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Morphometry through Deformations 

2 X. Pennec - STIA - Sep. 18 2014 

Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller] 
 Observation = “random” deformation of a reference template  
 Reference template = Mean (atlas) 
 Shape variability encoded by the deformations 

Statistics on groups of transformations (Lie groups, diffeomorphism)? 
Consistency with group operations (non commutative)? 
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Longitudinal deformation analysis 

3 

time 

Dynamic obervations 

How to transport longitudinal deformation across subjects? 
What are the convenient mathematical settings?   
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Bases of Algorithms in Riemannian Manifolds 
 Riemannian metric : 

 Dot product on tangent space  
 Speed, length of a curve 
 Geodesics are length minimizing curves 
 Riemannian Distance  

 

Operator Euclidean space Riemannian manifold 

Subtraction 
Addition 
Distance 

Gradient descent )( ttt xCxx  
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Unfolding (Logx), folding (Expx) 
 Vector -> Bipoint (no more equivalent class) 

Exponential map (Normal coord. syst.) : 
 Geodesic shooting: Expx(v) = g(x,v)(1) 
 Log: find vector to shoot right (geodesic completeness!) 



7 

Statistical tools: Moments 

Frechet / Karcher mean minimize the variance 

 
Existence and uniqueness : Karcher / Kendall / Le / Afsari 

 

Gauss-Newton Geodesic marching 

 

 

Covariance (PCA) [higher moments] 
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[Oller & Corcuera 95, Battacharya & Patrangenaru 2002, Pennec, JMIV06, NSIP’99 ] 



Limits of the Riemannian Framework 

Lie group: Smooth manifold with group structure 
 Composition g o h and inversion g-1 are smooth 
 Left and Right translation Lg(f) = g o f    Rg (f) = f o g 
 Natural Riemannian metric choices 

 Chose a metric at Id: <x,y>Id 

 Propagate at each point g using left (or right) translation 
<x,y>g = < DLg(-1) .x , DLg(-1) .y >Id 
 

No bi-invariant metric in general  
 Incompatibility of the Fréchet mean with the group structure 

 Left of right metric: different Fréchet means 
 The inverse of the mean is not the mean of the inverse  

 Examples with simple 2D rigid transformations 
 

 Can we design a mean compatible with the group operations? 
 Is there a more convenient structure for statistics on Lie groups? 
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Basics of Lie groups 

Flow of a left invariant vector field 𝑋 = 𝐷𝐿. 𝑥 starting from e 
 𝛾𝑥 𝑡  exists for all time 
 One parameter subgroup: 𝛾𝑥 𝑠 + 𝑡 = 𝛾𝑥 𝑠 . 𝛾𝑥 𝑡   

Lie group exponential 
 Definition: 𝑥 ∈ 𝔤  𝐸𝑥𝑝 𝑥 = 𝛾𝑥 1  𝜖 𝐺  
 Local chart (not true in general for inf. dim) 
 Baker-Campbell Hausdorff (BCH) formula 

𝐵𝐶𝐻 𝑥, 𝑦 = 𝐿𝑜𝑔 𝐸𝑥𝑝 𝑥 . 𝐸𝑥𝑝 𝑦 = 𝑥 + 𝑦 +
1

2
𝑥, 𝑦 + … 

3 curves at each point parameterized by the same tangent vector 

 Left / Right-invariant geodesics, one-parameter subgroups 
Question: Can one-parameter subgroups be geodesics? 
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Affine connection spaces 

Affine Connection (infinitesimal parallel transport) 
 Acceleration = derivative of the tangent vector along a curve 
 Projection of a tangent space on  

a neighboring tangent space  
 

 
 
Geodesics = straight lines 

 Null acceleration: 𝛻𝛾 𝛾 = 0 
 2nd order differential equation: 

Normal coordinate system 
 Local exp and log maps 
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Adapted from Lê Nguyên Hoang, science4all.org 



Cartan-Schouten Connection on Lie Groups 

A unique connection 
 Symmetric (no torsion) and bi-invariant 
 For which geodesics through Id are one-parameter 

subgroups (group exponential) 
 Matrices : M(t) = A.exp(t.V) 
 Diffeos : translations of Stationary Velocity Fields (SVFs)   

 

Levi-Civita connection of a bi-invariant metric (if it exists) 
  Continues to exists in the absence of such a metric 

(e.g. for rigid or affine transformations) 
 

Two flat connections (left and right) 
 Absolute parallelism: no curvature but torsion (Cartan / Einstein) 
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Statistics on an affine connection space 
 

Fréchet mean: exponential barycenters 
  𝐿𝑜𝑔𝑥 𝑦𝑖𝑖 = 0               [Emery, Mokobodzki 91, Corcuera, Kendall 99] 

