Hierarchical Geodesic Models of Longitudinal Shape

Tom Fletcher, Prasanna Muralidharan, Nikhil Singh

School of Computing Scientific Computing and Imaging Institute University of Utah

September 18, 2014

Longitudinal Shape Analysis

Goal: Understand how individuals change over time.

Subject 1

Subject 2

Subject 3

OASIS data: 72 healthy subjects 64 dementia subjects 2-5 images ~1 year apart

 t_1 t_2 time points http://wwww.oasis-brains.org

Linear Mixed-Effects Models

Data matrices: X_i, Z_i , typically with Z_i a subset of X_i

Fixed Effects (β): coefficients shared by all individuals **Random Effects** (b_i): perturbation of *i*th individual

Laird and Ware, Biometrics, 1982

Linear Mixed-Effects Models

Data matrices: X_i, Z_i , typically with Z_i a subset of X_i

Fixed Effects (β): coefficients shared by all individuals **Random Effects** (b_i): perturbation of *i*th individual

Estimation by EM algorithm (b_i are latent variables)

Laird and Ware, Biometrics, 1982

Fitting Linear Mixed-Effects Models in R

Scalar Data Example:

- Dependent variable: Right hippocampal volume
- Fixed effects: intercept, age slope, group effect
- Random effects: intercept

> lmeExample = lme(RightHippoVol ~ Age * Group, + random = ~1 | ID, data = ldat)

OASIS Longitudinal Hippocampus Data

Age

5000 Nondemented Demented 4000 RightHippoVol 3000 2000 70 60 80 90

OASIS Longitudinal Hippocampus Data

Age

Shape Representations

Structure Boundaries (Kendall's Shape Space)

Image Deformations (Diffeomporphisms)

 $I(x) \rightarrow I \circ \phi^{-1}(x)$

Shape Representations

Structure Boundaries (Kendall's Shape Space)

Image Deformations (Diffeomporphisms)

In both cases, data live on a **high-dimensional**, **nonlinear manifold**.

Given:

Manifold data: $y_i \in M$ Scalar data: $x_i \in \mathbb{R}$

Want:

Relationship $f : \mathbb{R} \to M$ "how *x* explains *y*"

Given:

Manifold data: $y_i \in M$ Scalar data: $x_i \in \mathbb{R}$

Want:

Relationship $f : \mathbb{R} \to M$ "how *x* explains *y*"

Given:

Manifold data: $y_i \in M$ Scalar data: $x_i \in \mathbb{R}$

Want:

Relationship $f : \mathbb{R} \to M$ "how *x* explains *y*"

Given:

Manifold data: $y_i \in M$ Scalar data: $x_i \in \mathbb{R}$

Want:

Relationship $f : \mathbb{R} \to M$ "how *x* explains *y*"

$$\hat{f} = \arg\min_{f} \sum_{i=1}^{N} d(f(x_i), y_i)^2$$

This is a least squares problem.

Geodesic Regression

- Generalization of linear regression.
- Least-squares fitting of geodesic to the data (x_i, y_i) .

$$(\hat{p}, \hat{v}) = \arg\min_{(p,v)\in TM} \sum_{i=1}^{N} d\left(\operatorname{Exp}(p, x_i v), y_i\right)^2$$

Fletcher, MFCA 2011, IJCV 2013; Niethammer et al., MICCAI 2011

Hierarchical Geodesic Models for Longitudinal Data

- Group Level: Average geodesic trend (α, β)
- Individual Level: Trajectory for *i*th subject (p_i, u_i)

Muralidharan et al., CVPR 2012; Singh et al., IPMI 2013

Comparing Geodesics: Sasaki Metrics

What is the distance between two geodesic trends?

Define distance between initial conditions:

 $d_{S}((p_{1}, u_{1}), (p_{2}, u_{2}))$

Sasaki geodesic on tangent bundle of the sphere.

Hierarchical Model Using The Sasaki Metric

$$y_{ij} = \operatorname{Exp}(\operatorname{Exp}(p_i, x_{ij}u_i), \epsilon_{ij})$$
 Individual Level
 $(p_i, u_i) = \operatorname{Exp}_S((\alpha, \beta), (v_i, w_i))$ Group Level

where Exp is the exponential map on M and Exp_S is the exponential map on the tangent bundle TM, with respect to the Sasaki metric on TM.

Hierarchical Model Using The Sasaki Metric

$$y_{ij} = \operatorname{Exp}(\operatorname{Exp}(p_i, x_{ij}u_i), \epsilon_{ij})$$
 Individual Level
 $(p_i, u_i) = \operatorname{Exp}_S((\alpha, \beta), (v_i, w_i))$ Group Level

where Exp is the exponential map on M and Exp_S is the exponential map on the tangent bundle TM, with respect to the Sasaki metric on TM.

This is feasible for finite-dimensional manifolds.

Hierarchical Model Using The Sasaki Metric

$$y_{ij} = \operatorname{Exp}(\operatorname{Exp}(p_i, x_{ij}u_i), \epsilon_{ij})$$
 Individual Level
 $(p_i, u_i) = \operatorname{Exp}_S((\alpha, \beta), (v_i, w_i))$ Group Level

where Exp is the exponential map on M and Exp_S is the exponential map on the tangent bundle TM, with respect to the Sasaki metric on TM.

- This is feasible for finite-dimensional manifolds.
- **Diffeomorphisms**, not so much.

Results on Longitudinal Corpus Callosum

Permutation Test:

Variable	T^2	p-value
Intercept α	0.734	0.248
Slope β	0.887	0.027

Demented Trend

HGM for Diffeomorphisms

- Individual level: N geodesic regression problems
- Group level: One group geodesic, I(0), m(0)

Comparing Geodesics for Diffeomorphisms

Group level geodesic parameterization

- Intercept: Image: I
- Slope: Initial momenta field: m = Lv

Comparing Geodesics for Diffeomorphisms

Group level geodesic parameterization

Intercept: Image: I

¢

• Slope: Initial momenta field: m = Lv

Transforming intercepts and slope

- Group action on image: $\phi \cdot I = I \circ \phi^{-1}$
- Group action on momenta:

$$p \cdot m(0) = \underbrace{\operatorname{Ad}_{\phi^{-1}}^* m(0)}_{\operatorname{Co-adjoint transport}}$$

Group Level Optimization Problem

Distance metric for group $\mathcal{E}(m(0), I(0), p_i(0)) = -\frac{1}{2} ||m(0)||_K^2$ Intercept match $+ \frac{1}{2\sigma_I^2} \sum_{i=1}^{+} (\|p_i(0)\|_K^2 + \|\rho_i \cdot \psi(t_i) \cdot I(0) - J_i\|_{L^2}^2)$ Slope match $+\frac{1}{2\sigma_{\mathcal{S}}^2}\sum_{i=1}^n \|\rho_i\cdot\psi(t_i)\cdot m(0)-n_i\|_K^2.$

Longitudinal Diffeomorphism Results

