
Defibrillation tutorial

SCIRun 4.6 Documentation

Center for Integrative Biomedical Computing
Scientific Computing & Imaging Institute

University of Utah

SCIRun software download:

http://software.sci.utah.edu

Center for Integrative Biomedical Computing:

http://www.sci.utah.edu/cibc

This project was supported by grants from the National Center for Research Resources
(5P41RR012553-14) and the National Institute of General Medical Sciences

(8 P41 GM103545-14) from the National Institutes of Health.

Author(s):
Michael Steffen, Jess Tate, Jeroen Stinstra

Contents

1 Overview 3
1.1 Defibrillation Model . 3
1.2 Software requirements . 4

1.2.1 SCIRun Compatibility . 4
1.2.2 Required Datasets . 4

2 Finite Element Modeling 5

3 Finite Element Simulation on a Cube 7
3.1 Building a Hexahedral Mesh . 7
3.2 Creating Plate Electrode Geometry . 8
3.3 Building and Solving the Finite Element Simulation 11
3.4 Adding a Floating Lead . 15

4 Placing Electrodes 19
4.1 Loading The Dataset . 19
4.2 Visualizing Extra Geometry . 19
4.3 Adding a Can Electrode . 21
4.4 Adding a Wire Electrode . 23
4.5 Adding a Planar Electrode . 25
4.6 Writing Electrodes to a Bundle . 25

5 Finite Element Simulation on a Torso 29
5.1 Building and Viewing the Finite Element Mesh 29
5.2 Completing an Initial Two-Electrode Simulation 30
5.3 Refining the Mesh . 34
5.4 Adding a Floating Lead . 35

2

Chapter 1

Overview

This tutorial demonstrates several tools within SCIRun for building models and solving simulations
using imaging data. It describes a pipeline using both preprocessed images and user generated geo-
metric fields to create a computational mesh and adapt the mesh for our computational requirements.
It then continues to setup a finite element simulation and demonstrate the visualization of results.

This tutorial assumes basic knowledge of SCIRun: placing modules into a SCIRun network, con-
necting modules, visualizing data, etc. If the reader is not familiar with these operations, consult the
Basic Tutorial, also distributed in the SCIRun documentation.

1.1 Defibrillation Model

This tutorial describes the tools and steps required to solve quasi-static volume conductor
problems with the inclusion of electrodes and their known potentials. The problem will
be solved on two separate domains. The first domain, a homogeneous cube, is used to
demonstrate the basic techniques required to solve this type of problem within SCIRun. No
external data is required and the plate electrodes are sized and placed interactively in the
view window. These techniques are then extended to an inhomogeneous model of the human
torso using a can, wire, and plate electrodes. Again, these electrodes are interactively placed
within the torso.

The torso model is based on a series of cross-sectional MRI scans that has been hand-
segmented into regions with various conductivities. These regions include the heart (ven-
tricles and atria), blood, bone, lung, liver, kidney, fat, muscle, bowel gas, connective tissues
and other.

The steady state electrical potential in an inhomogeneous volume conductor is described
by the equation

∇ · (σ∇Φ) = 0, (1.1)

where σ is a conductivity tensor field and Φ is the electric potential. Our goal is to solve the
above equation, given a mesh, a set of known conductivities, and a set of known potentials
corresponding to electrode locations.

We will impart Dirichlet boundary conditions anywhere the electric potential is known
and Neumann boundary conditions on the surface of the object being simulated. Dirichlet
boundary conditions imply

Φ(x, y, z)|Ω̄k
= Vk (1.2)

CHAPTER 1. OVERVIEW 3

where Vk is the known potential of electrode k, and Ω̄k specifies the domain coincident with
electrode k. Neumann boundary conditions imply that

∂Φ
∂n

∣∣∣∣
Ω̄

= 0 (1.3)

on areas of the boundary not coincident with any Ω̄i.
The finite element method will be employed to solve the above equation on meshes

corresponding to our simulation domains. A brief explanation of the finite element method
is provided in Chapter 2.

The remainder of the tutorial is split into three main sections:

1. Generating and solving a defibrillation like simulation on a cube domain.

2. Generating a SCIRun network which will aid the user in placement of various elec-
trodes within a torso.

3. Solving the defibrillation simulation on the full human torso.

As a final note, the exact placements of electrodes within the following tutorial are not
meant to represent realistic scenarios. The major consideration for placement here was to
create simulations with attractive visualizations which help with a clearer understanding of
the simulation results.

1.2 Software requirements

1.2.1 SCIRun Compatibility

The modules demonstrated in this tutorial are available in SCIRun version 4.2 and higher
and this tutorial is not compatible with any older version of SCIRun. Also be sure to
update your SCIRun version to the latest built available from the SCI software portal
(http://software.sci.utah.edu), which will include the latest bug fixes and will make sure
that the capabilities demonstrated in this tutorial are up to date.

1.2.2 Required Datasets

This tutorial relies on several datasets that are part of the SCIRunData bundle. To obtain
these datasets, please go to the SCI software portal at http://software.sci.utah.edu, then
hit Download SCIRun and instead of the SCIRun source or binary files, download the
SCIRunData zip files. Note the latter is available as a Windows zip file or as a Linux gzip
file. Both however contain the same datasets and only one of them has to be downloaded.