 Existence & local uniqueness if local convexity [Arnaudon & Li, 2005] 
 

 

For Cartan-Schouten connections  [Pennec & Arsigny, 2012]  
 Locus of points x such that    𝐿𝑜𝑔 𝑥−1. 𝑦𝑖 = 0  
 Algorithm: fixed point iteration (local convergence) 

𝑥𝑡+1 = 𝑥𝑡 ∘ 𝐸𝑥𝑝
1

𝑛
 𝐿𝑜𝑔 𝑥𝑡

−1. 𝑦𝑖   

 Mean stable by left / right composition and inversion  
 If 𝑚 is a mean of 𝑔𝑖  and ℎ is any group element, then  

ℎ ∘ 𝑚 is a mean of ℎ ∘ 𝑔𝑖  , 𝑚 ∘ ℎ is a mean of the points 𝑔𝑖 ∘ ℎ   

and 𝑚(−1) is a mean of 𝑔
𝑖
(−1)  
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Generalization of the Statistical Framework 
 

Covariance matrix & higher order moments 
 Defined as tensors in tangent space 

 

          Σ =  𝐿𝑜𝑔𝑥 𝑦 ⊗ 𝐿𝑜𝑔𝑥 𝑦  𝜇(𝑑𝑦) 
 

 Matrix expression changes 
according to the basis 

 
 
 

Other statistical tools 
 Mahalanobis distance well defined and bi-invariant 
 Tangent Principal Component Analysis (t-PCA) 
 Principal Geodesic Analysis (PGA), provided a data likelihood 
 Independent Component Analysis (ICA) 
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Riemannian Metrics on diffeomorphisms 
Space of deformations 

 Transformation y= (x) 
 Curves in transformation spaces:  (x,t) 
 Tangent vector = speed vector field  

 
Right invariant metric  

 Lagrangian formalism 
 Sobolev Norm Hk or H∞ (RKHS) in LDDMM  diffeomorphisms  

[Miller, Trouve, Younes, Holm, Dupuis, Beg… 1998 – 2009] 

 Geometric Mechanics [Arnold, Smale, Souriau, Marsden, Ratiu, Holmes, Michor…] 
 

Geodesics determined by optimization of a time-varying vector field 
 Distance 

 

 Geodesics characterized by initial velocity / momentum 
 Optimization by shooting/adjoint or path-straightening methods 
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The SVF framework for  Diffeomorphisms 
Framework of [Arsigny et al., MICCAI 06] 

 Use one-parameter subgroups 
 

Exponential of a smooth vector field is a diffeomorphism 
 u is a smooth stationary velocity field 
 Exponential: solution at time 1 of ODE ∂x(t) / ∂t = u( x(t) ) 

•exp 

Stationary velocity field Diffeomorphism 

X. Pennec - STIA - Sep. 18 2014 
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Efficient numerical methods 
 Take advantage of algebraic properties of exp and log. 

 exp(t.V) is a one-parameter subgroup. 

→ Direct generalization of numerical matrix algorithms. 
 

Efficient parametric diffeomorphisms 
 Computing the deformation: Scaling and squaring  

 recursive use of exp(v)=exp(v/2) o exp(v/2) 
 [Arsigny MICCAI 2006] 

 
 Updating the deformation parameters:  

BCH formula [Bossa MICCAI 2007] 
 

exp(v) ○ exp(εu) = exp( v + εu + [v,εu]/2 + [v,[v,εu]]/12 + … ) 
 Lie bracket       [v,u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p) 

 
 

The SVF framework for  Diffeomorphisms 
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19 

Symmetric log-demons [Vercauteren MICCAI 08] 

Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007] 
 Parameterize the deformation by SVFs  
 Time varying (LDDMM) replaced by stationary vector fields 
 Efficient scaling and squaring methods to integrate autonomous ODEs 

 
 

Log-demons with SVFs 
 

 
 
 

 Efficient optimization with BCH formula 
 Inverse consistent with symmetric forces 
 Open-source ITK implementation 

 Very fast  
 http://hdl.handle.net/10380/3060  
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Similarity 

Measures how much the 
two images differ 

Coupling 

Couples the correspondences  
with the smooth deformation 

Regularisation 

Ensures 
deformation 
smoothness 

[ T Vercauteren, et al.. Symmetric 
Log-Domain Diffeomorphic 
Registration: A Demons-based 
Approach, MICCAI 2008 ] 



20 

Cartan Connections vs Riemannian 

What is similar 
 Standard differentiable geometric structure [curved space without torsion]  
 Normal coordinate system with Expx et Logx [finite dimension] 

 

Limitations of the affine framework 
 No metric (but no choice of metric to justify) 
 The exponential does always not cover the full group 

 Pathological examples close to identity in finite dimension 
 In practice, similar limitations for the discrete Riemannian framework  

What we gain 
 A globally invariant structure invariant by composition & inversion  
 Simple geodesics, efficient computations (stationarity, group exponential)  
 The simplest linearization of transformations for statistics?  

