ShapeWorks

The tutorial

Correspondence Pipeline

Align \rightarrow Antialias $\rightarrow \underset{\text { Transform }}{\text { Distance }} \rightarrow$ Initialize \rightarrow Optimize \rightarrow Align \boldsymbol{I}
 Align \rightarrow Antialias $\rightarrow \underset{\text { Transform }}{\text { Distance }} \rightarrow$ Initialize \rightarrow Optimize \rightarrow Align \boldsymbol{I}

Command Line Tools

Analysis: PCA, Group differences ShapeWorksView

ShapeWorksGroom

Command line collection of preprocessing filters

Syntax

ShapeWorksGroom torus.preprocess1.params isolate hole_fill center auto_crop
ShapeWorksGroom torus.preprocess2.params antialias fastmarching blur

Basic filters available

- isolate
- hole fill
- antialias
- fastmarching
- blur

DEMO: torus example

ShapeWorksGroom

Example tori shapes from population parameterized by r and R

ShapeWorksRun

Command line tool to initialize and optimize particle positions on shapes in the ensemble

Syntax

ShapeWorksRun torus.correspondence. params

Notable parameters

- \# particles
- adaptivity
- alignment

DEMO: torus example

ShapeWorksRun

Correspondences overlaid on 3 of the input shapes

ShapeWorksView

GUI to visualize correspondences and perform statistical analysis

Syntax
ShapeWorksView torus.analyze.params
Notable parameters

- Reconstructed shapes
- Modes of variation
- Group differences (not in demo, only if 2 populations are available)

DEMO: torus example

ShapeWorksView

mean

Modes of variation captured by the correspondence model.
The first (top) and second (bottom) modes capture the shape variation consistent with the generative model

Recent Workt

Challenges of Nonregular Shapes

(a)
(b)

Fig: Incorrect correspondences near sharp features when (a) points with different tangent spaces interact, (b) nearby points sampling different parts of the surface interact, (c) optimization is based only on point positions on different shapes
\square Geodesic distances
[computed using intermediate triangular meshes
[pre-computed between vertices [Fu, et. alt ${ }^{\dagger}$]
otherwise computed using two-layered Barycentric interpolation
\square Surface normal entropy
\square penalize divergence from "mean" in the space of surface normals
\square helps disambiguate correspondences near convoluted features

[^0]
Group Comparison: LV wall \dagger

Dr. Raimond Winslow
Institute for Computational Medicine, The Johns Hopkins University

Mean differences between normal and ischemic groups (blue => expansion, yellow => contraction)
Top: PBM ${ }^{*}$, Bottom: proposed method
\square Study shape differences between normal and ischemic LV wall segmented at end diastole (ED)
\square Results
[Group mean differences significant with p-value <0.01
\square Shape changes spatially consistent with previously published results

Nonlinear Growth Model

Varying asymptote*

Varying delay*

Varying speed*

Estimate Gompertz* model parameters

Fig: Replacing linear regression model with nonlinear Gompertz model for optimization

Fig: Progression of growth at three time-points from neonate -4 years

Mixed Effects Model

Mixed Effects Model: Trends

Group trend

Individual trend

Pairwise Distance Features

Pairwise interparticle distance (Euclidean/Geodesic) as a feature for correspondence optimization

Fig: Initial results from study of cortext shapes. Two examples from the population with correspondences overlaid. Note that correspondences are not good near the top of the cortex, suggesting the need for additional features (e.g. curvature) to be included

Thank you!

Questions?

[^0]: † Fu, Z., Kirby, M., Whitaker, R.: A fast iterative method for solving the eikonal equation on triangulated meshes. SIAM Journal on Scientic Computing (2011) To appear