4 Chapter 1

Chapter 2

Finite Element Modeling

As was previously stated, the steady state electrical potential in an inhomogeneous volume
conductor is described by the equation

∇ · (σ∇Φ) = 0, . (2.1)

and again, the boundary conditions are given by:

Φ(x, y, z)|Ωk
= Vk (2.2)

∂Φ
∂n

∣∣∣∣
Ω

= 0. (2.3)

The finite element approximation beings by assuming our approximate solution takes
the form

Φ̄(x, y, z) =
∑

i

ΦiNi(x, y, z), (2.4)

where {Ni} are a set of basis functions and {Φi} are a set of unknown coefficients. For
the typical linear shape functions, Ni and Φi can be thought of as the shape function and
coefficient associated with each grid node i.

The Galerkin method for solving the above equation begins by substituting our approx-
imate solution Φ̄ for Φ in (2.1). This gives us

∇ · (σ∇
∑

i

ΦiNi) = 0. (2.5)

This is the so called “strong form” of the equation. The weak form comes by integrating
both sides of (2.5) against a “trial function” (in this case we will use Nj as a trial function,
chosen from the same set of basis functions as above. This leaves us with∫

Ω
∇ · (σ∇

∑
i

ΦiNi)Nj dV =
∫

Ω
0 ·Nj dV. (2.6)

Integration by parts and further simplification yields, which satisfies∑
i

Φi

∫
Ω−Ω̄−Ω̄k

σ∇Ni∇Nj dV = 0. (2.7)

CHAPTER 2. FINITE ELEMENT MODELING 5

This equation automatically satisfies the Neumann boundary conditions above. The
solution to (2.7) can be written as the matrix equation:

KΦ = 0 (2.8)

where Kij =
∫

σ∇Ni∇Nj dV is the stiffness matrix, and Φ = [Φ1, . . . , Φn]T is the vector of
unknown coefficients. After solving, (2.8), our approximate solution is found by substituting
our solution for {Φi} into (2.4).

Given a mesh and a set of conductivities, SCIRun has the capability to automatically
generate the stiffness matrix K in (2.8). Adding the known potential values corresponding
to the various electrodes is also a simple procedure. The remainder of this tutorial will show
how this type of simulation is performed within SCIRun.

6 Chapter 2

Chapter 3

Finite Element Simulation on a Cube

3.1 Building a Hexahedral Mesh

We start by building a hexahedral mesh of cube which will serve as our solution domain. To
accomplish this, create a SCIRun network like the one shown in Figure 3.1. The network
will consist of the CreateLatVol module connected to the CalculateFieldData module,
followed by the ShowField module, and lastly the ViewScene module.

Open the user interface to the CreateLatVol module and specify the number of nodes
to be 32x32x32 by typing those values into the “X Size”, “Y Size”, and “Z Size” fields. We
will be solving this problem with data located in the cells, rather than at the nodes, so chose
“Cells (constant basis)” in the “Data at Location” panel. Open the user interface to the
CalculateFieldData module, and set the expression to RESULT = 1.0; to set the entire
field to a value of 1.0. Click the “Execute All” button to run the networks and click the
“VIEW” button on the ViewScene module to view the results. You should see something
similar to the results shown in Figure 3.2. The images shown in this tutorial may not be the
default rendering view. Manual rotation using the center mouse button may be required for
your image to match those here.

Figure 3.1. Network to generate hexahedral mesh.

CHAPTER 3. FINITE ELEMENT SIMULATION ON A CUBE 7

Figure 3.2. Generated hexahedral mesh

Figure 3.3. Adding plate electrodes to the network.

3.2 Creating Plate Electrode Geometry

The next step in building our network is to add plate anodes and cathodes to the simulation.
The electrodes will be modeled as boxes, but this time we will use EditMeshBoundingBox
modules to allow the user to resize and reposition the electrodes interactively. Add another
CreateLatVol to the network, this time setting the “X Size”, “Y Size”, and “Z Size”
fields to 2. Connect this new module to two separate EditMeshBoundingBox modules,
one for the anode and one for the cathode. The EditMeshBoundingBox module will
output a new transformed field and an editable visualization widget. Connect the yellow
field output ports to ShowField modules, and connect the pink output ports of both
EditMeshBoundingBox modules and the new ShowField modules to the ViewScene
module. The modified network should look like that in Figure 3.3.

8 Chapter 3

Figure 3.4. Editing the ShowField modules for the electrodes.

Before viewing this new network, we want to edit the new ShowField modules to
distinguish the two electrodes. Open the first ShowField module, click on the “Faces” tab,
and check the “Enable Transparency” checkbox. Click on the “Default Color” button, and
change the color by adding red. Performing these same operations on the second ShowField
module, this time adding more green to the color. These operations are shown in Figure
3.4.

The network can now be viewed and the positions of the electrodes can be modified in
the view window by holding down the Shift key and using the left mouse button to either
grab the borders of the electrodes (shown as grey lines) and moving the box, or grab the
small cylinders on the box faces and resizing the box. Alternatively, the position and sizes
of the electrodes can be set manually in the EditMeshBoundingBox modules.