X. Pennec - STIA - Sep. 18 2014 
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Fast registration with deformation parameterized by SVF 
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Measuring Temporal Evolution with deformations 

𝝋𝒕 𝒙 = 𝒆𝒙𝒑(𝒕. 𝒗 𝒙 ) 

https://team.inria.fr/asclepios/software/lcclogdemons/ 

[ Lorenzi, Ayache, Frisoni, Pennec, Neuroimage 81, 1 (2013) 470-483 ] 



Longitudinal deformation analysis in AD 
 From patient specific evolution to population trend 

(parallel transport of deformation trajectories)  
 Inter-subject and longitudinal deformations are of different nature 

and might require different deformation spaces/metrics 
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PhD Marco Lorenzi - Collaboration With G. Frisoni (IRCCS FateBenefratelli, Brescia) 

Patient A 

Patient B 

? ? Template 



Parallel transport of deformations 

Encode longitudinal deformation by its initial tangent (co-) vector 
 Momentum (LDDMM) / SVF 

 

Parallel transport  
 (small) longitudinal deformation vector 
 along the large inter-subject normalization deformation 
 

Existing methods 
 Vector reorientation with Jacobian of inter-subject deformation 
 Conjugate action on deformations (Rao et al. 2006) 
 Resampling of scalar maps (Bossa et al, 2010) 
 LDDMM setting: parallel transport along geodesics via Jacobi fields 

[Younes et al. 2008] 
 

Intra and inter-subject deformations/metrics are of different nature  
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Parallel transport along arbitrary curves 
Infinitesimal parallel transport = connection 

g’X : TMTM  
 

A numerical scheme to integrate for symmetric connections:  
Schild’s Ladder [Elhers et al, 1972] 
 Build geodesic parallelogrammoid 
 Iterate along the curve  
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[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of 
deformations in time series of images, IPMI 2011 ] 



Parallel transport along geodesics 
Along geodesics: Pole Ladder [Lorenzi et al, JMIV 2013] 
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[ Lorenzi, Pennec: Efficient Parallel Transport of Deformations in Time Series 
of Images: from Schild's to pole Ladder, JMIV 2014 ] 

P0 
P’0 

P1 

A 

P’1 
PA) 

 

 

 

 

C 

P0 
P’0 

P1 

A 

PA) 

 

 

 

 
P’1 

P0 
P’0 

T0 

A 

T’0 
PA) 

-A’ A’ 
C geodesic 



Efficient Pole and Schild’s Ladder with SVFs 

Numerical scheme 
 Direct computation: 
 
 Using the BCH: 
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[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of 
deformations in time series of images, IPMI 2011 ] 

Runner-up for the IPMI Erbsmann 2011 prize 
 



Analysis of longitudinal datasets 
Multilevel framework 

29 

Single-subject, two time points 

Single-subject, multiple time points 

Multiple subjects, multiple time points 

Log-Demons (LCC criteria) 

4D registration of time series within the 
Log-Demons registration. 

Pole or Schild’s Ladder 

[Lorenzi et al, in Proc. of MICCAI 2011] 
X. Pennec - STIA - Sep. 18 2014 
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Mean Longitudinal Model for AD 
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Estimated from 1 year changes – Extrapolation to 15 years 

70 AD subjects (ADNI data) 

Observed Extrapolated Extrapolated 
year 
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Longitudinal changes in Alzheimer’s disease  
(141 subjects – ADNI data) 

Contraction Expansion 

Student’s 
 t statistic 

X. Pennec - STIA - Sep. 18 2014 32 



Consistency and numerical stability 

33 X. Pennec - STIA - Sep. 18 2014 

Vector 
transport 

Scalar 
transport 

Scalar summary  

Scalar summary 

(Jacobian det, logJacobian det, …) 

Vector measure Scalar measure 



Longitudinal changes in Alzheimer’s disease  
(141 subjects – ADNI data) 

Comparison with standard TBM 

Student’s t statistic 

Pole ladder 

Scalar transport 

Consistent results 

Equivalent statistical power X. Pennec - STIA - Sep. 18 2014 34 



Study of prodromal Alzheimer’s disease  
 

 98 healthy subjects, 5 time points (0 to 36 months). 
 41  subjects Ab42 positive (“at risk” for Alzheimer’s) 
 Q: Different morphological evolution for Ab+ vs Ab-?  
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Average SVF 
for normal 
evolution (Ab-) 

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011] 



