Quantitative Analysis of Femoral Cortical Bone Thickness using Shape Analysis

Praful Agrawal1, Shireen Y. Elhabian1, Penny Atkins1,2, Ross T. Whitaker1,4, Jeff Weiss1,2,4, and Andrew E. Anderson1,4

1Department of Bioengineering, 2Orthopaedics, and 3Physical Therapy; 4Scientific Computing and Imaging Institute, University of Utah

Hip Osteoarthritis
• Cortical bone contributes to the majority of load bearing within the hip.
• Understand how cortical thickness is distributed over femoral head in controls and cam FAI patients.
• Group differences indicate increased growth in anterosuperior and anterolateral regions of the head-neck junction due to location of cam lesion.

Data: Segmented femurs – controls (45), CAM-FAI (28)

Challenges in Surgical Solution
Surgical debridement to shave off cortical bone
• How ‘much’ to shave off and ‘from where’?
• Can we quantify variation of thickness in femoral head?

Approach
Segmentation and Surface Reconstruction

Generate Distance Transforms
Reflect and Align Surfaces
Transform Cutting Planes
Generate Correspondence Model
Generate Feature Volumes
Warp Mean Shape to Each Subject
Generate Mean Shapes

Thickness Analysis

Generate Mean Shapes

Challenges in Surgical Solution
Surgical debridement to shave off cortical bone
• How ‘much’ to shave off and ‘from where’?
• Can we quantify variation of thickness in femoral head?

Results
• Quantify the variability in femur bone and what are dominant modes of shape variability?
• Does cortical thickness vary between two groups – CAM and Control, if yes, what is/are the region(s) of interest?

Fig: Vectorial representation of the location of maximum cortical bone thickness plotted relative to the mean shape of the control group.

Fig: Variation of plus (blue) and minus (red) two standard deviations of significant PCA modes from mean shape.

Fig: Linear discriminant analysis of variation between mean CAM and mean Control shapes using correspondence model.

Fig: Analysis of groupwise means, (A) Shape differences, (B-C) Difference in mean cortical thickness with emphasis over region of interest.


NIH/NCRR Center for Integrative Biomedical Computing, P41-RR12553-10. NIH R01-EB01670, NIGMS & P41 GM103545-15 from NIH, and LS Peery Discovery Program in Musculoskeletal Restoration.