To manually set the electrode size, open the user interface to the first EditMeshBound-
ingBox, make sure the “Center” and “Size” check boxes are checked, and enter values for
the center position and size. The remainder of this tutorial will use center and size values of
(-1.0, 0.5, 0.5) and (0.2, 1.5, 1.5) for the first electrode and (1.0, -0.5, -0.5) and (0.2, 1.5, 1.5)
for the second electrode. An example of this operation is shown in Figure 3.5.

Finally, we can view the scene with all our required geometry, by clicking the “Execute
All” button and clicking “VIEW” on the ViewScene module. Results should be similar to
those in Figure 3.6.

CHAPTER 3. FINITE ELEMENT SIMULATION ON A CUBE 9

Figure 3.5. Editing the EditMeshBoundingBox modules for the electrodes.

Figure 3.6. Geometry for the problem, including a box simulation domain and two electrodes
(red and green).

10 Chapter 3

Figure 3.7. Setting potentials for the electrodes.

3.3 Building and Solving the Finite Element Simulation

Now that we have the geometry for our problem defined, we need to build our finite element
matrices, set our known values, and solve the simulation. To begin, connect a Calcu-
lateFieldData module between each of the EditMeshBoundingBox modules and their
respective ShowField modules. Open the first CalculateFieldData module and set the
expression to RESULT = 0;. The expression in the second CalculatFieldData module
should be set to RESULT = 700;. These are the known electric potentials assigned to the
two electrodes. The resulting network is shown in Figure 3.7.

Next, we want to map the assigned potentials as known values onto corresponding nodes
of the hexahedral mesh. This is accomplished by first joining the two electrode fields together
using the JoinFields module, connecting the yellow outputs of the electrodes’ Calculate-
FieldData modules to the first two inputs on the JoinFields module. Next, these values
are mapped onto nodes in the Hex mesh using the MapFieldDataOntoNodes module.
The output of the JoinFields module is connected to the first input of the MapField-
DataOntoNodes module while the output of the CalculateFieldData of the Hex mesh
is connected to the third input.

The linear system solver in SCIRun uses values of NaN (not a number) to specify un-
knowns in one of the input vectors, and our added MapFieldDataOntoNodes module
will also be used to set values in the mesh outside of the electrodes to NaN. To do this,
open the user interface for the module and set the “Default Outside Value” to nan and the
“Maximum Distance” to inf.

The values on the nodes now represent both the unknown (NaN) and known values of
our system. We our now ready to build our finite element linear system. To do so, add a
BuildFEMatrix module into the network, connecting the output of the Hex mesh Calcu-

CHAPTER 3. FINITE ELEMENT SIMULATION ON A CUBE 11

Figure 3.8. Network after adding AddKnownsToLinearSystem module.

lateFieldData module to the input of the BuildFEMatrix module. To specify the known
values, first connect the output of the MapFieldDataOntoNodes to a GetFieldData
module. Next, add a AddKnownsToLinearSystem module to the network, connecting
the BuildFEMatrx to the first input, and the output of the GetFieldData to the third
input. The current state of the network should look like Figure 3.8.

Continuing, we will solve the linear system, connecting the two outputs of the Add-
KnownsToLinearSystem to the two inputs of a new SolveLinearSystem module. The
first output of the solver will contain the solution values. We map this onto the mesh by
adding a SetFieldData module, connecting the outputs of the MapFieldDataOntoN-
odes and SolveLinearSystem modules to the first two inputs of the SetFieldData mod-
ule. To visualize the field, we connect the output of the SetFieldData into a new Show-
Field module and connect that ShowField module to our ViewScene module. To make
the visualization useful, we will create a color map by adding a CreateStandardCol-
orMaps and connecting the output to a RescaleColorMap module. The output of the
SetFieldData module is used as the second input to the RescaleColorMap module. And
lastly, the output of the RescaleColorMap module is used as the second input to the last
ShowField module. We now have a color mapped version of our Hex mesh as an input to
the ViewScene module, so be sure to delete the original input to the ViewScene mod-
ule coming from the Hex mesh visualization. The final piece of the network is shown in
Figure 3.9 and the expected output is shown in Figure 3.10.

Lastly, the visualization can be made more appealing by making a few changes to the
CreateStandardColorMaps module and the last ShowField module. First, open the
user interface to the last ShowField module and uncheck the “Show Nodes” and “Show
Edges” boxes on the “Nodes” and “Edges” tabs. This will result in a visualization only

12 Chapter 3

Figure 3.9. Final simulation network for the two electrode problem.

Figure 3.10. Results of the finite element simulation with two electrodes.

showing faces with a smooth gradient. Another effective change is to force the color map
to have less resolution. Open the CreateStandardColorMaps user interface and change
the “Resolution” slider to a setting of 25. This will result in a less smooth color mapping,
where the boundaries of the discrete colors act as contour lines of the solution on the surface
of the domain. These user interface changes are shown in Figure 3.11 and the new output
is shown in Figure 3.12.

As a reminder, the positions and sizes of the electrodes in the visualization are interac-
tively editable. The electrodes can be moved and the simulation will be rerun with the new
electrode geometry.

