Xavier Pennec & Marco Lorenzi

Asclepios team, INRIA Sophia-Antipolis – Mediterranée, France

The SVF framework for longitudinal statistics on deformations

STIA – MICCAI at MIT, Sep. 2014

Morphometry through Deformations

Measure of deformation [D'Arcy Thompson 1917, Grenander & Miller]

- Observation = "random" deformation of a reference template
- □ Reference template = Mean (atlas)
- □ Shape variability encoded by the deformations

Statistics on groups of transformations (Lie groups, diffeomorphism)?

Consistency with group operations (non commutative)?

Longitudinal deformation analysis Dynamic obervations

How to transport longitudinal deformation across subjects? What are the convenient mathematical settings?

Outline

Foundations of statistics on manifolds

- □ The Riemannian framework
- Lie groups as affine connection spaces
- □ The SVF framework for diffeomorphisms

Longitudinal analysis of deformations with SFVs

- Parallel transport of deformations germs
- □ Longitudinal modeling of brain atrophy in AD
- Morphological analysis with Helmoltz decomposition

Bases of Algorithms in Riemannian Manifolds

Riemannian metric :

- Dot product on tangent space
- □ Speed, length of a curve
- Geodesics are length minimizing curves
- Riemannian Distance

Exponential map (Normal coord. syst.) :

- □ Geodesic shooting: $Exp_x(v) = \gamma_{(x,v)}(1)$
- Log: find vector to shoot right (geodesic completeness!)

Unfolding (Log_x), folding (Exp_x)

Vector -> Bipoint (no more equivalent class)

Operator	Euclidean space	Riemannian manifold
Subtraction	$\overrightarrow{xy} = y - x$	$\overrightarrow{xy} = Log_x(y)$
Addition	$y = x + \overrightarrow{xy}$	$y = Exp_x(\overrightarrow{xy})$
Distance	$\operatorname{dist}(x, y) = \left\ y - x \right\ $	$\operatorname{dist}(x, y) = \left\ \overrightarrow{xy} \right\ _{x}$
Gradient descent	$x_{t+\varepsilon} = x_t - \varepsilon \nabla C(x_t)$	$x_{t+\varepsilon} = Exp_{x_t}(-\varepsilon \nabla C(x_t))$

Statistical tools: Moments

Frechet / Karcher mean minimize the variance $E[\mathbf{x}] = \underset{y \in M}{\operatorname{argmin}} \left(E\left[\operatorname{dist}(y, \mathbf{x})^2\right] \right) \implies E\left[\overrightarrow{\mathbf{x}\mathbf{x}}\right] = \int_{M} \overrightarrow{\mathbf{x}\mathbf{x}} \cdot p_{\mathbf{x}}(z) \cdot dM(z) = 0 \quad \left[P(C) = 0\right]$

Existence and uniqueness : Karcher / Kendall / Le / Afsari

X. Pennec - STIA - Sep. 18 2014

Limits of the Riemannian Framework

Lie group: Smooth manifold with group structure

- $\hfill\square$ Composition g o h and inversion g⁻¹ are smooth
- □ Left and Right translation $L_g(f) = g \circ f$ $R_g(f) = f \circ g$
- Natural Riemannian metric choices
 - Chose a metric at Id: <x,y>_{Id}
 - Propagate at each point g using left (or right) translation $<x,y>_g = < DL_g^{(-1)}.x$, $DL_g^{(-1)}.y>_{Id}$

No bi-invariant metric in general

□ Incompatibility of the Fréchet mean with the group structure

- Left of right metric: different Fréchet means
- The inverse of the mean is not the mean of the inverse
- □ Examples with simple 2D rigid transformations

□ Can we design a mean compatible with the group operations?

Is there a more convenient structure for statistics on Lie groups?

