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Uintah Framework Hybrid Task-based Parallelism Algorithm 

The Uintah Computational Framework (UCF) is a software 
framework that provides an environment for solving fluid-
structure interaction problems on structured adaptive grids on 
large-scale science and engineering problems involving the 
solution of partial differential equations. 
 
Uintah Applications: 
• Explosions 
• Plume Fires 
• Industrial Flares 
• Shape Charges 
• Virtual Soldier 
• CPU Mircopin Flow 
• Foam Compaction 
• Angiogenesis 
• Sandstone Compaction 

 
Uintah uses a combination of fluid-flow solvers and particle-
based methods for solids, together with adaptive meshing and 
a novel asynchronous task-based approach with fully 
automated load balancing.  

Introduction 

Challenges 

• Simulation component defines computational 
tasks on a generic grid patch. 

• Task  defines the variables that are required and 
computed on this generic patch and its ghost cells.  

• Framework creates task instances on the patches 
of a continually adapting grid and then maps on to 
the parallel machine. 

• Tasks on local patches are compiled to form a 
DAG(Task Graph). 

• Uintah scheduler uses the task graph to determine 
the order of execution and perform MPI.  

• Data warehouse is dictionary-based data structure 
which manages all task variables and MPI 
buffers. 

 

Runtime  System 
Reducing Particle Relocation 
Communication Costs 
• Move particles to new 

patches after each timestep 
• Cross patch boundary: just 

re-indexing 
• Cross processor boundary: 

MPI scatter record 
(expensive!)  

• Thread/MPI: Fewer 
particles cross processor 
boundary 

 

Improvements Results 
With fully distributed hybrid MPI/thread scheduler and 
lock-free data warehouse, Uintah can successfully scale up 
to 256K cores with 95% weak scaling efficiency and 68% 
strong scaling efficiency. 
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Solve complex fluid structure interaction problems on 
parallel computers. 
• Full physics - strong coupling between the fluid and 

solid phases with a full Navier-Stokes representation of 
fluid phase materials and the transient, nonlinear 
response of solid phase materials include chemical or 
phase transformation between the solid and fluid phases 

• Multi-material - each material is given a continuum 
description and is defined over the complete 
computational domain. 

With original MPI only approach, Uintah can successfully 
scale up to 98K. 
• Adaptive Mesh Refinement Algorithms 
• Measurement-based Load Balancing  
• Out-of-order Task Execution 
• Data Migration  
Poor weak scaling  
efficiency – 
23% at 98K cores. 
• Hard to load balance 
• High communication 
     cost  
 
Solution 
Hybrid MPI/threads approach: Re-design Runtime System  

Uintah uses directed acyclic graph (DAG) based 
asynchronous-task work queue model. 
 

Compile 
 

Task graph 
 

Tasks on a 
generic patch 
 

Hybrid MPI/threads Task Scheduler 
• De-centralized model (Fully distributed) 
• All threads directly pull tasks from task queue 
• All threads process MPI sends/receives 
• Thread-safe data warehouse 
 

Load Balancing Improvements 
• Enable work stealing: all tasks in the same node can 

be executed by any idle cores on that node 
• Larger workload region: more patches on each node, 

easier to make them even  
• The average load imbalance value was reduced from  

60% to 25% 
 

 Using Lock-free Data Structures 
• Overhead of  de-centralized scheduler: pthread 

read/write locking cost on shared data 
• Using atomic instruction set 
• Variable reference counting: fetch_and_add, 

fetch_and_sub  
• Redesign data warehouse variable container 
• Allow multiple threads update without waiting 
• Add variable: compare_and_swap  
• Reduce variable: test_and_set 
 
Speed up 2.4X vs MPI only 
 

Weak scaling efficiency comparison with new hybrid 
scheduler and old MPI only scheduler. 
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