CHAPTER 3. FINITE ELEMENT SIMULATION ON A CUBE 13

Figure 3.11. Changing the ShowField and CreateStandardColorMaps settings for an
effective visualization.

Figure 3.12. Results of the finite element simulation with two electrodes after adjusting
view settings.

14 Chapter 3

Figure 3.13. Adding a floating lead to the problem geometry.

Figure 3.14. Simulation with added floating lead geometry.

3.4 Adding a Floating Lead

Of interest to some, is the addition of a floating lead into the simulation, i.e. an extra
conductor without a known potential. The procedure for doing so begins with adding
a third EditMeshBoundingBox module connected to a ShowField module, changing
the ShowField settings to enable transparency and setting the default color this time
to something blue. Connect the pink outputs of both the EditMeshBoundingBox and
ShowField modules to the ViewScene module. In the remainder of this tutorial, the third
EditMeshBoundingBox was set to have a center value of (0.3, 0.5, -0.5) and a size of
(0.5, 1.2, 1.2) in the user interface. The modified network is shown in Figure 3.13 and the
resulting visualization is shown in Figure 3.14. Note that the addition of this geometry has
not affected the solution.

CHAPTER 3. FINITE ELEMENT SIMULATION ON A CUBE 15

Figure 3.15. Network and user interface settings when adding the CalculateInsideWhich-
Field module.

Next, we need to know which of the nodes are inside this new conductor. To calculate
this, add a CalculateInsideWhichField module to the network, with the first input
coming from the first hex mesh CalculateFieldData output, and the second input coming
from the third EditMeshBoundingBox output. We again want nodes outside of the new
conductor to be set to NaN, and values inside set to 1.0. Open the user interface and set
the “Default outside value” to nan, the “Value assigned to first field” to 1.0, the “Datatype
of destination field” to float and the “Output data location” to node. The addition of this
module and the user interface settings are shown in Figure 3.15.

The effect of adding a conductor into the problem domain is that the solution will be con-
stant for all nodes inside the conductor. For this to happen, we need to modify the linear sys-
tem and “link” all the nodes inside the conductor to have the same solution value. To do this,
connect a GetFieldData module to the output of the CalculateInsideWhichField mod-
ule. Next, delete the connections between AddKnownsToLinearSystem and SolveLin-
earSystem and add a AddLinkedNodesToLinearSystem module between these two,
connecting the first two outputs of AddKnownsToLinearSystem to the first two inputs
of AddLinkedNodesToLinearSystem. Connect AddLinkedNodesToLinearSystem
and SolveLinearSystem in the same way. The third input for the AddLinkedNodesTo-
LinearSystem module comes from the output of the new GetFieldData module. Next,

16 Chapter 3

Figure 3.16. Completing the network with an added floating lead.

add an EvaluateLinAlgBinary module with the first input coming from the third out-
put of the AddLinkedNodesToLinearSystem module. Delete the output of SolveLin-
earSystem and connect it instead to the second input of EvaluateLinAlgBinary. The
output from EvaluateLinAlgBinary is now the second input for SetFieldData. This
completes the modifications to the simulation. The final modified network is shown in
Figure 3.16 and the simulation results are shown in Figure 3.17.

The fact that the solution field is constant inside the floating lead is difficult to see when
the floating lead is visible. Figure 3.18 shows a final visualization where the “Show Faces”
checkbox inside of the ShowField module corresponding the the floating lead is unchecked.
Now, the constant field is easy to discern.

CHAPTER 3. FINITE ELEMENT SIMULATION ON A CUBE 17

Figure 3.17. Simulation results with an added floating lead.

Figure 3.18. Simulation results with an added floating lead with the visualization of the
floating lead’s faces turned off.

18 Chapter 3

Chapter 4

Placing Electrodes

In the previous chapter, we learned how to run a finite element simulation on a cube with
two electrodes and a floating lead. In the remaining sections, we will perform a similar
calculation on a human torso using previously segmented torso data, a model of a can
electrode, a wire electrode, and a planar electrode.

4.1 Loading The Dataset

Start SCIRun and insert a ReadField module into the network. Open the user interface,
select “SCIRun Field File (*.fld)” from the “Files of type” drop-down menu, browse to and
select the torso-defib/torso segmentation si.fld file. Unlike the cube above, we are
interested in the internal structure of this file, so we will use texture slices to view the data.

Connect the output of ReadField to a ConvertFieldsToTexture module and connect
that module to a ShowTextureSlices module. Open the user interface to ShowTextureS-
lices and check the “X plane”, “Y plane”, and “Z plane” boxes. Place a CreateStandard-
ColorMaps module in the network, and connect its output to the second input of the
ShowTextureSlices module. Open the CreateStandardColorMaps user interface and
click the mouse in the upper display to adjust alpha. Create one point in the lower left
corner (this will make the area outside the torso black). Create another point back near
the middle of the display, slightly to the right of the first point. Finally, connect the Show-
TextureSlices output to a new ViewScene module. The network should look similar to
that shown in Figure 4.1 and the display output is shown in Figure 4.2.