Outline

Foundations of statistics on manifolds

- □ The Riemannian framework
- Lie groups as affine connection spaces
- □ The SVF framework for diffeomorphisms

Longitudinal analysis of deformations with SFVs

- Parallel transport of deformations germs
- □ Longitudinal modeling of brain atrophy in AD
- Morphological analysis with Helmoltz decomposition

Basics of Lie groups

Flow of a left invariant vector field $\tilde{X} = DL.x$ starting from e

- $\Box \gamma_x(t)$ exists for all time
- □ One parameter subgroup: $\gamma_x(s + t) = \gamma_x(s)$. $\gamma_x(t)$

Lie group exponential

- □ Definition: $x \in g \rightarrow Exp(x) = \gamma_x(1) \epsilon G$
- □ Local chart (not true in general for inf. dim)
- Baker-Campbell Hausdorff (BCH) formula

$$BCH(x,y) = Log(Exp(x), Exp(y)) = x + y + \frac{1}{2}[x,y] + ...$$

3 curves at each point parameterized by the same tangent vector

Left / Right-invariant geodesics, one-parameter subgroups
Question: Can one-parameter subgroups be geodesics?

Affine connection spaces

Affine Connection (infinitesimal parallel transport)

- □ Acceleration = derivative of the tangent vector along a curve
- Projection of a tangent space on a neighboring tangent space

Geodesics = straight lines

- □ Null acceleration: $\nabla_{\dot{\gamma}}\dot{\gamma} = 0$
- 2nd order differential equation:
 Normal coordinate system
- Local exp and log maps

Adapted from Lê Nguyên Hoang, science4all.org

Cartan-Schouten Connection on Lie Groups

A unique connection

- □ Symmetric (no torsion) and bi-invariant
- For which geodesics through Id are one-parameter subgroups (group exponential)
 - Matrices : M(t) = A.exp(t.V)
 - Diffeos : translations of Stationary Velocity Fields (SVFs)

Levi-Civita connection of a bi-invariant metric (if it exists)

 Continues to exists in the absence of such a metric (e.g. for rigid or affine transformations)

Two flat connections (left and right)

□ Absolute parallelism: no curvature but torsion (Cartan / Einstein)

Statistics on an affine connection space

Fréchet mean: exponential barycenters

- $\Box \sum_{i} Log_{x}(y_{i}) = 0$ [Emery, Mokobodzki 91, Corcuera, Kendall 99]
- □ Existence & local uniqueness if local convexity [Arnaudon & Li, 2005]

For Cartan-Schouten connections [Pennec & Arsigny, 2012]

- □ Locus of points *x* such that $\sum Log(x^{-1}, y_i) = 0$
- □ Algorithm: fixed point iteration (local convergence)

$$x_{t+1} = x_t \circ Exp\left(\frac{1}{n}\sum Log(x_t^{-1}.y_i)\right)$$

Mean stable by left / right composition and inversion

If *m* is a mean of {*g_i*} and *h* is any group element, then
 h ∘ *m* is a mean of {*h* ∘ *g_i*}, *m* ∘ *h* is a mean of the points {*g_i* ∘ *h*}
 and *m*⁽⁻¹⁾ is a mean of {*g_i⁽⁻¹⁾*}

X. Pennec - STIA - Sep. 18 2014

Generalization of the Statistical Framework

Covariance matrix & higher order moments

Defined as tensors in tangent space

 $\Sigma = \int Log_x(y) \otimes Log_x(y) \,\mu(dy)$

 Matrix expression changes according to the basis

Other statistical tools

- Mahalanobis distance well defined and bi-invariant
- □ Tangent Principal Component Analysis (t-PCA)
- Principal Geodesic Analysis (PGA), provided a data likelihood
- Independent Component Analysis (ICA)

Outline

Foundations of statistics on manifolds

- □ The Riemannian framework
- Lie groups as affine connection spaces
- □ The SVF framework for diffeomorphisms

Longitudinal analysis of deformations with SFVs

- Parallel transport of deformations germs
- □ Longitudinal modeling of brain atrophy in AD
- Morphological analysis with Helmoltz decomposition

Riemannian Metrics on diffeomorphisms

Space of deformations

- □ Transformation $y = \phi(x)$
- □ Curves in transformation spaces: ϕ (x,t)
- Tangent vector = speed vector field

$$v_t(x) = \frac{d\phi(x,t)}{dt}$$

Right invariant metric

Lagrangian formalism

Geometric Mechanics [Arnold, Smale, Souriau, Marsden, Ratiu, Holmes, Michor...]