Ab42- Ab42+ 
Ab42- Ab42+ 

Time: years 

36 X. Pennec - STIA - Sep. 18 2014 



Study of prodromal Alzheimer’s disease  
 Linear regression of the SVF over time: interpolation + prediction 
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 Multivariate group-wise comparison 
of the transported SVFs shows 
statistically significant differences 
(nothing significant on log(det) ) 

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011] 
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Non-rigid registration for longitudinal analysis 

Alzheimer’s atrophy 
trajectory Baseline MRI Follow-up MRI 

=exp(v) 

Atrophy flow encoded by the dense stationary velocity field   
[Lorenzi et al, MICCAI 2012] X. Pennec - STIA - Sep. 18 2014 44 
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Morphological analysis of SVF 

Vorticity 

 

Structural 
readjustments  

Volume changes 

 

Atrophy!! 

 
Helmholtz decomposition 

 

[Lorenzi et al, MICCAI 2012] X. Pennec - STIA - Sep. 18 2014 45 
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Pressure 
Defines sources and sinks  

of the atrophy process 

        Divergence   
Defines flux across  

expanding/contracting regions 

Divergence Theorem 

Morphological analysis of SVF 

Discovery Quantification 

[Lorenzi et al, MICCAI 2012] X. Pennec - STIA - Sep. 18 2014 46 
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Probabilistic definition of the atrophy topography 

Nice 

E 

E C 

C 

Step1. Finding local maxima and minima for the pressure field (sources,sinks) 
Step2. Finding surrounding areas of maximal outwards/inwards flux (Expansion and Contraction) 

P(Critical area) ≈ Proximity to critical point + Surrounding flux 

[Lorenzi et al, MICCAI 2012] X. Pennec - STIA - Sep. 18 2014 47 



Group-wise flux analysis in Alzheimer’s 
disease: Quantification 

X. Pennec - STIA - Sep. 18 2014 48 

From group-wise… …to subject specific 

 
Regional flux 
(all regions) 

Hippocampal  
atrophy  

[Leung 2010] 
(Different ADNI 

subset) 

AD vs 
controls 

164 [106,209]  121 [77, 206] 

MCI vs 
controls 

277 [166,555] 545 [296, 1331] 

sample size ∝ sd/(mean1-mean2) 

NIBAD’12 Challenge: 
Top-ranked on Hippocampal atrophy measures 

Effect size on left hippocampus 
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Conclusion 
Cartan connections: a nice setting for transformation groups 

 A connection defines geodesics but no length along them 
 Cartan connection: one-parameters subgroups are bi-invariant geodesics 
 Fréchet / Karcher means  exponential barycenter = bi-invariant mean  

 Fine existence [Pennec & Arsigny 2012] (Uniqueness?)  

Algorithms for SVFs 
 Log-demons: Open-source ITK implementation http://hdl.handle.net/10380/3060  
 Tensor (DTI) Log-demons: https://gforge.inria.fr/projects/ttk  
 LCC time-consistent log-demons for AD available soon 
 ITK class for SVF diffeos currently under development 

 

Schilds Ladder for parallel transport   
 Effective instrument for the transport of deformation trajectories  
 Key component for multivariate analysis and modeling of longitudinal data 
 Stability and sensitivity 

 
 

 



The Stationnary Velocity Fields (SVF) 
framework for diffeomorphisms 

 SVF framework for diffeomorphisms is algorithmically simple 
 Compatible with “inverse-consistency” 
 Vector statistics directly generalized to diffeomorphisms 
 Efficient parallel transport of deformation trajectories with Schilds/pole ladders 

Registration algorithms using log-demons: 
 Log-demons: Open-source ITK implementation (Vercauteren MICCAI 2008) 

http://hdl.handle.net/10380/3060  
[MICCAI Young Scientist Impact award 2013] 
 

 Tensor (DTI) Log-demons (Sweet WBIR 2010):  
https://gforge.inria.fr/projects/ttk  
 

 LCC log-demons for AD (Lorenzi, Neuroimage. 2013) 
https://team.inria.fr/asclepios/software/lcclogdemons/ 
 

 3D myocardium strain / incompressible deformations (Mansi MICCAI’10) 
 

 Hierarchichal multiscale polyaffine log-demons (Seiler, Media 2012) 
http://www.stanford.edu/~cseiler/software.html 
[MICCAI 2011 Young Scientist award] 
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 Medical image processing and visualization software  
 Open-source, BSD license 
 Extensible via plugins 
 Provides high-level algorithms to end-users  
 Ergonomic and reactive user interface 

                                http://med.inria.fr  
INRIA teams involved: Asclepios, Athena, Parietal, Visages  

 Available registration algorithms : 
 Diffeomorphic Demons 
 Incompressible Log Demons 
 LCC Log Demons 
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http://med.inria.fr/