4.2 Visualizing Extra Geometry

The visualization in Section 4.1 shows texture slices through the entire segmented torso. One
may also be interested in adding additional 3D visualizations of subsets of the segmentation
to aid in the placement of electrodes. Next, we will add a visualization of the boundary of
the heart as an example.

Add the following module chain to the network: Connect the ReadField module to
a GetDomainBoundary module, followed by a FairMesh module, and lastly a Show-
Field module. The output of ShowField should be connected as the second input to the
ViewScene module.

CHAPTER 4. PLACING ELECTRODES 19

Figure 4.1. Start of a network to place electrodes in torso.

Figure 4.2. Output of initial torso visualization.

20 Chapter 4

Figure 4.3. Network after adding visualization of the heart.

Open the user interface to the GetDomainBoundary module, make sure the “Only
include compartments in the range between” checkbox is checked, and put values of 10 and
11 for the “min:” and “max:” fields. Also, make sure “Include outer boundary” is checked.
Next, open the user interface to the ShowField module. As before, Disable the viewing
of the nodes and edges, and enable transparency for the faces. Set the “Face Coloring” to
“Default” and select a red default color. The new network should look like Figure 4.3 and
the resulting visualization is shown in 4.4.

Next, a visualization of the outer boundary of the dataset may be useful. Add a similar
module chain as for the heart, but this time in the new GetDomainBoundary module,
only include compartments in the range between 1 and 255. This will select all data. Also,
we are only interested in the outer boundary of this data set, so make sure both “Include
outer boundary” and “Exclude inner boundary” are both checked. The network and results
are shown in Figures 4.5 and 4.6.

Other subsets of the segmentation can also be added to the visualization. Table 4.1 lists
the segmentation indices in the torso dataset.

4.3 Adding a Can Electrode

Next, we will read in a model of a can electrode and send the model through a widget
that will allow interactive editing of the electrodes’ placement and size. Begin by adding
another ReadField module to the network. Open the user interface, select “SCIRun
Field File (*.fld)” from the “Files of type” drop-down menu, browse to and select the

CHAPTER 4. PLACING ELECTRODES 21

Figure 4.4. Visualization results, including heart.

Figure 4.5. Addition of outer torso boundary visualization to the network.

Figure 4.6. Visualization results, including heart and torso.

22 Chapter 4

Material Seg. Indx

Background 0
Connective Tissue 1
Bowel Gas 2
Muscle 3
Fat 4
Kidney 5
Liver 6
Lung 7
Bone 8
Blood 9
Heart-Atria 10
Heart-Ventricles 11

Table 4.1. Table of segmentation indices in the torso dataset.

torso-defib/electrode can model si.fld file. Connect the output of ReadField to an
EditMeshBoundingBox module. Connect the pink output of EditMeshBoundingBox
directly to the ViewScene module - this will allow the visualization of the widget. Connect
the yellow output to a new ShowField which is also connected to ViewScene. Open the
ShowField user interface, disable the viewing of nodes and edges, and select the default
color to be something green.

Similar to the placing of electrodes in the cube mesh previously, upon viewing the scene
the location and size of the electrode can be modified through interaction with the Ed-
itMeshBoundingBox widget. Holding the shift key and grabbing the various controls
(edges, spheres, and cylinders) will modify the position, rotation, and scaling of the elec-
trode. Figure 4.7 shows this modified network and Figure 4.8 shows the placement used in
the remainder of this tutorial.

4.4 Adding a Wire Electrode

A second type of electrode often used in defibrillation scenarios is a wire. In this section, we
will create a small cylinder which represents the non-insulated section of a wire electrode
lead. SCIRun provides a widget to generate and manipulate a wire electrode. Add a Gener-
ateElectrode module to the network, connecting the pink output port to the ViewScene
module and the yellow output port to a new ShowField module. Again, connect the
ShowField module to the ViewScene module. Open the GenerateElectrode module
and to start, set the length of the electrode to 0.1 (corresponding to 10 centimeters). Set
the width of the electrode to 0.003. Open the ShowField module, turn off visualization
of the nodes and edges, and set the default color to something distinctive. Figure 4.7 shows
an example of this modified network.

Upon viewing the scene, a wire electrode will now be present. On the wire electrode, 5
control points will be visible. Moving the control points changes the shape of the electrode
in a fairly intuitive manner. Note that the electrode does not necessarily travel through
the points, they are only used as control points for a spline function. Also note that the
electrode will always start at one of the points, but will not necessarily end at the last point.

CHAPTER 4. PLACING ELECTRODES 23

Figure 4.7. Addition of a can electrode to the network.

Figure 4.8. Placement of the can electrode.

24 Chapter 4

Figure 4.9. Addition of a wire electrode.

The length is determined by the length value in the user interface, not the position of the
last point. Figure 4.10 shows an example of the electrode placement used in the remainder
of this tutorial.

4.5 Adding a Planar Electrode

Lastly, we will add a planar electrode. The creation of the planar electrode is similar to the
wire electrode, with the exception that the planar electrode has a length, width, thickness,
and normal vector rather than just a length and width. Similar to the wire electrode, add
a GenerateElectrode module, connected to a ShowField module, both connected to
the ViewScene module. Open the GenerateElectrode user interface, select the ”Planar
Electrode” radio button, set the length of the electrode to 0.1, thickness to 0.003, and
width to 0.02. In the ShowField module, disable the viewing of the nodes and edges, and
select a distinctive default color. Figure 4.11 shows an example of this modified network
and Figure 4.12 shows an example of the electrode placement used in the remainder of this
tutorial.

