
Qingyu Meng and Martin Berzins. Scientific Computing and Imaging Institute, University of Utah

Uintah Framework Hybrid Task-based Parallelism Algorithm

The Uintah Computational Framework (UCF) is a software
framework that provides an environment for solving fluid-
structure interaction problems on structured adaptive grids on
large-scale science and engineering problems involving the
solution of partial differential equations.

Uintah Applications:
• Explosions
• Plume Fires
• Industrial Flares
• Shape Charges
• Virtual Soldier
• CPU Mircopin Flow
• Foam Compaction
• Angiogenesis
• Sandstone Compaction

Uintah uses a combination of fluid-flow solvers and particle-
based methods for solids, together with adaptive meshing and
a novel asynchronous task-based approach with fully
automated load balancing.

Introduction

Challenges

• Simulation component defines computational
tasks on a generic grid patch.

• Task defines the variables that are required and
computed on this generic patch and its ghost cells.

• Framework creates task instances on the patches
of a continually adapting grid and then maps on to
the parallel machine.

• Tasks on local patches are compiled to form a
DAG(Task Graph).

• Uintah scheduler uses the task graph to determine
the order of execution and perform MPI.

• Data warehouse is dictionary-based data structure
which manages all task variables and MPI
buffers.

Runtime System
Reducing Particle Relocation
Communication Costs
• Move particles to new

patches after each timestep
• Cross patch boundary: just

re-indexing
• Cross processor boundary:

MPI scatter record
(expensive!)

• Thread/MPI: Fewer
particles cross processor
boundary

Improvements Results
With fully distributed hybrid MPI/thread scheduler and
lock-free data warehouse, Uintah can successfully scale up
to 256K cores with 95% weak scaling efficiency and 68%
strong scaling efficiency.

References
1. Qingyu Meng, Justin Luitjens and Martin Berzins. “Dynamic task

scheduling for the Uintah framework.” In Proceedings of Many-Task
Computing on Grids and Supercomputers (MTAGS), 2010 IEEE

2. Qingyu Meng, Martin Berzins, and John Schmidt. “Using hybrid
parallelism to improve memory use in the Uintah framework.” In
Proceedings of the 2011 TeraGrid Conference, 2011 ACM

3. Qingyu Meng and Martin Berzins. “Scalable Large-scale Fluid-structure
Interaction Solvers in the Uintah Framework via Hybrid Task-based
Parallelism Algorithms.” Submitted to Concurrency and Computation:
Practice and Experience.

Acknowledgement
This work was supported by the National Science Foundation under
subcontracts No. OCI0721659, the NSF OCI PetaApps program, through
award OCI0905068 and by DOE INCITE award CMB015 for time on Jaguar.

Solve complex fluid structure interaction problems on
parallel computers.
• Full physics - strong coupling between the fluid and

solid phases with a full Navier-Stokes representation of
fluid phase materials and the transient, nonlinear
response of solid phase materials include chemical or
phase transformation between the solid and fluid phases

• Multi-material - each material is given a continuum
description and is defined over the complete
computational domain.

With original MPI only approach, Uintah can successfully
scale up to 98K.
• Adaptive Mesh Refinement Algorithms
• Measurement-based Load Balancing
• Out-of-order Task Execution
• Data Migration
Poor weak scaling
efficiency –
23% at 98K cores.
• Hard to load balance
• High communication
 cost

Solution
Hybrid MPI/threads approach: Re-design Runtime System

Uintah uses directed acyclic graph (DAG) based
asynchronous-task work queue model.

Compile

Task graph

Tasks on a
generic patch

Hybrid MPI/threads Task Scheduler
• De-centralized model (Fully distributed)
• All threads directly pull tasks from task queue
• All threads process MPI sends/receives
• Thread-safe data warehouse

Load Balancing Improvements
• Enable work stealing: all tasks in the same node can

be executed by any idle cores on that node
• Larger workload region: more patches on each node,

easier to make them even
• The average load imbalance value was reduced from

60% to 25%

 Using Lock-free Data Structures
• Overhead of de-centralized scheduler: pthread

read/write locking cost on shared data
• Using atomic instruction set
• Variable reference counting: fetch_and_add,

fetch_and_sub
• Redesign data warehouse variable container
• Allow multiple threads update without waiting
• Add variable: compare_and_swap
• Reduce variable: test_and_set

Speed up 2.4X vs MPI only

Weak scaling efficiency comparison with new hybrid
scheduler and old MPI only scheduler.

	Slide Number 1