 $\left\|\boldsymbol{v}_{t}\right\|_{\boldsymbol{\phi}_{t}} = \left\|\boldsymbol{v}_{t} \circ \boldsymbol{\phi}_{t}^{-1}\right\|_{\boldsymbol{\mathcal{U}}}$

Geodesics determined by optimization of a time-varying vector field

□ Distance
$$d^{2}(\phi_{0},\phi_{1}) = \arg\min_{v_{t}}(\int_{0}^{1} ||v_{t}||_{\phi_{t}}^{2} dt)$$

- Geodesics characterized by initial velocity / momentum
- Optimization by shooting/adjoint or path-straightening methods

X. Pennec - STIA - Sep. 18 2014

The SVF framework for Diffeomorphisms

Framework of [Arsigny et al., MICCAI 06]

□ Use one-parameter subgroups

Exponential of a smooth vector field is a diffeomorphism

- □ *u* is a smooth **stationary velocity field**
- □ Exponential: solution at time 1 of ODE $\partial x(t) / \partial t = u(x(t))$

The SVF framework for Diffeomorphisms

Efficient numerical methods

- □ Take advantage of algebraic properties of exp and log.
 - exp(t.V) is a one-parameter subgroup.
- \rightarrow Direct generalization of numerical matrix algorithms.

Efficient parametric diffeomorphisms

- Computing the deformation: Scaling and squaring recursive use of exp(v)=exp(v/2) o exp(v/2)
 [Arsigny MICCAI 2006]
- Updating the deformation parameters: BCH formula [Bossa MICCAI 2007]

 $\exp(\mathbf{v}) \circ \exp(\varepsilon \mathbf{u}) = \exp(\mathbf{v} + \varepsilon \mathbf{u} + [\mathbf{v}, \varepsilon \mathbf{u}]/2 + [\mathbf{v}, [\mathbf{v}, \varepsilon \mathbf{u}]]/12 + \dots)$

• Lie bracket $[\mathbf{v}, \mathbf{u}](p) = Jac(\mathbf{v})(p) \cdot \mathbf{u}(p) - Jac(\mathbf{u})(p) \cdot \mathbf{v}(p)$

Symmetric log-demons [Vercauteren MICCAI 08]

Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007]

- Parameterize the deformation by SVFs
- Time varying (LDDMM) replaced by stationary vector fields
- □ Efficient scaling and squaring methods to integrate autonomous ODEs

Log-demons with SVFs

$$\mathcal{E}(\mathbf{v}, \mathbf{v}_{c}) = \frac{1}{\sigma_{i}^{2}} \|F - M \circ \exp(\mathbf{v}_{c})\|_{L_{2}}^{2} + \frac{1}{\sigma_{x}^{2}} \|\log(\exp(-\mathbf{v}) \circ \exp(\mathbf{v}_{c}))\|_{L_{2}}^{2} + \mathcal{R}(\mathbf{v})$$
Similarity
Coupling
Regularisation
Measures how much the
two images differ
Ensures
with the smooth deformation
Efficient optimization with BCH formula
Inverse consistent with symmetric forces
Open-source ITK implementation
Very fast
TVercauteren, et al.. Symmetric
Log-Domain Diffeomorphic

• http://hdl.handle.net/10380/3060

[| Vercauteren, et al.. Symmetric Log-Domain Diffeomorphic Registration: A Demons-based Approach, MICCAI 2008]

Cartan Connections vs Riemannian

What is similar

- Standard differentiable geometric structure [curved space without torsion]
- Normal coordinate system with Exp_x et Log_x [finite dimension]

Limitations of the affine framework

- □ No metric (but no choice of metric to justify)
- The exponential does always not cover the full group
 - Pathological examples close to identity in finite dimension
 - In practice, similar limitations for the discrete Riemannian framework

What we gain

- □ A globally invariant structure invariant by composition & inversion
- □ Simple geodesics, efficient computations (stationarity, group exponential)
- The simplest linearization of transformations for statistics?