4.6 Writing Electrodes to a Bundle

One feature of SCIRun is the ability to “bundle” various fields together. We will take
advantage of that feature when writing the electrode fields to a file. Add a InsertField-
sIntoBundle module into the network and connect the yellow output of the can electrode’s

CHAPTER 4. PLACING ELECTRODES 25

Figure 4.10. Placement of the wire electrode.

Figure 4.11. Addition of a planar electrode.

26 Chapter 4

Figure 4.12. Placement of the planar electrode.

Figure 4.13. Complete network for generating and placing electrodes.

EditMeshBoundingBox module to the first input. Connect the outputs of the two Gen-
erateElectrode modules to the second and third inputs of InsertFieldsIntoBundle.
Open the user interface and click on the “Field 1” tab. In the “Name” textbox, type a
descriptive name for the first field, such as CAN ELECTRODE. Click on the “Field 2” tab and
provide a name, such as WIRE ELECTRODE. Click on the “Field 3” tab and provide a name,
such as PLANAR ELECTRODE.

Next, connect the orange output of InsertFieldsIntoBundle to a new WriteBundle
module. Open the user interface, browse for a directory, and type a name for the electrode
field bundle save file. Executing that module will cause the file to be written. Figure 4.13
shows the complete network.

Note that if the WriteBundle module is connected and enabled, each time the network
is run, the file will be overwritten. Thus, if you move one of the electrode in the view

CHAPTER 4. PLACING ELECTRODES 27

window, the old file will be automatically overwritten with the new file. To keep this from
happening, disconnect the WriteBundle module until you are ready to write the file, or
right click on the module and select “Disable” from the dropdown menu.

28 Chapter 4

Chapter 5

Finite Element Simulation on a Torso

In the previous chapter, we created a network which allows the placement of various elec-
trodes within a torso. The result of that network was a SCIRun bundle being written to a
file, consisting of three fields: a can electrode, a wire electrode, and a planar electrode. In
this chapter, we will read the torso and the electrodes back in, assign known conductivities
to various materials in the torso segmentation, assign known potentials to two of the elec-
trodes, allow the third electrode to be a floating lead, create a finite element mesh, refine
that mesh near the electrodes, and solve the electric field problem.

5.1 Building and Viewing the Finite Element Mesh

To simplify processing and reduce runtimes, we will create a smaller Hexahedral Mesh on
which the finite element simulation will be run. To do this, start a new network and insert
a ReadField module. Open the module, select “SCIRun Field File (*.fld)” in the “Fields
of type” dropdown box, browse for and select the segmentation si.fld file. Connect
the output to a CreateLatVol module. In CreateLatVol, set the “X Size”, “Y Size”,
and “Z Size” text fields to 50, 50, and 75. Insert a MapFieldDataOntoElems module
into the network, connecting the output of ReadField to the first input and the output
of CreateLatVol to the third input. This will map the data values in the segmentation
onto the nodes of the hex mesh. Open the MapFieldDataOntoElems module and select
“mostcommon” in the “SampleMethodPerElement” dropdown box. This will ensure the
values on the nodes will be one of the segmentation values and not an interpolated value.
Figure 5.1 shows this new network.

To visualize the segmentation, first we will clip the data outside the actual torso (out-
side data has a value of 0) by connecting a ClipFieldByFunction module to the out-
put of MapFieldDataOntoElems. Open the user interface and set the expression to
RESULT=DATA>0;. Next, connect the output of MapFieldDataOntoElems to the follow-
ing module chain: GetFieldBoudnary, FairMesh, ShowField, and ViewScene. As we
did in the entire last chapter, open the ShowField module and disable rendering of the
nodes and edges. Figure 5.2 shows this new network and the resulting visualization.

CHAPTER 5. FINITE ELEMENT SIMULATION ON A TORSO 29

Figure 5.1. Beginnings of the defibrillation finite element simulation network.

Figure 5.2. Viewing the finite element torso mesh.

5.2 Completing an Initial Two-Electrode Simulation

Now that our simulation mesh has been created, we need to build our finite element matrix,
add our known electric potentials in the locations of the electrodes, and solve the finite
element linear system. We will start by specifying the conductivities of various materials in
the segmentation. To do so, insert a CreateMatrix module into the network. Open the
user interface and set the number of rows to 12 and the number of columns to 1 by typing
these values into the text boxes at the top. A matrix with 12 entries (0 through 11) will
appear. Table 5.1 lists the conductivities used in this simulation. Populate the matrix with
these, or modified values.

Connect the yellow output of ClipFieldByFunction to the input of a ConvertIndices-
ToFieldData module. Connect the output of CreateMatrix to the second input. Connect

30 Chapter 5

Material Seg. Indx Conductivity (S/m)

Background 0 0.0
Connective Tissue 1 0.22
Bowel Gas 2 0.002
Muscle 3 0.25
Fat 4 0.05
Kidney 5 0.15
Liver 6 0.07
Lung 7 0.007
Bone 8 0.006
Blood 9 0.7
Heart-Atria 10 0.3
Heart-Ventricles 11 0.3

Table 5.1. Conductivity values used in this simulation.

