Generalized Data Depth and Applications

Mukund Raj, Mahsa Mirzargar, Robert M. Kirby and Ross T. Whitaker

MOTIVATION

- Ensembles of data objects are common in many areas.
- Parametric methods of analysis require prior knowledge of the underlying distribution.
- Data depth is a nonparametric approach for characterizing ensembles.

DATA DEPTH BACKGROUND

- Salient Features of Data Depth:
 - Nonparametric
 - Robust
 - Descriptive Statistical Method
 - Derived order statistics can be used for visualization based on the classical boxplot.
- Data Depth Formulations for Multivariate Points:
 - Simplicial depth
 - Location depth
 - And many others..
- Data Depth Formulations for Complex Data:
 - Functions [1] and multivariate curves [3,4]
 - Sets and Isocontours [2]
- Definition of Band for Paths on a Graph
 Let graph \(G = (V, E, W) \) be a set of vertices, edges and weights on edges. We denote a path \(p \) as \(p : I \rightarrow V \) over an index set \(I = \{1, 2, \ldots, m\} \).
 The convex hull of a set of \(j \) vertices \(V_j \) is the smallest geodesic-convex set that contains \(V_j \) and is denoted as \(\text{Hull}(V_j) \).
 Then, band formed by \(j \) paths is defined as follows:
 \[
 p \in B[j] \quad \text{iff} \quad p(i) \in \text{Hull}(V_{p(i)}), \ldots, p(j) \quad \forall i \in I.
 \]
- Path Band Depth (pBD) for Paths on a Graph
 pBD for a path \(p \) is defined as follows:
 \[
 \text{pBD}(p) = E \left[x \left(p \in B[p] \right) \right]
 \]

EVALUATING ALIGNMENT OF SHAPES

- Evaluating alignment of shapes is important in many areas.
- Ensemble visualization through contour boxplot [2] can be an effective method to evaluate alignment of shapes.

CONTRIBUTIONS

- Generalization of contour boxplot method for 3D shapes.
- Application of contour boxplot to evaluate alignment of shapes.
- Formulation of method to calculate data depth for paths on a graph and corresponding path boxplot visualization scheme.

REFERENCES

- [1] Pintado et al. JASA 2009

ACKNOWLEDGEMENTS

This work was supported by NSF grant IIS-1212806.