Outline

Foundations of statistics on manifolds

- □ The Riemannian framework
- Lie groups as affine connection spaces
- □ The SVF framework for diffeomorphisms

Longitudinal analysis of deformations with SFVs

- Parallel transport of deformations germs
- □ Longitudinal modeling of brain atrophy in AD
- Morphological analysis with Helmoltz decomposition

Measuring Temporal Evolution with deformations

Fast registration with deformation parameterized by SVF

$$\varphi_t(x) = exp(t.v(x))$$

https://team.inria.fr/asclepios/software/lcclogdemons/

[Lorenzi, Ayache, Frisoni, Pennec, Neuroimage 81, 1 (2013) 470-483]

X. Pennec - STIA - Sep. 18 2014

Longitudinal deformation analysis in AD

- From patient specific evolution to population trend (parallel transport of deformation trajectories)
- Inter-subject and longitudinal deformations are of different nature and might require different deformation spaces/metrics

PhD Marco Lorenzi - Collaboration With G. Frisoni (IRCCS FateBenefratelli, Brescia)

Parallel transport of deformations

Encode longitudinal deformation by its initial tangent (co-) vector

In Momentum (LDDMM) / SVF

Parallel transport

- □ (small) longitudinal deformation vector
- □ along the large inter-subject normalization deformation

Existing methods

- Vector reorientation with Jacobian of inter-subject deformation
- □ Conjugate action on deformations (Rao et al. 2006)
- □ Resampling of scalar maps (Bossa et al, 2010)
- LDDMM setting: parallel transport along geodesics via Jacobi fields [Younes et al. 2008]

Intra and inter-subject deformations/metrics are of different nature

Parallel transport along arbitrary curves

Infinitesimal parallel transport = connection

 $\nabla_{\gamma'}(X):TM \rightarrow TM$

A numerical scheme to integrate for symmetric connections: Schild's Ladder [Elhers et al, 1972]

Build geodesic parallelogrammoid

[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of deformations in time series of images, IPMI 2011]

X. Pennec - STIA - Sep. 18 2014

Parallel transport along geodesics

Along geodesics: Pole Ladder [Lorenzi et al, JMIV 2013]

[Lorenzi, Pennec: Efficient Parallel Transport of Deformations in Time Series of Images: from Schild's to pole Ladder, JMIV 2014]

Efficient Pole and Schild's Ladder with SVFs

 $\operatorname{Exp}(\Pi(u)) = \operatorname{Exp}(v/2) \circ \operatorname{Exp}(u) \circ \operatorname{Exp}(-v/2)$

Numerical scheme

 $\Box \text{ Direct computation } \Pi_{conj}(u) = D(Exp(v))|_{Exp(-v)} \cdot u \circ Exp(-v)$

□ Using the BCH: $\Pi_{BCH}(u) = u + [v, u] + \frac{1}{2}[v[v, u]]$

[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of deformations in time series of images, IPMI 2011] Runner-up for the IPMI Erbsmann 2011 prize

X. Pennec - STIA - Sep. 18 2014

Analysis of longitudinal datasets Multilevel framework

Single-subject, two time points

Log-Demons (LCC criteria)

Single-subject, multiple time points

4D registration of time series within the Log-Demons registration.

Multiple subjects, multiple time points

Pole or Schild's Ladder

[Lorenzi et al, in Proc. of MICCAI 2011]

Outline

Foundations of statistics on manifolds

- □ The Riemannian framework
- Lie groups as affine connection spaces
- □ The SVF framework for diffeomorphisms

Longitudinal analysis of deformations with SFVs

- Parallel transport of deformations germs
- Longitudinal modeling of brain atrophy in AD
- Morphological analysis with Helmoltz decomposition

Mean Longitudinal Model for AD

Estimated from 1 year changes – Extrapolation to 15 years 70 AD subjects (ADNI data)

X. Pennec - STIA - Sep. 18 2014

Longitudinal changes in Alzheimer's disease

(141 subjects – ADNI data)

Student's t statistic

Consistency and numerical stability

Vector measure

Longitudinal changes in Alzheimer's disease

(141 subjects – ADNI data)

Comparison with standard TBM

Pole ladder

Scalar transport

Consistent results

Equivalent statistical power

X. Pennec - STIA - Sep. 18 2014

34

Study of prodromal Alzheimer's disease

- □ 98 healthy subjects, 5 time points (0 to 36 months).
- \square 41 subjects A β 42 positive ("at risk" for Alzheimer's)

Q: Different morphological evolution for A β **+ vs A** β **-?**

Average SVF for normal evolution (Aβ-)

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]

Αβ42-

Time:years $A\beta 42$ - $A\beta 42$ +

X. Pennec - STIA - Sep. 18 2014

Study of prodromal Alzheimer's disease

Linear regression of the SVF over time: interpolation + prediction

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]