Figure 5.3. Network now incorporating conductivities and the finite element matrix.

the output of ConvertIndicesToFieldData to a BuildFEMatrix module. The network
should look similar to Figure 5.3.

Next, the electrodes need to be incorporated into the simulation. Insert a ReadBundle
module into the network. Open and select the electrode bundle written previously to a file
in Section 4.6. Connect the output of ReadBundle to a GetFieldsFromBundle module.
For the user interface of GetFieldsFromBundle to work correctly, the ReadBundle
module needs to first be executed. Right click on ReadBundle and select “Execute” from
the pop-up menu. Now, open the GetFieldsFromBundle user interface. We will need
to specify which fields in the bundle will correspond to the output ports on the module.
Make sure the “Field1” tab is selected, and click on CAN ELECTRODE in the selection list (or
whatever the can electrode field was named previously. Open the “Field2” tab and select
WIRE ELECTRODE. Open the “Field3” and select PLATE ELECTRODE. This will associate the
can, wire, and plate electrodes with the first, second, and third yellow output ports. Figure
5.4 shows the addition of these modules to the network.

CHAPTER 5. FINITE ELEMENT SIMULATION ON A TORSO 31

Figure 5.4. Reading in the electrode configuration bundle.

Figure 5.5. Specifying field labelings for the two electrode fields.

We will use a slightly different technique for associating known potentials to the elec-
trodes than we did with the box simulation. To start, connect the first and second yel-
low outputs of GetFieldsFromBundle to separate CreateFieldData modules. Connect
those modules to a JoinFields module. In the first CreateFieldData module, set the
function to RESULT = 1;. In the second, set the function to RESULT = 2;. These network
additions are shown in Figure 5.5.

Next, we will map these indices onto our mesh, giving us a mesh with values of 1 where
at the can electrode, 2 at the wire electrode, and 0 everywhere else. We accomplish this
by connecting the JoinFields module to the first input of a MapFieldDataOntoNodes
module. Connect the output of ClipFieldByFunction to the third input of the new Map-
FieldDataOntoNodes module. Similar to how we mapped conductivities onto the mesh,
we will map the known potentials onto the mesh using a new ConvertIndicesToField-
Data, which receives its input from the MapFieldDataOntoNodes module and a new
CreateMatrix module. Open the CreateMatrix user interface, and set the number of
rows and number of columns to 4 and 1.

Remember from the box tutorial that a value of NaN in our “known values” vector
signifies an unknown value. Therefore, we set the first entry of our matrix to a value of nan.
The next two entries represent the potentials of the two electrodes. We will set these to 450
and 0 for this simulation. Finally, for reasons that will become clear once we add a floating
electrode, set the fourth entry to nan. The current state of the network is shown in Figure
5.6.

32 Chapter 5

Figure 5.6. Associating known potential values with the two electrodes.

Figure 5.7. Solving the linear system.

The values on the mesh now represent the “known” values of our solution. All that re-
mains to complete our first simulation is to get a vector of these known values and add them
as known values to our linear system. To do this, connect the ConvertIndicesToField-
Data module to a GetFieldData module. Add a AddKnownsToLinearSystem module
with the first input coming from BuildFEMatrix and the third input coming from the
GetFieldData module. Connect the two outputs of AddKnownsToLinearSystem to
the two inputs of a SolveLinearSystem module. These modifications are shown in Figure
5.7.

To visualize the results at this point, insert a SetFieldData module between the current
ClipFieldByFunction and GetFieldBoundary modules. This requires deleting the pre-
vious connection, adding the module, and connecting the three modules together. We will
add a standard color map by adding a CreateStandardColorMaps module connected to
a RescaleColorMap module. The second input of the RescaleColorMap module comes
from the output of the SetFieldData module. The output of RescaleColorMap is used
as the second input for the ShowField module. Open the ShowField module and make
sure the “Face Coloring” on the “Faces” tab is now set to “Colormap Lookup”. These
changes and the resulting visualization are shown in Figure 5.8.

CHAPTER 5. FINITE ELEMENT SIMULATION ON A TORSO 33

Figure 5.8. Initial simulation results for the two electrode problem.

5.3 Refining the Mesh

Depending on the resolution of the mesh generated in the CreateLatVol module, and
depending on the size of the electrodes used in the simulation, the electrodes may be much
smaller than can be resolved on our simulation mesh. Our first modification to the simulation
in the previous section is to perform automatic refining of the mesh close to the electrodes.

Start by deleting the connection between CreateLatVol and MapFieldDataOntoElems.
Connect the output of CreateLatVol to a CalculateDistanceToField module. Connect
the output of JoinFields to the second input. Next, we will map this data back onto the
the simulation mesh by connecting the output of CalculateDistanceToField to a Map-
FieldDataOntoElems module. The third input of the new MapFieldDataOntoElems
comes directly from CreateLatVol. This distance information is now used to drive the
refinement of the mesh. Elements with distances close to the electrodes will be refined while
elements further away will be left as is. This refinement is accomplished by connecting the
output of MapFieldDataOntoElems to a RefineMesh module. Lastly, connect the out-
put of RefineMesh to the third input of our original MapFieldDataOntoElems module
(which was partially disconnected at the beginning of this procedure).

