Silicon offers a theoretical **10x Improvement** in charge capacity over traditional lithium ion battery materials.

<table>
<thead>
<tr>
<th>Anode Material</th>
<th>Theoretical Charge Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphite</td>
<td>350 mAhg⁻¹</td>
</tr>
<tr>
<td>Silicon</td>
<td>3500 mAhg⁻¹</td>
</tr>
</tbody>
</table>

Can we use computer simulations to predict the Behavior of a silicon anode undergoing the lithiation process?

Issues Associated With Silicon

- **280% Expansion at Full Lithiation**
- **Cracking after Multiple Lithiation/Delithiation Cycles**

Electrostatics

Chemical Diffusion

Mechanical Deformation

The material point method and the finite volume method are used to model the three different physical processes of electrostatics, chemical diffusion, and mechanical deformation.

Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-12-2-0023. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government.