 0.01 [1e−8, 0.9]

Fixed Learning Rate 5e−5 [1e−6, 1e−3]

CD Length Scale 1e−3 [1e−8, 1e2]

Batch Size 6 Maximum memory allowed.
Number of Ensemble Members 4 Maximum memory allowed.
Adam Optimization Betas (0.9, 0.999) Default used.
Adam Optimization Eps 1e−8 Default used.
Adam Optimization Weight Decay 0 Default used.

D Example Left Atrium Results

In Figure 4, three examples from the LA test set are provided, including input
image slices, ground truth points, and the model output point and uncertainty
predictions. Example 1 demonstrates a typical case, example 2 contains an en-
larged LA appendage, and example 3 has multiple long pulmonary veins. These
examples show the local calibration of the uncertainty estimation, demonstrating
the utility of uncertainty quantification in clinical analysis.
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Fig. 4: Three example results from the left atrium test set.
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