The user interface settings are as follows: Open the CalculateDistanceToField mod-
ule and check the “Truncate distance larger than:” checkbox. Insert a value of 0.02 in the
text box. Open the newest MapFieldDataOntoElems module, and select “max” from
the “Sample Method Per Element” dropdown menu. Open the RefineMesh module, se-
lect the “Do not refine nodes/elements with values greater than isovalue” radio button, and
enter an IsoValue of 0.02 in the text box. Figure 5.9 shows these additions to the network
while Figure 5.10 shows the simulation results.

34 Chapter 5

Figure 5.9. Adding functionality to refine the mesh near the electrodes.

Figure 5.10. Simulation results after mesh refinement.

5.4 Adding a Floating Lead

As in the box simulation, we may wish to add a floating lead, or a conductor, to our
simulation. We will use the plate electrode saved in our input bundle as this floating lead.
The first step is to connect the third yellow output from the GetFieldsFromBundle a
CreateFieldData module (with equation set to RESULT = 3;), and connect that output
to the JoinFields module. Remember that our second CreateMatrix containing known
potentials contains and extra value of nan for the fourth entry. Therefore, the plate electrode
will still be considered an unknown value. The remainder of the addition of the floating
electrode is very similar to the box example in Chapter 3.

Insert a new CalculateInsideWhichField module, with the first input coming from the
ClipFieldByFunction module, and the second input coming from the CreateFieldData
module associated with the plate electrode. Open the user interface and set the “Default

CHAPTER 5. FINITE ELEMENT SIMULATION ON A TORSO 35

Figure 5.11. Adding a floating electrode to the simulation.

outside value” to nan. Set the “Datatype of destination field” to “float” and set the “Output
data location” to “node”. Connect the output to a GetFieldData module. The current
state of the network is shown in Figure 5.11.

We will now create a second simulation pathway instead of modifying the first simulation
which will help show the differences between the simulation with and without the floating
electrode. Connect the two outputs of AddKnownsToLinearSystem to the first two in-
puts of AddLinkedNodesToLinearSystem. The third input comes from the latest Get-
FieldData module. Connect the first two outputs of AddLinkedNodesToLinearSystem
to a SolveLinearSystem module. Connect the third output of AddLinkedNodesToLin-
earSystem to the first input of a EvaluateLinAlgBinary module. The second input of
the EvaluateLinAlgBinary comes from the first output of SolveLinearSystem. Create
a new SetFieldData module, the first input coming from the ClipFieldByFunction mod-
ule, and the second input coming from the EvaluateLinAlgBinary module. Duplicate the
remainder of the first simulation pathway after the SetFieldData module (starting with
the GetFieldBoundary module. These modifications are shown in Figure 5.12 with the
simulation results shown in Figure 5.13.

The differences between the two simulations in Figure 5.13 are admittedly difficult to
discern. Our last step, therefore, will be to create a visualization of the differences be-
tween these two simulations. Connect the outputs of the SolveLinearSystem (without
the floating lead) and the EvaluateLinAlgBinary (with the floating lead) to another

36 Chapter 5

Figure 5.12. Second simulation pathway including a floating electrode.

Figure 5.13. Results both with (right) and without (left) a floating electrode.

CHAPTER 5. FINITE ELEMENT SIMULATION ON A TORSO 37

Figure 5.14. Adding a visualization pipeline to show differences between the solutions with
and without a floating lead.

EvaluateLinAlgBinary module. Open the user interface and select the “Function” radio
button, typing x - y into the “Specify function” text box. Create yet another SetField-
Data module, with the first input again coming from the ClipFieldByFunction module
and the second input coming from the newest EvaluateLinAlgBinary module. Duplicate
the remaining visualization pipeline. This time, however, select a color map which deem-
phasizes values near zero. The “BP Seismic” colormap will do this. Figure 5.14 shows
the final additions to the network while Figure 5.15 shows the differences between the two
simulations.

38 Chapter 5

Figure 5.15. Results showing differences between two solutions–one with and one without
a floating lead.

CHAPTER 5. FINITE ELEMENT SIMULATION ON A TORSO 39

	Overview
	Defibrillation Model
	Software requirements
	SCIRun Compatibility
	Required Datasets

	Finite Element Modeling
	Finite Element Simulation on a Cube
	Building a Hexahedral Mesh
	Creating Plate Electrode Geometry
	Building and Solving the Finite Element Simulation
	Adding a Floating Lead

	Placing Electrodes
	Loading The Dataset
	Visualizing Extra Geometry
	Adding a Can Electrode
	Adding a Wire Electrode
	Adding a Planar Electrode
	Writing Electrodes to a Bundle

	Finite Element Simulation on a Torso
	Building and Viewing the Finite Element Mesh
	Completing an Initial Two-Electrode Simulation
	Refining the Mesh
	Adding a Floating Lead

