A Novel Tensor GSVD Predicting Ovarian Serous Cystadenocarcinoma Survival and Response to Platinum-Based Chemotherapy

Theodore E. Schomay,1,2 Katherine A. Aiello,1,2 and Orly Alter1,2,3,4

1Scientific Computing and Imaging Institute, Departments of 2Bioengineering and 3Human Genetics, and 4Huntsman Cancer Institute University of Utah, Salt Lake City, UT

Introduction

The number of large-scale high-dimensional datasets recording different aspects of a single disease is growing, accompanied by a need for frameworks that can create one coherent model from multiple tensors of matched columns, e.g., patients and platforms, but independent rows, e.g., probes [1-3].

Mathematical Framework: Tensor GSVD

We define and prove the mathematical properties of a novel tensor generalized singular value decomposition (GSVD), which can simultaneously find the similarities and dissimilarities, i.e., patterns of varying relative significance, between any two such tensors [4,5].

\[
\mathcal{D}_n = \mathcal{R}_n \times U \times V_n \times V_n^T
\]

We demonstrated the tensor GSVD in comparative modeling of patient- and platform-matched but probe-independent ovarian serous cystadenocarcinoma (OV) tumor, mostly high-grade, and normal DNA copy-number profiles, across each chromosome arm, and combination of two arms, separately. The modeling uncovered previously unrecognized patterns of tumor-exclusive platform-consistent co-occurring copy-number alterations (CNAs) [6].

Biological Results

We found, first, and validated that each of the patterns across only 7p and Xq, and the combination of 6p+12p, is correlated with a patient’s prognosis, is independent of the tumor’s stage, and together with stage makes a better prediction. Stage alone does not provide significant information to predict a patient’s survival and response to platinum beyond the time of initial diagnosis, and throughout the disease, even in patients experiencing complete remission after the treatment of the primary tumor, and independent of the time interval to tumor recurrence or progression [7]. For >30 years prior, the best predictor of OV survival at the time of initial diagnosis was the tumor’s stage. About 25% of primary OV tumors are resistant to platinum therapy, the first-line treatment, yet no diagnostic existed to distinguish resistant from sensitive tumors before the treatment.

Second, these patterns include most known OV-associated CNAs that map to these chromosome arms, as well as several previously unreported, yet frequent focal CNAs. Third, differential mRNA, microRNA, and protein expression consistently map to the DNA CNAs. A coherent picture emerges for each pattern, suggesting roles for the CNAs in OV pathogenesis and personalized therapy. In 6p+12p, deletion of the p21-encoding CDKN1A and p38-encoding MAPK14 and amplification of RAD51P1 and KRAS encode for human cell transformation, and are correlated with a cell’s immortality, and a patient’s shorter survival time. In 7p, RPA3 deletion and POL2 amplification are correlated with DNA stability, and a longer survival. In Xq, PABP5C deletion and BCA3P1 amplification are correlated with a cellular immune response, and a longer survival.

References


This research was supported by National Cancer Institute (NCI) U01 Grant CA023114; http://prez.is/cancer研究院/UniversityofUtah.aspx; and the Utah Science, Technology, and Research (USTAR) Initiative (to O.A.).