X. Pennec - STIA - Sep. 18 2014

Outline

Foundations of statistics on manifolds

- □ The Riemannian framework
- Lie groups as affine connection spaces
- □ The SVF framework for diffeomorphisms

Longitudinal analysis of deformations with SFVs

- Parallel transport of deformations germs
- □ Longitudinal modeling of brain atrophy in AD
- Morphological analysis with Helmoltz decomposition

Non-rigid registration for longitudinal analysis

Baseline MRI

Alzheimer's atrophy trajectory

$$\varphi = \exp(v)$$

Follow-up MRI

Atrophy flow encoded by the dense stationary velocity field

Morphological analysis of SVF

Morphological analysis of SVF

Discovery

Pressure pDefines sources and sinks of the atrophy process

Quantification

Divergence $\nabla \cdot \nabla p$ Defines flux across expanding/contracting regions

Divergence Theorem $\oint_{\partial V} v \cdot n \, dS = \int_V \nabla \cdot v \, dV$

Probabilistic definition of the atrophy topography

 $P(\text{Critical area}) \approx \text{Proximity to critical point} + \text{Surrounding flux}$

Step1. Finding local maxima and minima for the pressure field (sources,sinks) Step2. Finding surrounding areas of maximal outwards/inwards flux (Expansion and Contraction)

Group-wise flux analysis in Alzheimer's disease: Quantification

From group-wise...

...to subject specific

sample size \propto sd/(mean₁-mean₂)

	Regional flux (all regions)	Hippocampal atrophy [Leung 2010] (Different ADNI subset)
AD vs controls	164 [106,209]	121 [77, 206]
MCI vs controls	277 [166,555]	545 [296, 1331]

Effect size on left hippocampus

Group	six months	one year	two years			
INRIA - Regional Flux	1.02	1.33	1.47			
NIBAD'12 Challenge: Top-ranked on Hippocampal atrophy measures						
			40			

Conclusion

Cartan connections: a nice setting for transformation groups

- □ A connection defines geodesics but no length along them
- □ Cartan connection: one-parameters subgroups are bi-invariant geodesics
- □-Fréchet / Karcher means -> exponential barycenter = bi-invariant mean
 - Fine existence [Pennec & Arsigny 2012] (Uniqueness?)

Algorithms for SVFs

- Log-demons: Open-source ITK implementation http://hdl.handle.net/10380/3060
- Tensor (DTI) Log-demons: https://gforge.inria.fr/projects/ttk
- □ LCC time-consistent log-demons for AD available soon
- □ ITK class for SVF diffeos currently under development

Schilds Ladder for parallel transport

- □ Effective instrument for the transport of deformation trajectories
- □ Key component for multivariate analysis and modeling of longitudinal data
- Stability and sensitivity

The Stationnary Velocity Fields (SVF) framework for diffeomorphisms

- □ SVF framework for diffeomorphisms is algorithmically simple
- □ Compatible with "inverse-consistency"
- vector statistics directly generalized to diffeomorphisms
- □ Efficient parallel transport of deformation trajectories with Schilds/pole ladders

Registration algorithms using log-demons:

- Log-demons: Open-source ITK implementation (Vercauteren MICCAI 2008) http://hdl.handle.net/10380/3060
 [MICCAI Young Scientist Impact award 2013]
- Tensor (DTI) Log-demons (Sweet WBIR 2010): https://gforge.inria.fr/projects/ttk
- LCC log-demons for AD (Lorenzi, Neuroimage. 2013) https://team.inria.fr/asclepios/software/lcclogdemons/
- □ 3D myocardium strain / incompressible deformations (Mansi MICCAI'10)
- Hierarchichal multiscale polyaffine log-demons (Seiler, Media 2012) http://www.stanford.edu/~cseiler/software.html [MICCAI 2011 Young Scientist award]

med **Ínría**

- Medical image processing and visualization software
- Open-source, BSD license
- Extensible via plugins
- Provides high-level algorithms to end-users
- Ergonomic and reactive user interface

Available registration algorithms :

- Diffeomorphic Demons
- Incompressible Log Demons
- LCC Log Demons

http://med.inria.fr

•X. Pennec - STIA - Sep. 18 2014 INRIA teams involved: Asclepios, Athena, Parietal, Visages

