The Mutual Information Diagram for Uncertainty Visualization

Carlos D. Correa and Peter Lindstrom

Center for Applied Scientific Computing - CASC
Lawrence Livermore National Lab

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Visualization should help compare models with observations

Average annual temperature 1900-2000 as predicted by various climate models.

Which model is more similar to a reference model or observations?

Trend plots often do not expose these aspects.
Visualization should help find correlations of similar outputs – important for uncertainty quantification

Divide ensembles in 6 latitude zones and 3 temporal averages
• Are there correlations across seasons or latitudes?
• Are there large discrepancies in the different outputs?
Visualization should help find correlations of similar outputs – important for uncertainty quantification.

Find correlation between \((6+1) \times 3 = 21\) variables.

A scatterplot matrix becomes impractical for many outputs.
Visualization should help find correlations of similar outputs – important for uncertainty quantification.

A parallel coordinate visualization is more **practical**
But only certain **pairwise comparisons** are possible.
Visual Summaries

- Represent directly summary quantities, e.g., mean, standard deviation, entropy.

- Box-plots and their many variants

- One plot per ensemble may result in clutter

- Visualizing several statistics simultaneously in a metric space: Taylor diagram
The Taylor Diagram

Simultaneously plots
Standard deviation,
Root Mean Square Error and
Correlation R.

$$ RMS^2 = \sigma_X^2 + \sigma_Y^2 - 2\sigma_X \sigma_Y R_{XY} $$

$$ c^2 = a^2 + b^2 - 2ab \cos \theta $$
Applications of the Taylor Diagram

Taylor, 2005
(Taylor Diagram Primer)
Anscombe’s Trio

Variables B, C, D: **same** standard deviation and **same** correlation w.r.t. A

Information Theory to the Rescue!
Information Theory Primer

- **Entropy** $H(X)$
 - Measure of information uncertainty of X

- **Joint Entropy** $H(X,Y)$
 - Uncertainty of X,Y

- **Conditional Entropy** $H(X|Y)$
 - Uncertainty of X given that I know Y

- **Mutual Information** $I(X;Y)$
 - How much knowing X reduces the uncertainty of Y

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$
Variation of Information \[VL = H(X | Y) + H(Y | X) \]

- **\(VL = 0 \)**:
 - \(H(X, Y) = H(X) = H(Y) = I(X; Y) \)
 - \(X \) and \(Y \) are the same

- **\(VL < H(X; Y) \)**:
 - \(H(X, Y) < H(X) + H(Y) \)
 - \(X \) and \(Y \) are different but dependent

- **\(VL = H(X; Y) \)**:
 - \(H(X, Y) = H(X) + H(Y) \)
 - \(I(X; Y) = 0 \)
 - \(X \) and \(Y \) are independent
The Variation of Information VI: a measure of distance in information theory

\[V I(X,Y) = H(X) + H(Y) - 2I(X;Y) \]

\[RV I = \sqrt{VI} \quad h_X = \sqrt{H(X)} \quad h_Y = \sqrt{H(Y)} \]

\[RV I(X,Y)^2 = h_X^2 + h_Y^2 - 2I(X;Y) \]

\[RV I(X,Y)^2 = h_X^2 + h_Y^2 - 2h_Xh_Y \frac{I(X;Y)}{h_Xh_Y} \]
The Variation of Information VI: a measure of distance in information theory

\[VI(X, Y) = H(X) + H(Y) - 2I(X; Y) \]

\[RV1 = \sqrt{VI} \]

\[h_X = \sqrt{H(X)} \]

\[h_Y = \sqrt{H(Y)} \]

\[RV1(X, Y)^2 = h_X^2 + h_Y^2 - 2I(X; Y) \]

\[RV1(X, Y)^2 = h_X^2 + h_Y^2 - 2h_X h_Y \frac{I(X; Y)}{h_X h_Y} \]

\[c^2 = a^2 + b^2 - 2ab \cos \theta \]
RVI Diagram

Diagram showing the relationship between correlation, standard deviation, RMS, and entropy.

Equivalences

Statistics \iff Information Theory

- $\text{RMS}(X,Y) \iff \text{RVI} \sqrt{\text{VI}(X,Y)}$
- Variance $\sigma^2_X \iff \text{entropy} \ H(X)$
- Covariance $\text{cov}(X,Y) \iff \text{mutual information} \ I(X;Y)$
- Correlation $R_{XY} = \frac{\text{cov}(X,Y)}{\sqrt{\sigma^2_X \sigma^2_Y}} \iff NMI_{XY} = \frac{I(X;Y)}{\sqrt{H(X)H(Y)}}$

Diagram:

- σ_X, σ_Y, RMS, $\text{acos}(R_{XY})$
- h_X, h_Y, RV_I, $\text{acos}(\text{NMI})$
\[VI(X,Y)^2 = H(X)^2 + H(Y)^2 - 2H(X)H(Y)c_{XY} \]
Experiment of 2D distributions with outliers

Beta (clean)

add outliers

Beta (outliers)

2D histogram

uniform

binomial
MI diagram is more resilient to outliers

Outliers have a significant impact on correlation

The information in both the “clean” and “dirty” distributions is essentially the same.
Computing Entropy and Mutual Information may require estimation of underlying probability functions.

Although there are differences, relative distances are consistent for each choice of kernel.
Uncertainty Quantification in Climate Simulations

Precipitation average
7 Zonal averages (color)
3 Temporal averages (shape)
3 different ensemble sets (size)
Intercomparison Studies
Annual mean temperature 1900-2000
Intercomparison Studies
Annual mean temperature 1900-2000

Temperature vs Year

Correlation vs Standard Deviation

Normalized Mutual Information vs Entropy
MID applies to discrete data: useful when comparing Clustering Results

- Summarize study in clustering [Filippone et al. 2009]
- 8 different methods
- 4 classification problems
Concluding Remarks

• Taylor diagram:
 – easy to compute.
 – Well understood in geophysical sciences, climate.

• MI diagram:
 – Counterpart using information theory.
 – requires an estimation step that may introduce additional uncertainties.
 – extends nicely to categorical data, multi-variate distributions.
 – exposes non-linearities, difficult to see via (linear) correlation.

• More informed decisions when combining both diagrams.
Thanks!

Questions?